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Abstract 

Background:  Up to 40% of patients with estrogen receptor-positive (ER+) breast cancer experience relapse. This can 
be attributed to breast cancer stem cells (BCSCs), which are known to be involved in therapy resistance, relapse, and 
metastasis. Therefore, there is an urgent need to identify genes/pathways that drive stem-like cell properties in ER+ 
breast tumors.

Methods:  Using single-cell RNA sequencing and various bioinformatics approaches, we identified a unique stem-like 
population and established its clinical relevance. With follow-up studies, we validated our bioinformatics findings and 
confirmed the role of ER and NFĸB in the promotion of stem-like properties in breast cancer cell lines and patient-
derived models.

Results:  We identified a novel quiescent stem-like cell population that is driven by ER and NFĸB in multiple ER+ 
breast cancer models. Moreover, we found that a gene signature derived from this stem-like population is expressed 
in primary ER+ breast tumors, endocrine therapy-resistant and metastatic cell populations and predictive of poor 
patient outcome.

Conclusions:  These findings indicate a novel role for ER and NFĸB crosstalk in BCSCs biology and understanding the 
mechanism by which these pathways promote stem properties can be exploited to improve outcomes for ER+ breast 
cancer patients at risk of relapse.
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Background
Breast cancer is the second leading cause of cancer-
related mortalities in women of the US [1]. Approximately 
75% of breast cancers express estrogen receptor α 
(ER) [2] and rely on estrogens for their proliferation, 
survival, and progression; therefore, inhibition of ER 

activity or estrogen production are common therapeutic 
strategies. Although most women initially respond to 
these endocrine therapies, up to 40% of ER-positive 
(ER+) breast cancer patients will experience relapse after 
5 years of treatment [3–5]. A major cause of breast cancer 
relapse is thought to be the presence of a stem-like cell 
population (i.e., breast cancer stem cells (BCSCs)) that 
can escape therapy.

Characteristics of BCSCs include quiescence/slow 
proliferation, self-renewal, tumor-initiation, and 
therapy-resistance (reviewed in [6]). Two additional 
characteristics make the study of BCSC biology 
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challenging—heterogeneity [7, 8] and plasticity [9–
12]. For example, it was shown that BCSCs derived 
from different breast cancer molecular subtypes are 
characterized by different molecular markers [7], 
whereas several BCSC populations with different 
biological functions and transcriptional regulators 
within one mouse model of breast cancer have been 
described [8]. In addition to heterogeneity, BCSCs also 
display plasticity, which allows BCSCs to switch between 
distinct phenotypic states that lead to disease progression 
and metastasis. Two types of plasticity have been 
described for BCSCs, the transition between quiescent 
mesenchymal- and proliferative epithelial-like states 
[9–11] and the conversion of non-stem to stem cells [12]. 
Thus, BCSCs represent a heterogeneous and dynamic cell 
population rather than a stable population with a fixed 
phenotype.

The role of ER creates an additional layer of complexity 
in our understanding of the biology of BCSCs derived 
from ER+ breast tumors. Some studies showed that 
estrogen treatment increases BCSC properties, including 
mammosphere forming efficiency and the proportion 
of CD44+/CD24− cells, in ER+ breast cancer cell lines 
and that this effect was reversed by endocrine therapy, 
suggesting that ER is necessary for stem cell expansion 
[13, 14]. In addition to these studies, it was shown that 
mammospheres derived from several ER+ breast cancer 
patient tumors retain ER expression and activity [15]. 
Moreover, it was reported that ER+ breast cancer cells 
respond to estrogen by secreting growth factors that 
act as paracrine mediators to promote stem properties 
[13, 14, 16]. In addition to these studies, it has also 
been suggested that the ERα-36 variant can promote 
BCSC self-renewal and increase the CD44+/CD24− 
cell population [17, 18]. On the other hand, several 
studies have reported that activation of ER inhibits 
several stem cell-associated markers (NANOG, OCT4, 
SOX2, etc.) and pathways, decreases mammosphere 
formation, and reduces the pool of BCSCs [19, 20], 
suggesting that ER activation can also suppress stem cell 
properties. This concept is supported by several reports 
showing that ER antagonism with endocrine therapy 
leads to an enrichment of BCSCs [21] that expand 
with the development of endocrine therapy resistance 
[22]. Additionally, some studies have shown that 
BCSCs derived from ER+ breast tumors generally lack 
expression of ER [23–28], suggesting ER-independent 
mechanisms of BCSC promotion. Thus, further 
clarification on the role of ER in BCSCs is needed.

Here, we used a combinatorial approach to identify 
and define drivers of BCSCs in ER+ breast cancer cell 
lines. Using single-cell RNA sequencing (scRNA-seq), we 
identified a quiescent stem-like population of cells that 

is highly enriched in mammospheres. Applying various 
bioinformatic methods, we identified ER and NFĸB as 
key drivers of this stem-like population. Additionally, we 
derived a gene signature from this stem-like population 
and found that it is enriched in a subset of endocrine 
therapy-resistant cells, circulating tumor cells, and 
metastatic cell populations from PDX tumors. We also 
demonstrated that this signature is associated with 
aggressive disease and an increased risk of relapse in 
patients with ER+ breast cancer. Taken together, these 
findings implicate a newly identified quiescent stem-like 
cell population in the progression of ER+ breast tumors, 
and targeting this population could improve the outcome 
for breast cancer patients.

Materials and methods
Reagents
17β-estradiol (E2) was purchased from Sigma. TNFα 
(#210-TA) and GDF15 antibody (#AF957) were 
purchased from R&D Systems. ICI182,780 (ICI) (# I4409) 
and IKK7(#S2882) were purchased from Sigma and 
SelleckChem, respectively.

Cell lines and culture conditions
The human ER+ breast cancer cell lines, MCF-7 and 
T47D, were obtained from Dr. Debra Tonetti (University 
of Illinois at Chicago) and authenticated. These cells are 
routinely maintained in RPMI 1640 media (Invitrogen 
Life Technologies) with phenol red supplemented with 
10% FBS, 1% non-essential amino acids, 2  mmol/L 
L-glutamine, 1% penicillin–streptomycin, and 6 ηg/mL 
insulin. The ER+ breast cancer PDX cell lines, UCD4 
and UCD65, were kindly provided by Dr. Carol Sartorius 
(University of Colorado Anschutz Medical Campus) [29] 
and grown in Dulbecco’s modified minimum essential 
medium (DMEM)/F12 with 10% fetal bovine serum, 
cholera toxin (100  ng/mL), hydrocortisone (1  μg/mL), 
insulin (1 nM), and 1% penicillin–streptomycin.

Establishing dual reporter cell lines
MCF-7 and T47D dual reporter cell lines were generated 
by stable transfection with p3X-ĸB-RE-eGFP and pS2-
ERE-mCherry reporter plasmids using Lipofectamine 
2000 according to the manufacturer’s protocol. The 
p3X-ĸB-RE-eGFP reporter plasmid was obtained from 
Dr. Elaine T. Alarid (University of Wisconsin-Madison) 
[30]. The pS2-ERE-mCherry plasmid was constructed by 
cloning (ERE)2-pS2-CAT element from donor plasmid 
[31] obtained from Dr. Benita Katzenellenbogen into 
pmCherry-1 plasmid (Takara, # 632525) with XbaI 
and NheI restriction sites. After transfection cells were 
selected with geneticin and puromycin and cloned by 
limiting dilutions in 96-well plates. Representative clones 
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were selected based on mCherry and GFP expression 
after treatment with E2 or TNFα, respectively. Reporter 
activity was calculated as the confluence for each 
fluorescent signal over the total confluence using a 
Celigo imaging cytometer. In addition to mCherry and 
GFP expression, MFE was measured for each clone and 
clones representative of bulk cell lines were chosen for 
the further experiments.

RT‑quantitative PCR (QPCR)
Total RNA was isolated using Trizol and RT-QPCR 
performed as previously described [32]. Fold change was 
calculated using the ΔΔCt method with 36B4 serving as 
the internal control. All QPCR primers were obtained 
from Origene.

Mammosphere (MS) assay
Mammosphere assays were conducted as described 
[33]. Briefly, cells were seeded at single-cell density 400 
cells per well on low attachment 96 well plates in media 
described by Dontu et  al. [34], supplemented with 1% 
methyl cellulose to prevent cellular aggregation. After 
7  days, the number of MS ≥ 75  μm in diameter was 
determined using a Celigo imaging cytometer, and MS 
forming efficiency (MFE) was calculated. Secondary 
MS assays were performed to validate MS forming 
properties of sorted cell populations, since it was shown 
[35, 36] that additional rounds of MS assays further 
enrich for cells with BCSC properties. Secondary MS 
assays were conducted by sorting of primary MS cells 
into 4 population based on ERE and NFĸB-RE reporter 
activity, each population was seeded as primary MS. 
After 7  days secondary MFE was calculated for each 
population. For EdU labeling, MS were cultivated 
with EdU reagent (10uM) for the last 72  h of the assay. 
Then MS were collected and transferred to 8 well glass 
chamber slides (Corning, #354114) for 4 h to attach. MS 
were then fixed with 4% PFA for 30 min, permeabilized 
with 0.2% Triton × 100 in TBS and labeled using Click-iT 
EdU Alexa Flour 633 imaging kit (Invitrogen, # C10337) 
according to manufacturer’s protocol. Cells were imaged 
with a Zeiss LSM880 confocal macroscope.

Western blot
Nuclear lysates were collected using NE-PER kit (Thermo 
Scientific). Proteins were separated by SDS-PAGE 
(Bio-Rad Laboratories), transferred to nitrocellulose 
membranes (Thermo Scientific), blocked for 1  h in 
buffer containing 5% nonfat dry milk (Lab Scientific) 
or 5% bovine serum albumin, and incubated with the 
appropriate primary antibody overnight. The next 
day, secondary antibody was applied, and the signal 

visualized on a Molecular Imager ChemidocXRS (Bio-
Rad Laboratories) using the Pierce Supersignal West Pico 
chemiluminescent substrate (Thermo Scientific). Images 
were obtained using Quantity One software (Bio-Rad 
Laboratories).

Chromatin immunoprecipitation assays
Chromatin immunoprecipitation assays were performed 
as previously described [37]. Briefly, MCF-7 cells were 
crosslinked with 1% formaldehyde in PBS. For the 
precipitations protein A Dynabeads (10003D, Invitrogen) 
were coated with ERα antibody (#sc-8002 F-10) prior 
to pulldown and excess antibody was washed away. 
Pulldowns occurred while rotating for 16 h at +4C. Beads 
were then washed followed by elution from the beads 
using elution buffer (0.1 M NaHCO3, 1% SDS). Elutions 
were subsequently de-crosslinked overnight at +65C and 
DNA was purified using QIAquick PCR Purification Kit 
Protocol and used for QPCR.

DNA‑binding ELISA assay
To measure NFĸB family member DNA binding, and 
ELISA assay was performed using TransAM® NFĸB 
Family Activation Assay Kit (#43,296) following 
manufacturer’s protocol. Briefly, nuclear extracts of 
MCF-7 cells cultured in 2D and MS conditions were 
loaded on oligonucleotide coated plate and incubated 
for 1  h at room temperature, following by incubation 
with primary antibodies and secondary antibodies. For 
quantification of results, a spectrophotometer (BIO-TEK 
Synergy HT) was used within 5  min at 450  nm with a 
reference wavelength of 655 nm.

Tumor initiation study
An in  vivo tumor initiation study was carried out at 
the University of Illinois at Chicago animal facility and 
conducted in accordance with institutional procedures 
and guidelines, and after prior approval from the 
Institutional Animal Care and Use Committee. Female 
athymic nude mice (nu/nu), aged 5  week-old, were 
purchased from Harlan. Different numbers of MCF-7 
cells grown in 2D or MS conditions were injected 
orthotopically into the thoracic mammary glands of 
mice supplemented with estrogen pellets. Three mice 
per group were used, each animal received 2 injections 
(n = 6). Tumor formation was monitored by palpitation 
for the next 6 weeks. ELDA (Extreme Limiting Dilution 
Analysis) was performed to calculate a significance 
difference of stem cell frequency for each group (P < 0.05) 
[38].
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Single‑cell RNA sequencing (scRNA‑seq) and data analysis
For scRNA-seq, MS were collected, washed twice with 
1 × PBS, trypsinized and resuspended in × 1 PBS with 
0.04% BSA. Cell suspension was loaded on a Chromium 
Single Cell 3′ Chip (10X Genomics). A detailed 
protocol of single-cell libraries preparation, sequencing 
process, raw data analysis and downstream analysis has 
been previously described [32]. Briefly, the standard 
workflow from Seurat package (Version 4.0.6) in the 
RStudio (v.4.0.3) was used for downstream analysis. Cell 
duplicates, cells with low gene counts (< 2000 genes), and 
cells with high mitochondrial gene expression (> 15% of 
total mapped reads) were excluded from analysis. This 
resulted in 2974 MCF-7 and 2765 T47D MS cells. Data 
will be available through Gene Expression Omnibus (GSE 
205415) upon publication. To visualize the data in low-
dimensional space, the Uniform Manifold Approximation 
and Project (UMAP) reduction technique was used. 
Cell cycle scoring and regression was performed by 
applying the cell cycle vignette from the Seurat package. 
For the integration of data from MS MCF-7 cells with 
data from 2D-cultured MCF-7 cells [39], from 4OHT-
treated MCF-7 cells [32], or from long-term estrogen 
deprived (LTED) cells [40], we used publicly available 
dataset downloaded from Gene Expression Omnibus 
(GSE114462, GSE181812, GSE122743, respectively). 
Integration of these datasets was performed using the 
SCTransform vignette in the Seurat package to reduce 
technical variation caused by different methods of sample 
processing, as recommended by Hafemeister and Satija 
[41].

Functional enrichment analysis
FEA was used to identify enrichment of gene signatures 
across the identified clusters as described in [40]. 
Signatures tested were derived from MSigDB v.7.4 [42, 
43]. Prior to calculating signature scores, the data were 
normalized and scaled gene-wise. Then a z-scored 
signature was calculated for each cell separately. 
ROC  analysis was used to estimate the accuracy of 
enrichment of a signature within a particular cluster. 
Area Under the Curve (AUC) > 0.6 was considered an 
enrichment. Significance of a signature enrichment 
across the clusters was estimated by the Wilcoxon 
rank-sum test (P < 0.01 was considered significant). 
The Pearson’s correlation coefficient and statistical 
significance were calculated using RStudio. Correlation 
coefficients of 0.3–0.5 indicate a moderate correlation 
and 0.5–0.9 indicate a strong correlation. Multiple linear 
regression was calculated by lm function in RStudio 
to establish the relationship between gene signatures 
in a specific cluster. The output data of analysis were 
downloaded using library(broom). FEA for the MCF-7 

MS Cluster 1 Signature was performed on scRNA-
seq datasets from primary ER+ breast cancer tumors 
(GSE176078) [44], primary and metastatic patient 
derived xenograft (PDX) tumors with high (UCD4) and 
low (UCD46) expression of ER [45] (GSE131007) and on 
a scRNA-seq dataset from peripheral blood mononuclear 
cells derived from patients with metastatic breast cancer 
with Cluster 13 consisting of Circulation Tumor Cells 
(CTCs) (GSE174463) [46].

Ingenuity pathway analysis (IPA)
The IPA package (QIAGEN Redwood City, www.​
qiagen.​com/​ingen​uity) was used to identify a network 
connecting DEGs from the MS Cluster 1. The network 
and the type of connection between DEGs were formed 
based on the Ingenuity Knowledge Base repository 
inferred from the scientific literature [47].

Statistical analysis
Data are presented as mean ± SEM from at least 
three independent determinations. Statistical analysis 
consisted of 1- or 2-way ANOVA followed by Tukey 
posttest, or t-test, as appropriate.

Public data mining
Since the METABRIC dataset has a largest cohort of 
ER+ breast tumors (1175 patient tumors), it was chosen 
for estimation of predictive value of the MS Cluster 
1 Signature. To access the METABRIC [Molecular 
Taxonomy of Breast Cancer International Consortium] 
cohort, cBioPortal for Cancer genomics, an open access 
resource providing a tool to analyze patient tumor 
samples was used [48, 49]. Genes from the MS Cluster 
1 Signature were individually analyzed in the database 
against samples from the METABRIC cohort. Samples 
were stratified into two groups based on z-scored 
expression of each gene in the signature and named 
positive ( +) or negative (−) for signature alterations. 
Precomputed by cBioPortal z-scores were used for the 
analysis with the default setting (2 standard deviations 
from the mean). Overall survival, molecular subtype 
(PAM50 and claudin-low), neoplasm histological grade, 
and patient’s vital status were analyzed between the 
altered and unaltered groups according to the cBioPortal’s 
online instructions and statistical significance was 
determined by chi-squared test. Calculation of the MS 
Cluster 1 signature score of the METABRIC cohort 
stratified for molecular subtype (PAM50 and claudin-
low), neoplasm histological grade, and patient’s vital 
status was performed using RStudio, and mRNA 
expression matrix for each patient was downloaded from 
cBioPortal.

http://www.qiagen.com/ingenuity
http://www.qiagen.com/ingenuity
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Results
scRNA‑seq reveals a unique quiescent population 
of stem‑like cells in ER+ mammospheres
To study BCSCs, we isolated cells from mammospheres 
(MS), which we and others [35, 36] have shown are highly 
tumorigenic compared to 2D-cultured cells (Fig.  1A), 
and thus are enriched for BCSCs. We performed scRNA-
seq on cells derived from MS of two ER+ breast cancer 
cell lines, MCF-7 and T47D, and then assessed BCSC 
properties using several widely recognized characteristics 
of stem cells: i) expression of classical stem cells markers 
and an enrichment for stem cell-associated gene 
signatures (Fig.  1), ii) proliferation status (Fig.  2 and 
Additional file 1: S. Fig 1), and (iii) enrichment in MS vs 
2D-cultured cells (Fig. 3).

We first performed unsupervised clustering of cells 
derived from MCF-7 MS, which revealed 4 cell clusters 
with distinct transcriptomes (Fig.  1B, C). Analysis of 
classical stem marker expression across the 4 clusters 
revealed that: (i) expression of some stem markers was 
not detected in our dataset (e.g., ALDH1A1 and KRT5), 
(ii) some markers were expressed but to a similar 
level among the four clusters, (e.g., CD44, NANOG, 
POU5F1/Oct4), and (iii) some markers were differentially 
expressed across the clusters but not in the same cluster 
(e.g., CD24 and TWIST were expressed in Cluster 0, 
KLF4 was expressed in Cluster 1, Additional file  2: 
S.Table  1). Since cellular processes are often associated 
with changes in the expression of groups of genes that 
share common biological functions or properties, we 
reasoned that a more reliable approach to identify 
putative BCSCs will be to test a set of related genes 
(i.e., a gene signature) rather than rely on expression of 
any single gene, which could be affected by technical 
limitations of scRNA-seq, such as gene dropout [50]. For 
this purpose, we used MsigDB [42] as a source of stem 
cell-associated gene signatures, from which we selected 
9 signatures that have been derived from or validated in 
in breast cancer models (a detailed description of each 
signature is presented in Additional file  2: S. Table  2). 
To identify which cluster(s) are enriched for stem 

cell-associated gene signatures, we applied Functional 
Enrichment Analysis (FEA), also known as Gene Set 
Enrichment Analysis, a widely used approach which was 
proven to detect even small but biologically significant 
changes in gene expression in different cancer datasets 
[40, 51]. We found that the majority of these stem cell-
associated gene signatures were significantly enriched 
in MS Cluster 1 and MS Cluster 2 (Fig.  1D, Additional 
file  2: S. Table  3), suggesting that these clusters may be 
putative stem-like cell populations. To determine if 
similar putative stem-like populations are found in T47D 
MS, we performed an integration analysis of MCF-7 and 
T47D MS datasets, which resulted in 4 clusters, each 
consisting of cells from both lines (Fig. 1E, F), indicating 
transcriptomic similarities between MCF-7 MS and 
T47D MS. Two clusters of the integrated MCF-7/T47D 
dataset, Integrated Cluster 0 and Integrated Cluster 2, 
were found to be enriched for stem cell-associated gene 
signatures (Fig.  1G, Additional file  2: S. Table  4). To 
establish whether these two clusters are similar to the 
two stem-like clusters originally identified in MCF-7 MS, 
we used FEA for custom gene signatures generated from 
differentially expressed genes (DEGs) (Additional file  2: 
S. Tables 5.1–5.4) of MCF-7 MS Cluster 1 and Cluster 2 
(Additional file 2: S. Tables 5.2, 5.3) (hereinafter referred 
to as “the MS Cluster 1 Signature” and “the MS Cluster 2 
Signature”). FEA showed enrichment for the MS Cluster 
1 Signature in the Integrated MCF-7/T47D Cluster 0, 
and the MS Cluster 2 signature was found to be enriched 
in the Integrated MCF-7/T47D Cluster 2 (Fig. 1H, I and 
Additional file 1: S. Fig 1). These results indicate that MS 
derived from different ER+ breast cancer cell lines have 
2 common cell populations with stem-like gene signature 
enrichment.

We next focused on cell proliferation, since some 
studies have shown that stem cells remain primarily 
in a quiescent/low proliferative state to maintain their 
stemness [23, 52]. To understand which of the two MS 
stem-like populations are quiescent, we first performed 
a cell cycle scoring analysis. The majority of MS Cluster 
1 cells were found to be in G1 cell cycle phase whereas 

Fig. 1  Single-cell RNA sequencing reveals two putative stem-like cell population clusters in mammospheres derived from ER+ breast cancer cell 
lines. A Different numbers of MCF-7 cells, cultured in standard 2D or mammosphere conditions, were injected into the mammary gland of athymic 
mice. The incidence of tumor formation was determined over 6 weeks. A significant difference in stem cell frequency, based on the tumor incidence 
per condition, was determined by ELDA (P < 0.05). ND, not detected. B scRNA-seq was conducted on MS derived from MCF-7 cells. Bi-dimensional 
representation of 2974 single-cell transcriptomes is shown (UMAP). C The percentage of cells in each cluster relative to the total number of cells 
is shown. D FEA was performed for stem cell-associated gene signatures from MsigDB. AUC values are shown in a heatmap, and P-values are 
presented in Additional file 2: Supplemental Table 3. E 5739 single-cell transcriptomes derived from MCF-7 MS and T47D MS were integrated and 
represented bi-dimensionally. F The distribution of MCF-7 and T47D cells in each cluster relative to the total cell number is shown. G FEA for stem 
cell-associated gene signatures was performed on the MCF-7 and T47D integrated dataset. AUC values are shown in a heatmap, and P-values are 
presented in Additional file 2: Supplemental Table 4. H, I FEA was performed for the gene signatures derived from the DEGs of MCF-7 MS Cluster 1 
(H) and MCF-7 MS Cluster 2 (I) Signatures on the MCF-7 and T47D integrated dataset. Box plots show signatures scores per integrated cluster with 
significant AUC and P-values indicated in grey

(See figure on next page.)
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MS Cluster 2 cells were split evenly between S and G2M 
(Fig. 2A, B). We observed a similar cell cycle distribution 
for the two putative stem-like populations in the 
integrated MCF-7/T47D dataset (Additional file 1: S. Fig 
2). Next, we performed a functional EdU incorporation 
assay, which supported our bioinformatic analysis and 

showed a similar distribution of proliferative vs non-
proliferative cells in MS for both cell lines (Fig. 2C, D and 
Additional file 1: S. Fig 2C, D). To identify which cluster 
is quiescent, we next utilized gene signatures derived 
specifically from cells in G0/quiescent state (a detailed 
description of signatures presented in Additional file  2: 

Fig. 1  (See legend on previous page.)
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S. Table  6.1). FEA for these gene signatures showed 
enrichment exclusively in MCF-7 MS Cluster 1 (Fig. 2E–
G) and in Cluster 0 of the integrated MCF-7/T47D 
dataset, indicating the presence of quiescent cells in these 
populations (Additional file  1: S. Fig 2 E–G, Additional 
file 2: S. Table 6.2).

Previously, Ben-Porath et  al. showed that stem 
cell-associated signatures may inherit proliferation-
related genes, which may explain the enrichment of 
both proliferative cells and stem cell-associated gene 
signatures in MS Cluster 2 [53]. Additionally Ben-Porath 
et  al. showed that regression of proliferation-related 
genes from analysis did not affect stem cell-associated 
gene signature enrichment [53]. Based on these concepts, 
we decided to conduct cell cycle regression to eliminate 
the influence of proliferation from the MS dataset 
and re-cluster the cells to determine whether stem 
cell-associated gene signature enrichment was reliant 
on or independent of proliferation-associated genes 
(Fig.  2H–J). We found that only one cluster, Cluster 1, 
was predominantly enriched for stem cell-associated 
signatures after cell cycle regression (Fig. 2K, Additional 
file 2: S. Table 7). This cluster has up to 80% of genes in 
common with the original MS Cluster 1 identified before 
cell cycle regression and was enriched for the MS Cluster 
1 Signature (Fig. 2L, M). However, no enrichment of the 
original MS Cluster 2 Signature was observed in this 
population (data not shown). These findings indicate 
that enrichment for stem cell-associated signatures in 
MS Cluster 1 is independent of proliferation-related 
genes and retained even after cell cycle regression, while 
enrichment for stem cell-associated gene signatures 
in MS Cluster 2 completely relies on the expression of 
proliferation-related genes.

Since it is well established that MS are enriched 
for BCSCs, we next examined whether either of the 
2 putative stem-like populations are enriched in MS. 
To do this, we integrated the MCF-7 MS dataset with 
a dataset from MCF-7 cells in standard 2D culture 
(MS/2D integrated dataset) [39]. Unsupervised clustering 

revealed 3 clusters that are highly enriched for MS cells: 
Cluster 1, Cluster 2, and Cluster 4 (Fig.  3A, B). FEA 
revealed that the original MS Cluster 1 Signature is 
enriched in the MS/2D Integrated Cluster 1 (Fig.  3C), 
which consists primarily of MS cells. In contrast, the 
MS Cluster 2 Signature was enriched specifically in the 
MS/2D Integrated Cluster 3, which consists of both MS- 
and 2D-cultured cells (Fig.  3D and Additional file  1: S. 
Fig 3). As expected, cells from MS/2D Integrated Cluster 
1 were predominantly in G1 cell cycle phase, consistent 
with quiescence, whereas cells from MS/2D Integrated 
Cluster 3 were found to be in S/G2M cell cycle phases 
(Fig.  3E), indicating this proliferative population can 
be found in both MS- and 2D-cultured cells. Using 
QPCR, we confirmed that MS Cluster 1 DEGs are in fact 
elevated in MS compared to 2D-cultured cells, while MS 
Cluster 2 DEGs were not different between MS and 2D 
(Fig.  3F). Collectively, these findings suggest that MS 
Cluster 1 represents a putative BCSC population based 
on its expression of stem cell-associated gene signatures, 
quiescence, and enrichment in MS.

ER and NFĸB are active in MS Cluster 1 and required for MS 
formation
To identify which genes/pathways are active and may 
promote stem properties in MS Cluster 1, we performed 
IPA network analysis on DEGs of this cluster (Fig.  4A). 
We found that top upregulated DEGs form a network 
with two central nodes, ESR1 and NFĸB complex, 
suggesting that both are active in MS Cluster 1. To 
assess this, we examined expression of ER and NFĸB 
family members, as well as ER and NFĸB activity based 
on target gene expression and target gene signature 
enrichment in the original MS Clusters. We found that 
ESR1 was most highly expressed in MS Clusters 0 and 2, 
whereas expression of ER target genes and enrichment 
of ER-associated gene signatures was observed in MS 
Clusters 1 and 2, suggesting that ER is active in MS 
Clusters 1 and 2 (Fig.  4B, C and Additional file  2: S. 
Table  8). NFĸB family members, RELA and REL, are 

(See figure on next page.)
Fig. 2  MS Cluster 1 is a quiescent stem-like cluster. A, B Cell cycle analysis was performed on MCF-7 MS using the Cell Cycle Scoring vignette 
provided by Seurat. A Bi-dimensional representations of 2974 single-cell transcriptomes colored by cell cycle phase (UMAP) and B cell cycle 
distribution for each cluster are shown. C An EdU assay was performed on MCF-7 MS. Representative pictures of MS stained for EdU (red) and DAPI 
(blue) are shown (bar = 50 µm) (D) A bar chart of EdU+ and EdU- cells presented as a percent of total number of cells from 11 MS is shown. E, F FEA 
was performed on the MS MCF-7 dataset with G0/quiescence-associated gene signatures with one representative example shown in a box plot. 
A detailed description of signatures is presented in Additional file 2: S. Table 6.1. AUC values are shown in a heatmap, and P-values are presented in 
Additional file 2: Supplemental Table 6.2. G Expression of genes associated with G0/Quiescence are represented in dot plots, with color representing 
expression level and size representing the percentage of cells in the cluster expressing the gene. H Cell cycle regression was performed using the 
Cell Cycle Regression vignette by Seurat. I, J Cell cycle phase and distribution are indicated after cell cycle regression of the MCF-7 MS dataset. K 
FEA was performed on MS MCF-7 dataset after cell cycle regression for stem cell-associated gene signatures from MsigDB. AUC values are shown 
in a heatmap, and P-values are presented in Additional file 2: Supplemental Table 7. (L) A Venn diagram shows percent of common DEGs derived 
from the MS Cluster 1 before and after cell cycle regression. M FEA was performed for the original MCF-7 MS Cluster 1 Signature on the MS MCF-7 
dataset after cell cycle regression
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Fig. 2  (See legend on previous page.)
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highly expressed in MS Clusters 1 and 0, respectively, 
while expression of NFĸB target genes and enrichment 
of NFĸB-associated gene signatures were found in 
MS Clusters 1 and 3 (Fig.  4D, E and Additional file  2: 
S. Table  8). These findings confirm the IPA analysis 
indicating that both ER and NFĸB are active in MS 
Cluster 1.

To understand the function of ER and/or NFĸB in 
MS Cluster 1, we utilized the IPA network analysis to 
identify MS Cluster 1 DEGs that can potentially be 
regulated by ER or NFĸB independently, or by the two 
working together, interdependently. For independent 
mechanism(s), we performed a correlation analysis 
between Hallmark pathways in MsigDB and found that 

Fig. 3  Integration of single-cell RNA sequencing datasets from MCF-7 cells cultured in standard 2D conditions and MS. A 5592 single-cell 
transcriptomes derived from 2D- and MS-cultured MCF-7 cells were integrated and represented bi-dimensionally. B The distribution of 2D- and 
MS-cultured MCF-7 cells in each cluster relative to the total cell number is indicated. C, D FEA was performed for the gene signatures derived from 
the DEGs of the original MS Cluster 1 (C) and MS Cluster 2 (D) on the integrated dataset. E Cell cycle distribution for each cluster as the percent 
of total cell number is indicated. F QPCR for the top DEGs of MS Cluster 1 and MS Cluster 2 was performed in MCF-7 cells cultured in 2D vs MS 
conditions. Data are presented as fold change (FC) normalized to 2D cells on a per gene basis. *P < 0.05, **P < 0.005, ***P < 0.001, ns not significant

(See figure on next page.)
Fig. 4  ER and the NFĸB pathway are active in MS Cluster 1 and required for MS formation. A IPA network analysis was performed for DEGs of the 
original MS Cluster 1. Two central nodes were identified, ESR1 (P-val = 4.73E-9) and NFĸB complex (P-val = 3.72E-3). Expression of ESR1 and ER 
target genes (B) and NFĸB family members and NFĸB target genes (D) are presented in dot plots, with color representing expression level and size 
representing the percentage of cells in each cluster expressing the gene. FEA was performed for ER (C) and NFĸB (E) gene signatures from MsigDB. 
AUC values are shown in a heatmap, and P-values are presented in Additional file 2: Supplemental Table 8. F Correlation between Hallmark ER 
or Hallmark NFĸB signatures with other Hallmark gene signatures in MS Cluster 1 was calculated using Pearson’s Correlation function in RStudio 
software. Correlation values are shown in a heatmap and P-values are presented in Additional file 2: Supplemental Table 9. G FEA was performed for 
the Hallmark TGFβ pathway gene signature on MCF-7 MS Clusters. Box plot shows signature scores per cluster and table indicates AUC and P-values 
for each cluster. H Multiple linear regression analysis between Hallmark ER, NFĸB and TGFβ pathway gene signatures was performed for MS Cluster 
1. Single cells individually placed in 3D graph with each axis representing the z-score for each pathway and each rectangle representing individual 
cells
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Fig. 4  (See legend on previous page.)
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the HALLMARK_ESTROGEN_RESPONSE_LATE 
gene signature correlates with several lipid metabolism-
associated pathways, whereas HALLMARK_TNFA_
VIA_NFKB gene signature correlates primarily with 
inflammatory and immune response pathways (Fig.  4F 
and Additional file  2: S. Table  9). These findings 
correspond with previously published data showing 
ER and cholesterol pathways are associated with BCSC 
maintenance [54, 55], while NFĸB promotes stem 
properties by regulating pro-inflammatory cytokines 
[56]. As these pathways have been shown previously to 
be involved in regulation of stem cells, we decided to 
focus MS Cluster 1 DEGs that can be regulated by both 
ER and NFĸB working together. We found that GDF15 
(growth/differentiation factor-15), a top 10 DEG for MS 
Cluster 1 (Additional file  2: S. Table  5.2), was predicted 
to be upregulated by both ER and NFĸB (Fig. 4A insert). 
GDF15 is a member of the TGFβ signaling pathway and 
has been shown to play role in promotion of stem-like 
features in multiple cancers [57–59]. In breast cancer 
cell lines, a recent study by Sasahara et  al. showed 
that GDF15 treatment increases expression of stem-
associated genes and mammosphere forming efficiency, 
which was reversed by a GDF15 blocking antibody [57]. 
Since GDF15 is a member of the TGFβ superfamily, we 
performed FEA for a TGFβ pathway gene signature 
and found it to be enriched in MS Cluster 1 (Fig.  4G). 
Moreover, we observed a correlation between the 
expression of the hallmark TGFβ gene signature and both 
the Hallmark ER and NFĸB gene signatures in MS Cluster 
1 cells (Fig. 4H). These findings suggest that ER and NFĸB 
may promote stem-like features in MS Cluster 1 through 
regulating of GDF15 and activation of TGFβ signaling.

ER and NFĸB work together to promote stem‑like features 
through GDF15
To validate our bioinformatic findings, we assessed ER 
and NFĸB activity in bulk MS cells (Additional file 1: S. 
Fig 4) and in isolated cell populations (Fig. 5, Additional 

file 1: S. Fig 5). In bulk MCF-7 and T47D MS, we found 
elevated ER and NFĸB activity based on target gene 
expression (Additional file 1: S. Fig 4A, 4E), DNA binding 
activity (Additional file  1: S. Fig 4B, 4F) and/or nuclear 
localization compared to 2D culture (Additional file 1: S. 
Fig 4C, 4G). To understand if ER and NFĸB activity are 
necessary for MS formation, we examined MS forming 
efficiency (MFE) in the presence of ICI182,780, an ER 
antagonist, and IKK7, an inhibitor of upstream kinases in 
the NFĸB pathway, IKKα/β. We found that each inhibitor 
reduced MFE in a dose-dependent manner (Additional 
file 1: S. Fig 4D, 4H), but that sublethal doses of ICI and 
IKK7 substantially decreased MFE compared to either 
inhibitor alone (Additional file  1: S. Fig 4I, 4J). These 
findings were further confirmed in 2 new ER+ breast 
cancer cell lines derived from patient-derived xenografts 
(PDX), UCD4 and UCD65 (Additional file  1: S. Fig 4K, 
4L). These findings suggest that while both pathways are 
required, they may also work together cooperatively, as 
we have previously shown on target genes, MS formation, 
and BCSC genes [33, 60]. We also confirmed that GDF15 
is regulated by ER and NFĸB to some extent in the bulk 
MCF-7 MS (Additional file 1: S. Fig 4M).

While these findings support a role for ER and NFĸB in 
MS in general, a population-specific approach is needed 
to uncover the role of ER and NFĸB in MS Cluster 1’s 
stem-like properties. Thus, in order to isolate MS Cluster 
1 cells, we decided to take advantage of their ER and NFĸB 
activity. We established dual reporter ER+ breast cancer 
cell lines, where activation of NFĸB is detected by eGFP 
expression and activity of ER is indicated by mCherry 
expression. We confirmed that expression of fluorescent 
proteins corresponds to ER and NFĸB activation by E2 
and TNFα, and that this activation is inhibited by ICI 
and IKK7, respectively (Fig. 5A, B and Additional file 1: 
S. Fig 5A, 5B). As expected, we found ER and NFĸB to 
be active in MS, with constant ER activity throughout 
MS development, while NFĸB activity was low initially 
but increased over time (Fig.  5C and Additional file  1: 

Fig. 5  Dual reporter cell lines identify an ER and NFĸB-driven stem-like cell population. A, B ERE-mCherry and NFĸB-RE-eGFP activity in 2D-cultured 
MCF-7 dual reporter cells treated with E2 (10 nM), hTNFα (10 ng/ml), ICI (1 µM) and/or IKK7 (1 µM) for 24 h was measured using a Celigo imaging 
cytometer. Bar charts represent the percentage of mCherry confluence (A) and eGFP (B) confluence normalized to total brightfield confluence for 
each treatment group. C ERE-mCherry and NFĸB-RE-eGFP activity in MCF-7 MS was measured over time. D A representative image of MS derived 
from MCF-7 dual reported cell line is shown (bar = 100 µm). E A schematic of sorting experiments performed on MS derived from the MCF-7 dual 
reporter cells is presented. F MS derived from MCF-7 dual reporter cells were collected, trypsinized and sorted for 4 cell populations, based on 
expression of fluorescent proteins eGFP and mCherry. A secondary MS assay was performed on 4 sorted populations and secondary MFE for each 
group is plotted. G Cell distribution of secondary MS is plotted for each group based on ERE-mCherry and NFĸB-RE-eGFP activity. H The expression 
of DEGs of MS Cluster was determined in each cell population by QPCR. Fold change, normalized to dual-negative cell population, for each gene 
is presented on a heatmap. K, L Distribution of z-scores for the Hallmark ER (I) and NFĸB (J) signatures are shown on a per cell basis. K Each cell 
from MS Cluster 1 was assigned to one of the groups based on z-scores for ER and NFĸB signatures: dual-negative cells (white), dual-positive 
cells (yellow), ER-active cells (red), NFĸB-active cells (green). The percent change in abundance of MS Cluster 1 relative to the total population for 
each group is shown. L A bar charts representing GFD15 mRNA expression in each sorted group in (K). M, P The role of GDF15 on secondary MS 
formation was examined using an anti-GDF-15 antibody (200 ng/ml) on 2 sorted cell population from: dual-positive (M) and ER-active (N). *P < 0.05, 
***P < 0.001, ns not significant

(See figure on next page.)
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S. Fig 5C). In fully developed MS, 4 populations of cells 
with heterogeneous ER and NFĸB activity were observed: 
dual-negative (white), dual-positive (yellow), ER-active 
(red), and NFĸB-active (green) (Fig.  5D and Additional 
file 1: S. Fig 5D).

We next performed a sorting experiment to examine 
MS formation efficiency (MFE) and expression of the MS 
Cluster 1 DEGs (Fig. 5E) for each population. We found 
that MFE (Fig. 5F, Additional file 1: S. Fig 5E) were higher 
in two cell populations ER-active and dual-positive. 

Fig. 5  (See legend on previous page.)
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Additionally, both of these populations showed similar 
abilities to form secondary MS with all 4 progeny: dual-
negative, dual-positive, ER-active and NFĸB-active 
(Fig.  5G, Additional file  1: S. Fig 5F), suggesting that 
ER-active and dual-positive cell populations are not 
stable and able to repopulate a heterogenous MS. Along 
with MFE, expression of the MS Cluster 1 DEGs (Fig. 5H) 
were higher in the same two cell populations, ER-active 
and dual-positive. Taken together these findings suggest 
that MS Cluster 1, does not consist of dual-positive 
cells exclusively and may be distributed across both the 
ER-active and the dual-positive cell populations. To test 
this, we estimated the enrichment of MS Cluster 1 with 
each cell population based on ER and NFĸB activity. To 
calculate the enrichment, we first determined activation 
of ER and NFĸB pathways using z-scores of Hallmark 
NFĸB and ER gene signatures for each cell individually 
from MS Cluster 1 as an alternative approach to FEA 
for the entire cluster (Fig.  5I, J). We next used these 
signatures’ z-scores to assign each cell to a specific 
population (dual-negative, dual-positive, ER-active or 
NFĸB-active). Finally, enrichment for dual-positive, dual-
negative, ER-active and NFĸB-active cells in MS Cluster 
1 was calculated (Fig. 5K). Indeed, this approach showed 
that MS Cluster 1 is enriched for cells with high z-scores 
for both ER and NFĸB signatures and for ER signature 
alone, confirming the presence of both dual-positive and 
ER-active cell subpopulations in MS Cluster 1. However, 
the abundance of the dual-positive cells was significantly 
higher compared to the ER-active cells in MS Cluster 1 
(Fig. 5K). The higher expression of GDF15 compared to 
other populations (Fig.  5L) suggested its involvement 
in the regulation of stem properties specifically in the 
dual-positive cells. To test this, we isolated and treated 
two cell populations, dual-positive and ER-active, with 
an antibody that inhibits GDF15 (anti-GDF15). It was 
found that inhibition of GDF15 reduces MS formation 
in the dual-positive cell population, but not in the 
ER-active cell population (Fig. 5M, N). These data suggest 
that the functional role of GDF15 in promotion of stem 
properties depends on activity of both ER and NFĸB and 
is restricted to a specific subpopulation of the MS Cluster 
1 cells.

A gene signature derived from MS Cluster 1 is expressed 
in endocrine resistant and metastatic cell populations 
and is associated with aggressive disease.
Given the known role of BCSCs in therapy resistance, 
disease progression and metastasis, we next investigated 
whether MS Cluster 1 can be a predictor of aggressive 
ER+ disease. To answer this question, we took several 
approaches. First, we interrogated two integrated 
datasets derived from MCF-7 cells that are tolerant [32] 
or fully resistant to endocrine therapy [40] for expression 
of the MS Cluster 1 Signature (Fig. 6A, B and Additional 
file 1: S. Fig 6). We found that the signature was enriched 
in Integrated Cluster 2, which consists of tolerant and 
fully resistant cells (Fig.  6B, C), suggesting that the MS 
Cluster 1 is retained in a subpopulation of endocrine 
therapy tolerant/resistant cells. Each dataset was also 
tested individually and showed similar results (Additional 
file  1: S. Fig 6). We next investigated expression of the 
MS Cluster 1 Signature in Circulating Tumor Cells 
(CTCs) using a publicly available dataset of peripheral 
blood mononuclear cells derived from metastatic breast 
cancer patients [46]. Unsupervised clustering revealed 
16 clusters, one of which represents CTCs (Cluster 13, 
Fig.  6D). FEA showed specific enrichment of the MS 
Cluster 1 Signature in the CTC population, suggesting 
the involvement of MS Cluster 1 cells in metastasis 
(Fig.  6E and Additional file  2: S. Table  10). To test this, 
we examined enrichment of the MS Cluster 1 Signature 
in primary vs. metastatic tumor cell populations. For that 
purpose, we utilized scRNA-seq datasets from primary 
and metastatic patient derived xenograft (PDX) tumors, 
UCD46 and UCD4, with low and high expression of ER, 
respectively. For the UCD46 PDX model, we identified 
2 cell clusters and for UCD4 we identified 6 cell clusters 
(Fig. 6F, I), with each cluster consisting of a different ratio 
of primary or metastatic cells (Fig. 6G, J). FEA for the MS 
Cluster 1 Signature showed enrichment in Cluster 1 of 
UCD46, and Cluster 1 of UCD4, both of which consist of 
liver metastases (Fig. 6H, K), suggesting that MS Cluster 
1 cells may be more abundant at metastatic sites than in 
primary tumors.

We next tested whether the MS Cluster 1 Signature 
enrichment can be detected in scRNA-seq datasets 

(See figure on next page.)
Fig. 6  The MS Cluster 1 signature is associated with more aggressive metastatic disease. A Single-cell transcriptomes from 4OHT-treated MCF-7 
cells (GSE181812) and LTED (Long-Term Estrogen Deprived) MCF-7 cells (GSE122743) were integrated and represented bi-dimensionally. B The 
distribution of 4OHT-treated MCF-7 cells and LTED MCF-7 cells in each cluster relative to the total cell number is shown. C FEA was performed 
on integrated datasets for the MS Cluster 1 Signature. D Bi-dimensional representation of 6519 single-cell transcriptomes of peripheral blood 
mononuclear cells derived from patients with metastatic breast cancer are shown (UMAP) with Cluster 13 presenting of Circulation Tumor Cells 
(CTCs) (GSE174463). E FEA was performed for the custom genes signatures derived from DEGs of each MS Cluster on CTCs Cluster 13. AUC values 
are shown in a heatmap, and P-values are presented in Additional file 2: Supplemental Table 9. F, I Single-cell transcriptomes from primary and 
metastatic tumors of PDX models UCD46 (F) and UCD4 (I) are represented in UMAP plots (GSE131007). G, J The proportion of cells in each cluster is 
indicated by their origin (i.e., primary tumor or metastatic location) relative to the total number of cells of each origin. H, K FEA was performed for 
the MS Cluster 1 Signature on both datasets with box plots showing signature scores per cluster
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derived from primary ER+ breast cancer tumors [44] 
(Fig.  7A). We observed the same clustering pattern 
of cells by tumor identity, as shown by Wu et  al. [44] 
(Fig. 7B, C). FEA showed that the MS Cluster 1 Signature 
was highly enriched in 3 clusters: Cluster 3, Cluster 4 and 

Cluster 7, which represent tumors CID4530N, CID4463, 
CID3948, and CID4461 (Fig.  7D). For other tumors, 
we found that individual cells demonstrate a high MS 
Cluster 1 signature score but that these cells did not drive 
clustering (Fig. 7E), so the overall signature score did not 

Fig. 6  (See legend on previous page.)



Page 15 of 19Semina et al. Breast Cancer Research           (2022) 24:88 	

reach significance in any individual cluster. These data 
imply that cells expressing the MS Cluster 1 signature 
can be found in primary ER+ tumors to varying degrees, 
but in some tumors may only be identified at the single-
cell resolution. Finally, we questioned whether the MS 
Cluster 1 Signature may be a predictor of poor outcome 
for breast cancer patients by interrogating a publicly 
available METABRIC dataset of ER+ tumors. It was 
found that tumors expressing the MS Cluster 1 Signature 
are more likely to be high grade, and of the Luminal B 
subtype, are associated with an increased risk of relapse, 
and showed a trend toward lower overall survival 
(Fig.  7F–I). Moreover, the higher signature score was 
observed in tumors with high histologic grade, Luminal 
B subtype and recurred tumors (Fig.  7J–M). Taken 
together, these findings indicate that the MS Cluster 1 
Signature is associated with endocrine therapy resistance 
and metastases, and is predictive of poor patient 
outcome, implying that the MS Cluster 1 cell population 
represents a unique BCSC population that may be more 
abundant in aggressive ER+ disease.

Discussion
ER+ breast tumors are known to be heterogeneous and 
harbor a subpopulation of cells with stem-like properties 
that can contribute to the development of therapy 
resistance, tumor metastasis, and poor patient survival. 
Here, we identified a novel ER-NFĸB-driven stem-like 
population derived from ER+ breast cancer cell lines 
grown as MS, and demonstrate that this population is 
clinically relevant as its gene signature is expressed in 
aggressive breast cancer phenotypes and is predictive of 
tumor relapse.

One major question arising from our studies is whether 
the MS Cluster 1 stem-like population is unique or 
related to known BCSC populations. We established 
that the MS Cluster 1 population is enriched for 
multiple stem cell-associated gene signatures, expands 
in MS conditions, and remains quiescent, but we did not 
observe the expression of classical stem cell markers. The 
lack of marker expression could be explained by technical 
limitations of scRNA-seq since it captures approximately 
10–30% of transcripts per cell [61]. Thus, the absence 

of markers is not conclusive evidence that they are not 
expressed. In bulk MS, we did detect CD44+/CD24− 
and ALDH1+ cell populations by FACS analysis, as well 
as expression of stem cell-associated markers by QPCR 
(data not shown), confirming that MS is indeed enriched 
for classical BCSCs genes. Alternatively, it has been 
shown that classical stem makers, originally derived 
from triple-negative breast cancer, may not be applicable 
to ER+ BCSCs. For example, in a recent study, Li and 
colleagues compared the ratio of CD44+/CD24− and 
ALDH1+ cell populations across different breast cancer 
molecular subtypes and showed that MCF-7 cell line 
(Luminal A subtype) has the lowest ratio of both cell 
populations [62]. Additionally, the CD44+/CD24− cell 
population derived from MCF-7 cells showed lower 
tumorigenicity capacity compared to the CD44+/
CD24− population derived from triple-negative breast 
cancer cell line, suggesting that CD44+/CD24− and 
ALDH1+ are excellent markers of BCSCs from ER- 
tumors but possibly less suitable markers for BCSCs 
of ER+ tumors [62]. These findings were supported by 
Coates and colleagues who argue for the development 
of a panel of markers specific for each breast cancer 
subtype rather than using the same markers for all breast 
tumors [63]. For these reasons we relied on functional 
characteristics of stem cells, such as MS formation and 
cell cycle analysis, in combination with multiple stem 
cell-associated gene signatures, to study the MS Cluster 
1 stem-like population, which we speculate could be 
specific for ER+ tumors. We also attempted to isolate 
this population by sorting dual reporter cell lines based 
on ER and NFĸB activity, but we found that not all the 
cells in MS Cluster 1 had ER and NFĸB activity and 
this cluster consists of 2 cell subpopulations with stem 
properties. Thus, to answer whether this is a unique 
BCSC population an alternative approach to specifically 
isolate the MS Cluster 1 stem-like population is needed.

In this study, we also shed light on the controversial 
role of ER in promoting stem properties in ER+ breast 
cancer. As was described in the introduction, both 
ER activation and ER inhibition have been shown to 
promote expansion of BCSCs in ER+ breast cancers [13–
22]. Here, we demonstrated that ER is required for the 

Fig. 7  The MS Cluster 1 Signature is associated with poor patient outcome. A A description of nine ER+ breast tumors processed with scRNA-seq 
technologies which datasets were downloaded from GEO portal (GSE176078) 44. B, C 31,259 single-cell transcriptomes of epithelial cells from 
(A) were clustered and represented bi-dimensionally (B) with cluster compositions (C). D FEA was performed for the MS Cluster 1 Signature 
on ER+ breast cancer datasets (A–C) with box plot showing signature scores, AUC and P-value per cluster. E Distribution of z-scores for the MS 
Cluster 1 Signature is shown on a per cell basis for each tumor from (A). F–I The MS Cluster 1 Signature was interrogated in 1175 ER+ breast 
tumors from the METABRIC cohort available in cBioPortal for Cancer Genomics. Histologic grade (F), molecular subtype (G), patient relapse free 
survival (H) and overall survival (I) between tumors+ vs.— for expression of the MS Cluster 1 Signature are displayed. Statistical significance was 
determined using chi-squared test (F, G) or log-rank test (H, I). J–M The MS Cluster 1 signature score distribution across ER+ breast tumors from 
(H–I) stratified by histologic grade (J), molecular subtype (K), relapse free survival status (L), and survival status (M). P-values are from Student’s tests. 
*P < 0.05,**P < 0.01, ***P < 0.001, ns not significant

(See figure on next page.)
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promotion of stem properties as its inhibition leads to 
the decrease of MS formation. Moreover, we showed that 
ER is active in the MS Cluster 1 stem-like population, 
as indicated by bioinformatics analysis and by reporter 
assays, and we argue that the expression of ER should 

be interpreted with caution since it does not always 
represent ER activity.

Along with ER, the NFĸB pathway was found to be 
active in the MS Cluster 1 stem-cell population. In 
the literature, expression of ER and NFĸB and their 
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activity are often reported as inversely correlated, and 
this appears to be the case in BCSCs as well [8, 64]. 
For example, Jiang and colleagues identified a stem-
like population with low ER expression and high NFĸB 
activity in mammary tumors of MMTV-PyMT mice 
[8]. Likewise, Gomes et  al. showed that MCF-7 cells 
with overexpression of receptor activator of NFĸB 
(RANK) are characterized by downregulation of ER, 
upregulation of stem cell markers, and a higher MS 
formation capacity [64]. However, our recent work has 
suggested that ER and NFĸB can also work together 
to promote BCSCs. More specifically, we found that 
co-activation of ER and NFĸB increased mammosphere 
formation, as well as proportion of cells with BCSC 
markers [33]. Mechanistically, we demonstrated that 
ER and NFĸB work together to regulate a feedback 
loop involving the downregulation of miR-181 and 
the upregulation of its target, PHLDA1, to enhance 
stem properties in ER+ breast cancer cell lines [65]. 
In this study, we provide further evidence that these 
pathways can work together to promote BCSCs, as the 
MS Cluster 1 stem-like population consists primarily 
of dual-positive cells that are more MS forming and 
dependent on GDF15, a common ER and NFĸB target.

In addition to our biological findings, we showed 
that the MS Cluster 1 stem-like population is clinically 
relevant. We found expression of the MS Cluster 1 gene 
signature in primary human tumors is associated with 
worse clinicopathological features and reduced relapse 
free survival. Moreover, cell populations derived from 
endocrine tolerant and resistance cells, CTCs, and 
breast tumor metastases showed enrichment for the 
MS Cluster 1 Signature, implying that the stem-like 
population is abundant in more aggressive phenotypes 
and can contribute to their development. With the 
integration of scRNA-seq technology into the clinic, 
we expect that the MS Cluster 1 Signature will become 
increasingly useful in the prediction of ER+ disease 
progression and optimization of patients’ treatment by 
identifying the stem-like population within a tumor.
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