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Abstract 

Background: Breast parenchymal texture features, including grayscale variation (V), capture the patterns of texture 
variation on a mammogram and are associated with breast cancer risk, independent of mammographic density (MD). 
However, our knowledge on the genetic basis of these texture features is limited.

Methods: We conducted a genome-wide association study of V in 7040 European-ancestry women. V assessments 
were generated from digitized film mammograms. We used linear regression to test the single-nucleotide polymor-
phism (SNP)-phenotype associations adjusting for age, body mass index (BMI), MD phenotypes, and the top four 
genetic principal components. We further calculated genetic correlations and performed SNP-set tests of V with MD, 
breast cancer risk, and other breast cancer risk factors.

Results: We identified three genome-wide significant loci associated with V: rs138141444 (6q24.1) in ECT2L, 
rs79670367 (8q24.22) in LINC01591, and rs113174754 (12q22) near PGAM1P5. 6q24.1 and 8q24.22 have not previously 
been associated with MD phenotypes or breast cancer risk, while 12q22 is a known locus for both MD and breast can-
cer risk. Among known MD and breast cancer risk SNPs, we identified four variants that were associated with V at the 
Bonferroni-corrected thresholds accounting for the number of SNPs tested: rs335189 (5q23.2) in PRDM6, rs13256025 
(8p21.2) in EBF2, rs11836164 (12p12.1) near SSPN, and rs17817449 (16q12.2) in FTO. We observed significant genetic 
correlations between V and mammographic dense area (rg = 0.79, P = 5.91 ×  10−5), percent density (rg = 0.73, 
P = 1.00 ×  10−4), and adult BMI (rg =  − 0.36, P = 3.88 ×  10−7). Additional significant relationships were observed for 
non-dense area (z =  − 4.14, P = 3.42 ×  10−5), estrogen receptor-positive breast cancer (z = 3.41, P = 6.41 ×  10−4), and 
childhood body fatness (z =  − 4.91, P = 9.05 ×  10−7) from the SNP-set tests.

Conclusions: These findings provide new insights into the genetic basis of mammographic texture variation and 
their associations with MD, breast cancer risk, and other breast cancer risk factors.
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Background
Mammographic density (MD) phenotypes reflect the 
amount of dense or non-dense tissue on a mammogram 
and are well-established risk factors for breast cancer [1–
3]. MD phenotypes are highly heritable with h2 = 60–70% 
from twin studies [4, 5]. Genome-wide association stud-
ies (GWAS) have identified 55 loci that are associated 
with MD phenotypes [6–8], including 32 loci for dense 
area (DA), which reflects the amount of fibroglandular 
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tissue in the breast, 18 loci for non-dense area (NDA), 
which reflects the amount of fatty tissue in the breast, 
and 24 loci for percent density (PD), defined as the per-
centage of area on a mammogram that is occupied by 
dense tissue [9].

Yet, MD is a global metric that ignores local patterns 
of variability in breast density [10]. Women with the 
same level of PD may have substantial heterogeneity in 
the structural patterns of breast parenchyma, which 
are assessed as texture features. Compared to MD phe-
notypes, breast parenchymal texture features are more 
refined and localized and are fully automated measures 
of the variation in parenchymal patterns on a mammo-
gram [11]. Growing evidence suggests that texture fea-
tures are independent breast cancer risk factors [12–16]. 
Heine et  al. developed a summary measure of texture 
features called V, which captures the grayscale varia-
tion on a mammogram [12]. Recent studies have shown 
that a higher value of V, reflecting greater texture varia-
tion, is associated with an increased risk of breast cancer, 
independent of MD [12, 16]. Understanding the mecha-
nisms underlying texture variation and breast cancer 
risk, especially the role of genetic variants, would provide 
additional insights into the development of breast can-
cer. However, to date, no GWAS has been conducted on 
breast parenchymal texture features.

In the present study, we performed a GWAS of mam-
mographic texture variation within the Nurses’ Health 
Studies and Mayo Mammography Health Study cohorts. 
We also leveraged summary statistics of breast cancer 
risk and MD phenotypes from previous GWAS to iden-
tify shared susceptibility loci for V, MD, and breast can-
cer risk. We further assessed the genetic relationships 
of V with MD phenotypes, breast cancer risk, and other 
breast cancer risk factors by estimating genetic correla-
tions and performing single-nucleotide polymorphism 
(SNP)-set tests.

Methods
Study population
The Nurses’ Health Study (NHS) is a prospective cohort 
study established in 1976. A total of 121,700 female reg-
istered nurses aged 30 to 55 residing in 11 states within 
the USA completed an initial questionnaire at that time. 
NHSII was established in 1989 when 116,671 female 
registered nurses aged 25 to 42 residing in 14 states 
completed an initial questionnaire. Blood samples were 
collected from 32,826 women in NHS cohort from 1989 
to 1990 and 29,611 women in NHSII cohort from 1996 to 
1999, which form the blood subcohorts. Women in each 
cohort have been followed by self-administered question-
naires to collect updated exposure and newly diagnosed 
disease information every two years.

The Mayo Mammography Health Study (MMHS) is 
a prospective cohort study of 19,924 women who had a 
screening mammogram from 2003 to 2006 at the Mayo 
Clinic in Rochester, MN and agreed to participate in 
the study. Participants were at least 35  years old, resi-
dents of Minnesota, Iowa, or Wisconsin, and had no per-
sonal history of breast cancer. Participants completed a 
baseline questionnaire and provided consent to access 
any residual blood samples from clinical tests over the 
time period. Breast cancer diagnostic information was 
obtained through linkage to state-wide cancer registry 
data and mailed questionnaires.

Mammogram collection and processing
The mammogram collection and processing procedure 
in NHS and NHSII is described elsewhere [16, 17] and is 
briefly summarized here. Pre-diagnostic screening mam-
mograms conducted as close as possible to the blood 
draw date were collected within NHS and NHSII breast 
cancer case–control studies nested in the blood subco-
horts [18]. A total of 6258 film mammograms were ini-
tially collected; 437 mammograms with missing V or BMI 
were further excluded. The study protocol was approved 
by the institutional review boards of the Brigham and 
Women’s Hospital and Harvard T.H. Chan School of 
Public Health. Film mammogram craniocaudal views 
of both breasts were digitized using a Lumysis 85 laser 
film scanner or a VIDAR CAD PRO Advantage scanner 
(VIDAR Systems Corporation, Herndon, VA, USA). Digi-
tized images were grouped based on resolution (mean 
resolution = 171  μm, 232  μm, 300  μm, and images with 
isolated resolutions). Here, we evaluated the groups of 
images with average resolutions of 171 μm (high resolu-
tion) and 300 μm (low resolution). Images with isolated 
resolutions were down-sampled to 300 μm and added to 
the low-resolution group. All 171  μm images were fur-
ther adjusted to 300 μm to form a larger dataset of low-
resolution images.

Details of mammogram acquisition, retrieval, and 
digitization for MMHS are described elsewhere [12, 
19]. Briefly, women in MMHS who agreed to partici-
pate provided written informed consent to access their 
mammograms. A total of 19,924 women were followed 
up for incident cancer events. We used a case-cohort 
design with a random sample of 2300 women from the 
entire MMHS cohort as the subcohort. We collected film 
mammograms from 1194 breast cancer cases identified 
through August 2019 and 2167 controls in the subcohort, 
excluding women who were diagnosed within 60 days of 
the enrollment mammogram and women with a digital 
mammogram. The study protocol was approved by the 
Mayo Clinic institutional review board. Film mammo-
grams of both craniocaudal views were digitized on the 
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Array 2905 laser digitizer (Array Corporation, Roden, 
The Netherlands) with 50  μm (limiting) pixel spacing 
and further down-sampled to 200 μm. Both the original 
50  μm images (high resolution) and the down-sampled 
200 μm images (low resolution) were used for calculation 
of V.

Assessment of V
V is an automated measure of the grayscale variation on 
a mammogram. The algorithm for generating V has been 
described previously by Heine et al. [12, 20, 21]. Briefly, 
there are three main steps: segmentation, erosion, and 
calculation of variation. First, the breast is segmented 
from the background. Then, the segmented breast area is 
eroded by 25% or 35% along a radial direction to retain 
the regions where the breast was in contact with the 
compression paddle. Finally, the V is calculated as the 
standard deviation of the pixel values within the eroded 
breast region. Normalization processes, including spatial 
normalization, feature distribution normalization, and 
resolution estimation, were applied to the images before 
calculation of V to account for resolution and intensity 
scale differences [17].

We generated four assessments of V with different pro-
portions of erosion and image resolutions: V with 35% 
erosion and low resolution (V65L), V with 25% erosion 
and low resolution (V75L), V with 35% erosion and high 
resolution (V65H), and V with 25% erosion and high 
resolution (V75H). These four V assessments were highly 
correlated with each other (Additional file 1: Fig. S1). We 
used V65L as our primary univariate outcome, as it had 
the largest sample size.

MD phenotypes and other covariates
MD phenotypes were assessed from digitized film 
mammograms using Cumulus [22], a semi-automated 
software, by a single trained reader [12, 23]. DA and 

NDA were generated for each mammogram; PD was 
calculated as DA divided by the total breast area. DA, 
NDA, and PD measures in the left and right breasts 
were averaged. Figure 1 shows the scatter plots and cor-
relations of V65L and the three MD phenotypes. Body 
mass index (BMI) was measured at mammogram col-
lection for all participants. Women were considered as 
breast cancer cases if they were diagnosed with breast 
cancer after blood or mammogram collection but 
before June 1, 2004 (NHS), June 1, 2007 (NHSII), or 
August 2019 (MMHS). Age at mammogram collection 
was also retrieved.

Genotyping, quality control, and imputation
The full genotyping and quality control pipeline for 
NHS and NHSII is described elsewhere [24]. In the pre-
sent study, we used genotype data from four platforms: 
Affymetrix 6.0, Illumina HumanHap, Illumina Omni-
Express, and Illumina OncoArray. Variants with call 
rate < 95% or Hardy–Weinberg equilibrium P < 1 ×  10−6 
were excluded. European ancestry principal component 
(PC) outliers or samples with call rate < 90%, gender 
discordance, or extreme heterozygosity were excluded.

The full genotyping and quality control pipeline for 
MMHS is also described elsewhere [25]. Here, we used 
genotype data from iCOGS and OncoArray platforms. 
Variants with a call rate < 95% or not in Hardy–Wein-
berg equilibrium were excluded. Samples with a call 
rate < 95%, extreme heterozygosity, or of non-European 
ancestry based on genetic PCs were further excluded.

All genotype data were imputed to the 1000 Genomes 
Phase 3 version 5 reference panel separately by study 
and platform [26]. The number of individuals included 
in our GWAS by study and platform can be found in 
Additional file 2: Table S1.

Fig. 1 Scatter plots of V65L by three MD phenotypes. Spearman correlation between the two measures is shown on each plot. MD mammographic 
density, DA dense area, NDA non-dense area, PD percent density
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Association test
V assessments were standardized to have mean zero and 
unit standard deviation before analysis. SNP association 
analyses were performed within each study by platform 
using linear regression assuming an additive dosage 
effect. RVtests [27] was used for NHS/NHSII cohorts 
(Affymetrix 6.0, Illumina HumanHap, Illumina Omni-
Express, and Illumina OncoArray), and variants were 
removed from individual platform results if the expected 
minor allele counts were below 10. PLINK 2.0 [28] was 
used for MMHS cohorts (iCOGS and OncoArray). We 
ran six models adjusting for different covariates, includ-
ing age, the top four genetic PCs, BMI, PD, DA, and 
NDA (Table  1). Fixed effect meta-analyses across stud-
ies and platforms were conducted for each model using 
METAL [29]. Cochran’s Q statistic was used to check 
for heterogeneity of the SNP associations across stud-
ies and platforms. Quantile–quantile plots and genomic 
inflation factors were used to assess systematic inflation 
in test statistics due to population substructure. Manhat-
tan plots were generated to visualize the overall GWAS 
results. LocusZoom plots [30] of the 1  Mb region cen-
tered around the identified lead SNPs were generated 
to visualize the regional association results and nearby 
genes.

Given that the four V assessments were highly cor-
related with each other and might be proxies for an 
underlying latent phenotype, we performed multivariate 
phenotype association tests to pool association evidence 
across the four V assessments and get a single summary 
test statistic for each variant. We used R package MPAT 
[31] to obtain the summary P values and corresponding Z 
scores using test statistics from the meta-analysis results 
for each V assessment and model, accounting for sample 
overlaps of the four V assessments. We referred to this 
summary phenotype as VSUM, which was used as our 
primary multivariate outcome. SNPs with P < 5 ×  10−8 
in any of the six models for any of the four univariate V 
assessments or the multivariate VSUM were considered 
genome-wide significant.

V, MD phenotypes, and breast cancer susceptibility 
variants
We evaluated whether the identified V loci were also 
associated with MD phenotypes or breast cancer risk 
using GWAS results from Breast Cancer Association 
Consortium (BCAC) [8, 25, 32]. To further identify 
shared susceptibility SNPs between V, MD phenotypes, 
and breast cancer risk, we conducted in silico lookups of 
72 genome-wide significant MD phenotype SNPs identi-
fied by Sieh et al. [6] and Chen et al. [8], and 195 genome-
wide significant breast cancer risk SNPs identified by 
Michailidou et al. [25] and Zhang et al. [32] in our GWAS 
of V. These candidate SNPs were considered significant 
for V if they passed the Bonferroni-corrected thresholds 
accounting for the number of MD (P < 0.05/72) or breast 
cancer (P < 0.05/195) SNPs tested in Model 0 for any V 
assessment.

Genetic correlation and SNP‑set test
Genetic correlations of V with MD phenotypes, breast 
cancer risk, overall and stratified by estrogen recep-
tor (ER) status, adult BMI, childhood body fatness, age 
at menarche, and age at natural menopause were esti-
mated using linkage disequilibrium (LD) score regression 
[33, 34]. Sources of summary statistics of these traits for 
estimating genetic correlations are summarized in Addi-
tional file 1: Table S2.

While genetic correlation quantifies the shared genetic 
contribution to two traits on genome-wide scale, it may 
also capture the contribution of other traits due to plei-
otropy (e.g., the effect of BMI on the correlation between 
V and PD). Therefore, we further performed SNP-set 
tests to assess the genetic relationship between V and 
the above-mentioned traits using only reported genome-
wide significant SNPs for those traits. SNPs for each trait 
were collected from published GWAS followed by LD 
clumping to remove any SNPs in LD (r2 > 0.1) with SNPs 
of smaller P value (see Additional file  1: Table  S3). The 
test statistic for V and each trait was

where ZV is the Z score from the SNP-specific associa-
tion with V and ZTrait is the Z score from the SNP-spe-
cific association with the trait of interest, and n is the 
total number of tested genome-wide significant SNPs for 
that trait.

Sensitivity analysis
Our study population contains both women who devel-
oped breast cancer and women who did not develop 
breast cancer during the follow-up period after mam-
mogram collection. We therefore further adjusted for 

Z = n
sgn(ZV · ZTrait) · |ZV |√

n

Table 1 Covariates adjusted in the six GWAS models

GWAS genome-wide association study, PCs principal components, BMI body 
mass index, PD percent density, DA dense area, NDA non-dense area

Model Covariates

0 Age, genetic PCs

1 Age, genetic PCs, BMI

2 Age, genetic PCs, BMI, PD

3 Age, genetic PCs, BMI, DA

4 Age, genetic PCs, BMI, NDA

5 Age, genetic PCs, BMI, PD, DA, NDA



Page 5 of 15Liu et al. Breast Cancer Research           (2022) 24:76  

breast cancer case–control status in Model 5 to assess 
its impact on the genetic associations. We performed a 
multicollinearity check for the identified genome-wide 
significant SNPs for Model 5, where we adjusted for all 
three MD phenotypes, by calculating the variance infla-
tion factor (VIF). To assess the potential impact of outli-
ers on the association results at the identified GWAS loci, 
we calculated the studentized residuals for all samples for 
each genome-wide significant SNP. Samples with abso-
lute studentized residual greater than 3 were considered 
as outliers.

Results
Our GWAS meta-analysis of V comprised 7040 women 
of European ancestry within the NHS, NHSII, and 
MMHS cohorts (Table 2). Women in MMHS were older 
and had higher BMI and lower MD compared to women 
in NHS and NHSII. Quantile–quantile plots and genomic 
inflation factors indicate there was no evidence of sys-
tematic inflation of the GWAS test statistics (Additional 
file  1: Fig. S2). Manhattan plots showing the −  log10(P) 
for all tested SNPs across chromosomes are presented in 
Additional file 1: Fig. S3. Quantile–quantile plots of the 
heterogeneity P value indicate there was limited evidence 
of systematic heterogeneity in the test results across stud-
ies and platforms (Additional file 1: Fig. S4).

In total, we identified three independent loci that 
reached the genome-wide significant threshold of 
P < 5 ×  10−8 in any model for any V assessment: 
6q24.1 (ECT2L), 8q24.22 (LINC01591), and 12q22 
(PGAM1P5) (Table  3). 6q24.1 (Lead SNP: rs138141444, 
P = 1.24 ×  10−8 for V75H, Model 0) is a novel locus that 
has not previously been associated with MD phenotypes 
or breast cancer risk. Figure 2a shows the regional asso-
ciation results for 6q24.1 from Model 0 for V75H where 
the association was genome-wide significant. The asso-
ciation results were consistent across models with the 
same direction and similar effect sizes as well as P val-
ues. 8q24.22 (Lead SNP: rs79670367, P = 2.38 ×  10−8 for 

VSUM, Model 5) is neither a MD nor breast cancer risk 
locus. Figure  2b shows the regional association results 
for 8q24.22 from Model 5 for VSUM. The association 
between V and rs79670367 was more significant when we 
adjusted for PD (Model 2), DA (Model 3), or both (Model 
5) and became less significant without adjustment for any 
MD phenotypes (Model 0 and 1) or adjusting for NDA 
only (Model 4). The direction of association was con-
sistent across models. 12q22 (Lead SNP: rs113174754, 
P = 4.42 ×  10−8 for VSUM, Model 3) has previously 
been associated with NDA (rs11836367, P = 8.40 ×  10−9, 
r2 = 0.59 with rs113174754) [6], overall breast cancer risk 
(rs113174754, P = 1.08 ×  10−24), and ER + breast cancer 
risk (rs113174754, P = 1.37 ×  10−18) [25]. This locus is 
also significantly associated with breast size (rs17356907, 
P = 1.30 ×  10−13, r2 = 0.47 with rs113174754) [35]. Fig-
ure  2c shows the regional association results for 12q22 
from Model 3 for VSUM. The association between V and 
rs113174754 became non-significant when we adjusted 
for NDA. The direction of association with V was con-
sistent across models and consistent with the association 
with NDA (opposite direction) and breast cancer risk 
(same direction).

We identified four additional loci that had previ-
ously been associated with MD phenotypes or breast 
cancer risk and reached the Bonferroni-corrected 
thresholds accounting for the number of MD or breast 
cancer SNPs tested (P < 0.05/72 = 6.94 ×  10−4 for MD, 
P < 0.05/195 = 2.56 ×  10−4 for breast cancer risk) in Model 
0: 5q23.2 (PRDM6), 8p21.2 (EBF2), 12p12.1 (SSPN), and 
16q12.2 (FTO) (Table  3). 5q23.2 (Lead SNP: rs335189, 
P = 7.30 ×  10−5 for VSUM, Model 0) is a known locus for 
DA (P = 2.84 ×  10−11) and PD (P = 5.78 ×  10−10) [8]. The 
associations with V were significant in Model 0, Model 
1, and Model 4 but not with adjustment for DA, PD, or 
both (Model 2, 3, and 5). 8p21.2 (Lead SNP: rs13256025, 
P = 5.74 ×  10−5 for VSUM, Model 0) has previously been 
associated with breast cancer risk (P = 1.40 ×  10−8) [32]. 
The associations with V were significant in Models 0 
and 1 and became non-significant when we adjusted 
for DA, NDA, or PD (Models 2, 3, 4, and 5). Although 
this locus has not been reported as a MD locus, the P 
value of the association between the lead SNP and PD 
was close to the genome-wide significant threshold 
(P = 4.46 ×  10−7) [8]. 12p12.1 (Lead SNP: rs11836164, 
P = 6.69 ×  10−5 for VSUM, Model 0) is a known locus 
for DA (P = 1.66 ×  10−9) [8]. The associations with 
V were significant in Models 0, 1, and 4 and became 
non-significant when we adjusted for DA, PD, or both 
(Models 2, 3, and 5). 16q12.2 (Lead SNP: rs17817449, 
P = 1.12 ×  10−6 for VSUM, Model 0) is a known locus 
for PD (P = 5.06 ×  10−9) [8], overall (P = 2.52 ×  10−21), 
ER + (P = 5.59 ×  10−14), and ER − breast cancer risk 

Table 2 Characteristics of NHS/NHSII and MMHS study 
population

NHS Nurses’ Health Study, MMHS Mayo Mammography Health Study, SD 
standard deviation, BMI body mass index

NHS/NHSII (n = 4831)
Mean (SD)

MMHS (n = 2209)
Mean (SD)

Age (years) 53.8 (9.2) 58.9 (11.9)

BMI (kg/m2) 25.9 (5.3) 28.0 (6.2)

Dense area 43.4 (29.3) 23.8 (17.0)

Non-dense area 109.3 (73.7) 130 (67.1)

Percent density 32.8 (19.7) 17.9 (12.9)
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(P = 1.80 ×  10−10). This locus is also significantly associ-
ated with BMI (rs17817449, P = 5.10 ×  10−19) [36] and 
breast size (rs62033406, P = 3.70 ×  10−7, r2 = 0.89 with 
rs17817449) [35]. The associations with V were sig-
nificant in Model 0 and became non-significant when 
we adjusted for BMI or any MD phenotype. The direc-
tions of association with V were consistent with those 
significant associations with MD (same direction for 
PD and DA, opposite direction for NDA) or breast can-
cer (same direction) for all four loci. Association results 
of all identified V loci for all models and V assessments 
can be found in Additional file 2: Table S4. There was no 
substantial difference between the results of different V 
assessments. The full lookup results of the 72 MD phe-
notype SNPs and 195 breast cancer SNPs can be found in 
Additional file 2: Table S5 and Table S6.

We observed significant positive genetic correlations 
between V and dense area (rg = 0.79, P = 5.91 ×  10−5 
for VSUM, Model 0) and percent density (rg = 0.73, 
P = 1 ×  10−4 for VSUM, Model 0) (Fig. 3a). The correla-
tions became non-significant using GWAS results from 
Model 2. Positive correlations were also observed with 
overall (rg = 0.20, P = 6.90 ×  10−3 for VSUM, Model 0) 
and ER + (rg = 0.22, P = 4.60 ×  10−3 for VSUM, Model 0) 
breast cancer and became non-significant when adjust-
ing for PD. We also observed a significant negative 
association with adult BMI (rg =  − 0.36, P = 3.88 ×  10−7 
for VSUM, Model 0), which became non-significant 
when adjusting for BMI. A strong negative correlation 

was observed for NDA (rg =  − 0.60, P = 5.20 ×  10−3 for 
VSUM, Model 0) before adjusting for PD. Genetic corre-
lation results were similar across V assessments; the full 
results are summarized in Additional file 2: Table S7.

In addition to the genetic relationships of V with DA, 
NDA, PD, and breast cancer risk identified by genetic 
correlations, we further identified a significant positive 
association between V and ER + breast cancer (z = 3.41, 
P = 6.41 ×  10−4 for VSUM, Model 0) and a significant 
negative association between V and childhood body 
fatness from the SNP-set test using genome-wide sig-
nificant SNPs for childhood body fatness (z =  − 4.91, 
P = 9.05 ×  10−7 for VSUM, Model 0) (Fig. 3b). The over-
all pattern of the associations was similar for genetic 
correlation and SNP-set test. It is worth noting that for 
MD phenotypes and childhood body fatness, the asso-
ciations with V remained nominally significant (P < 0.05) 
if we further adjust for BMI and PD in the SNP-set test. 
Plots showing Z scores from GWAS of V and GWAS of 
MD phenotypes [8] and breast cancer [25] for the SNPs 
included in the SNP-set tests are presented in Fig.  4. 
SNP-set test results across all models and V assessments 
can be found in Additional file 2: Table S8.

No substantial change on the top findings was 
observed after including breast cancer case–control sta-
tus as a covariate (Additional file 2: Table S4). There was 
no multicollinearity issue for the effect estimates of the 
genome-wide significant SNPs in Model 5 (VIFs all close 
to 1). There were 10 outliers with absolute studentized 

Fig. 2 Regional association plots for the three genome-wide significant V loci. a 6q24.1 (rs138141444; V75H, Model 0); b 8q24.22 (rs79670367; 
VSUM, Model 5); c 12q22 (rs113174754; VSUM, Model 3). Model and V assessment with the most significant results for each locus are shown. Each 
plot is centered around the lead SNP of each locus. SNPs in the 95% credible set at each locus are shown in color. Physical positions are based on 
NCBI Genome Reference Consortium Human Build 37. Plots were generated using LocusZoom [30]. SNP single-nucleotide polymorphism
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residual greater than 3 for rs79670367 at 8q24.22 from 
Model 5 for V65L. The effect estimates for the effect 
allele increased by 24% after removing those outliers. No 
substantial impact of outliers was found for other identi-
fied V SNPs.

Discussion
While MD continues to be one of the most well-estab-
lished and widely used mammographic risk factors for 
breast cancer, there are gaps in our knowledge of mam-
mographic features themselves and their relationship 
with breast cancer risk. Current MD measures do not 
capture the heterogeneity in the distribution of dense 
breast tissue on a mammogram, known as texture vari-
ation. Increasing evidence has shown that the perfor-
mance of texture variation on discriminating breast 
cancer outcomes is either comparable or even higher 
than the performance of MD measures [12, 16, 37, 38]. 
Understanding the contributing mechanisms of texture 
variation on breast cancer risk, especially the involved 
genetic components, would expand our knowledge on 

breast cancer development. In this study, we performed 
the first GWAS meta-analysis of mammographic tex-
ture variation, focusing on a summary measure of gray-
scale variation on mammograms (V). We identified three 
genome-wide significant V loci: 6q24.1 (ECT2L), 8q24.22 
(LINC01591), and 12q22 (PGAM1P5), the first two of 
which have not previously been associated with MD or 
breast cancer risk. Four additional loci for MD or breast 
cancer risk, 5q23.2 (PRDM6), 8p21.2 (EBF2), 12p12.1 
(SSPN), and 16q12.2 (FTO), were also found associated 
with V.

Different models of the SNP-V association were fit to 
capture different effects (Table  1). Model 0 with only 
age and genetic PCs as covariates can capture both the 
effect of genetic variants on V and the effect that was 
mediated by BMI or MD phenotypes. We also fit Model 
5 adjusting for all MD phenotypes together to assess the 
variant effect that was independent of all adjusted covari-
ates. Although PD can be calculated from DA and NDA, 
previous GWAS of MD still identified different loci and 
genetic effects for different MD measures. We therefore 

Fig. 3 Genetic correlation and SNP-set test results of V with MD phenotypes, breast cancer risk, and other breast cancer risk factors. a Genetic 
correlations between V and other traits; b SNP-set test results of the relationship of V and other traits. Results of Models 0 and 2 for V65L and VSUM 
are shown. Estimates passed the Bonferroni threshold (P < 0.05/40 = 1.25 ×  10−3) are marked with triple asterisk (***); estimates with P < 0.01 are 
marked with double asterisk (**); and estimates with nominal significance (P < 0.05) are marked with single asterisk (*). Genetic correlations between 
VSUM (Model 2) and MD phenotypes were not estimated due to the out of bounds heritability of V. SNP single-nucleotide polymorphism, MD 
mammographic density, DA dense area, NDA non-dense area, PD percent density, ER estrogen receptor, BMI body mass index
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fit the fully adjusted Model 5 to minimize the effect of 
MD phenotypes on the V associations. Collinearity issue 
in Model 5 did not have an impact on the effect esti-
mates of the variants. Comparing the results from differ-
ent models may also provide evidence for the underlying 
relationships between the genetic variants, V, and other 
adjusted covariates as well as boost power to detect V 
SNPs. For example, if we observed a SNP-V association 
in models with and without adjustment for MD, then it 
is likely that the SNP influences V through other path-
ways that are independent of density; if the SNP-V asso-
ciation was only observed in model without adjusting 
for density, then it indicates that the SNP effect on V 
might be largely mediated by density. Downstream anal-
yses need to be performed to confirm the relationships. 
Both V65L and the calculated summary statistics of the 
four V assessments, VSUM, were used as our primary 
outcomes. We have a larger sample size thus a greater 

power for low-resolution V assessments compared to 
high-resolution assessments (sample size for V65L and 
V75L = 7040; sample size for V65H and V75H = 4763). 
Although a previous study looking at the relationship 
between V and breast cancer risk in NHS/NHSII used a 
different assessment, V75L, as the outcome [16], these 
two low-resolution V assessments were highly correlated 
with each other (ρ = 0.98, Additional file 1: Fig. S1) and 
there was no substantial difference in the GWAS results 
of these two assessments (Additional file  2: Table  S4). 
Using VSUM also has the advantage of boosting power 
given that the SNP associations were similar across dif-
ferent V assessments.

Among the three genome-wide significant V loci, 
12q22 is also associated with NDA and breast cancer risk 
in consistent direction, suggesting that at least part of its 
genetic effect on V is mediated by NDA or the genetic 
effect on NDA is mediated by V, and there are potential 

Fig. 4 Z scores from GWAS of V, MD phenotypes, and breast cancer risk for SNPs included in SNP-set test. a scatter plots of Z scores from GWAS 
of V by Z scores from GWAS of percent density (PD), dense area (DA), and non-dense area (NDA) for mammographic density SNPs; b scatter plots 
of Z scores from GWAS of V by Z scores from GWAS of overall breast cancer risk and stratified by estrogen receptor (ER) status for breast cancer 
SNPs. For each SNP, GWAS results from Models 0 and 2 for VSUM are shown with gray and red dots, respectively. RS number for some SNPs are not 
shown on the plots. Gray line is the fitted linear regression line of Z scores for results from Model 0; red line is the fitted linear regression line of Z 
scores for results from Model 2. Note that some of the overall breast cancer risk SNPs are not genome-wide significant because we obtained the 
Z scores from one study and those SNPs were reported by other studies. GWAS genome-wide association study, MD mammographic density, SNP 
single-nucleotide polymorphism
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shared biological pathways between these three traits. 
These hypotheses are further supported by the fact that 
12q22 is also associated with total breast size and its 
association with V was most significant when adjusting 
for DA and became non-significant when adjusting for 
NDA. The lead variant rs113174754 at 12q22 is an indel 
near pseudogene PGAM1P5 and is 30  kb upstream of 
protein coding gene NTN4 (see Fig. 2c). NTN4 encodes a 
member of the netrin family of proteins, which involved 
in axon guidance, tumorigenesis, and angiogenesis. NDA 
SNP at 12q22 (rs11836367-C, correlated with the effect 
allele of rs113174754) has been found to downregu-
late NTN4 in mammary tissue [6]. NTN4 has also been 
identified as a candidate breast cancer risk gene by colo-
calization analysis, where the C allele of SNP rs61938093 
(r2 = 0.48 with the effect allele of rs113174754) at this 
region reduced NTN4 promoter activity and knockdown 
of NTN4 promoted breast cell proliferation and tumor 
growth [39]. These findings suggest a shared genetic 
basis and potential biological mechanisms for mammo-
graphic risk factors, especially breast adipose tissue (rep-
resented by NDA), and breast cancer risk at this locus, 
and may also explain the observed association between 
V and breast cancer risk. 6q24.1 and 8q24.22 are V loci 
that have not been seen associated with MD phenotypes 
or breast cancer risk. The lead variant rs138141444 at 
6q24.1 is an intronic indel in ECT2L. The lead variant 
rs79670367 at 8q24.22 is an intronic SNP in LINC01591. 
Neither these two genes nor nearby genes have been 
associated with breast cancer risk. The genetic effects of 
these two loci on V are therefore likely through mecha-
nisms not mediated by MD. It should also be noted that 
the effect allele frequency for rs79670367 is less than 
5% and the outlier analysis indicated that the associa-
tion results might be influenced by influential outliers. 
Moreover, only about half of the samples have genotype 
data on this variant (available in NHS/NHSII Illumina 
HumanHap and MMHS OncoArray). Further studies are 
needed to confirm the findings at these two loci.

Four additional V loci have previously been associated 
with breast cancer risk or MD phenotypes. The lead vari-
ant rs13256025 at 8p21.2 is an intronic SNP in protein 
coding gene EBF2. EBF2 encodes well-conserved DNA-
binding helix–loop–helix transcription factors, which 
involved in differentiation of osteoblasts. Although little 
is known about the role of EBF2 in breast cancer develop-
ment, studies have shown that inactivation of EBF genes 
can lead to tumorigenesis via accumulation and expan-
sion of undifferentiated progenitor cells [40]. 16q12.2 
is associated with both PD and breast cancer risk in the 
same direction with its lead SNP rs17817449 located in 
FTO. FTO is a well-established susceptibility gene for 
obesity [41]. In our analysis, the association was only 

significant in the base model and became non-significant 
when adjusting for BMI, suggesting that its genetic effect 
on V might be mediated by BMI. FTO is overexpressed in 
breast cancer cells, which affects the energy metabolism 
of the cells [42]. 5q23.2 is a known locus for DA and PD. 
The lead variant rs335189 is an intronic SNP in PRDM6. 
PRDM6 encodes a transcriptional repressor involved in 
the regulation of endothelial cell proliferation, survival, 
and differentiation and may play a role in breast cancer 
tumorigenesis [7, 43]. The lead variant rs11836164 at 
12p12.1 is an intronic SNP near SSPN and is only associ-
ated with DA. Functional analysis needs to be performed 
to further investigate the role of identified V SNPs in 
mammary development and breast cancer etiology.

Consistent with the phenotypic relationships we 
observed for V and MD measures, there were strong 
positive genetic correlations of V with DA and PD, and 
negative genetic correlations with NDA. The positive 
genetic correlations between V and breast cancer risk 
(overall and ER + specific) were also nominally signifi-
cant, further supporting that the observed phenotypic 
association between V and breast cancer risk can at least 
be partially explained by shared genetic components. The 
magnitude of these genetic correlations is comparable to 
those between MD and breast cancer risk [6]. A genetic 
variant can be associated with multiple traits, which is 
known as pleiotropy. Studies have shown that jointly ana-
lyzing GWAS data of multiple traits can boost power to 
detect genetic associations for each trait and improve 
the prediction performance [44, 45]. In our analysis, we 
observed significant genetic correlations of V with MD 
phenotypes and BMI using genome-wide association 
results. It is therefore very likely that a substantial num-
ber of variants are associated with both MD phenotypes, 
especially NDA, and BMI, which would dilute the cor-
relations we observed for any pair of the traits. SNP-set 
tests may provide more evidence for the shared mecha-
nism underlying two traits using only susceptibility vari-
ants. Here, we found that even if we adjust for PD in the 
model, there were still significant correlations between 
V and PD based on genome-wide significant SNPs for 
PD, indicating that the genetic contribution of V cannot 
be fully explained by PD and PD is either a mediator or 
collider of the association between the genetic variants 
and V (Fig. 4a). Correlations of V with breast cancer and 
childhood body fatness were also stronger at the suscep-
tibility variants. There were still correlations, though not 
significant, after adjusting for PD, providing evidence for 
the genetic relationship between V and these traits that 
were not mediated by MD (Fig. 4b).

Our study focuses on a summary texture measure, 
V, but there are also many other texture features that 
may capture more of the parenchymal complexity. For 
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example, Manduca et  al. systematically evaluated 1443 
textural features and identified six independently vali-
dated strongest features [13]. Malkov et al. identified 15 
texture features that were significantly associated with 
breast cancer risk, several of which were only weakly 
correlated with PD [46]. V is a summary measure of the 
grayscale variation in the entire eroded breast region 
thus may not be optimal for assessing local patterns in 
specific regions of interest, which can be quantified by 
other texture analyzing methods [11]. In addition, esti-
mation of V depends on parameters such as proportion 
of breast erosion and digital resolution, which may also 
not be optimal. Studying the genetics of other features 
or their combinations may provide additional informa-
tion for the genetic architecture of breast parenchymal 
texture variation. Our study included breast cancer cases, 
which might be concerning since V has been associated 
with breast cancer risk. However, both theoretical [47] 
and empirical [48] evidence suggests that including cases 
of a rare outcome does not bias the association estimates 
in GWAS of a secondary outcome, except when both the 
genetic variant being analyzed and the secondary out-
come are very strong risk factors—stronger than those 
exhibited by breast cancer risk SNPs, V, or BMI. Indeed, 
we did not observe any substantial changes on the top 
findings after further adjusting for breast cancer case–
control status in the model. Moreover, the direction of 
the associations we observed—e.g., a breast cancer risk 
allele was positively associated with V—is opposite of 
those expected if the SNP-V association is solely an arti-
fact due to collider bias. Multiple testing issue caused by 
studying four V assessments may also be a concern, and 
we therefore estimated a single summary test statistic, 
VSUM, to minimize the impact of multiple testing and to 
boost power. Studying the computerized automated tex-
ture feature can also reduce the potential bias caused by 
measurement error that studies on semi-automated MD 
measures are usually susceptible to.

Conclusions
In conclusion, we performed a GWAS of breast paren-
chymal texture variation, V, and identified three inde-
pendent loci at genome-wide significance, including 
12q22 (PGAM1P5) that are associated with MD phe-
notypes and breast cancer risk and 6q24.1 (ECT2L) 
and 8q24.22 (LINC01591) that are novel V suscepti-
bility loci. Four additional V loci were identified from 
looking up MD and breast cancer susceptibility SNPs 
in GWAS of V, including 5q23.2 (PRDM6), 8p21.2 
(EBF2), 12p12.1 (SSPN), and 16q12.2 (FTO). These 
findings provide the first evidence of the genetic basis 
of V and shared genetic components between V, MD, 
and breast cancer risk. Future studies are needed to 

confirm our findings and further improve our under-
standing of the mechanisms underlying the relation-
ship between texture features, MD, and breast cancer 
development.
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