
Dugué et al. Breast Cancer Research           (2022) 24:59  
https://doi.org/10.1186/s13058-022-01554-8

RESEARCH

Methylation‑based markers of aging 
and lifestyle‑related factors and risk of breast 
cancer: a pooled analysis of four prospective 
studies
Pierre‑Antoine Dugué1,2,3*†, Clara Bodelon4†, Felicia F. Chung5,6†, Hannah R. Brewer7, Srikant Ambatipudi5,8, 
Joshua N. Sampson4, Cyrille Cuenin5, Veronique Chajès5, Isabelle Romieu5, Giovanni Fiorito9,10, 
Carlotta Sacerdote11, Vittorio Krogh12, Salvatore Panico13, Rosario Tumino14, Paolo Vineis10, Silvia Polidoro15, 
Laura Baglietto16, Dallas English2,3, Gianluca Severi17, Graham G. Giles1,2,3, Roger L. Milne1,2,3, Zdenko Herceg5†, 
Montserrat Garcia‑Closas4†, James M. Flanagan7† and Melissa C. Southey1,2,18† 

Abstract 

Background:  DNA methylation in blood may reflect adverse exposures accumulated over the lifetime and could 
therefore provide potential improvements in the prediction of cancer risk. A substantial body of research has shown 
associations between epigenetic aging and risk of disease, including cancer. Here we aimed to study epigenetic 
measures of aging and lifestyle-related factors in association with risk of breast cancer.

Methods:  Using data from four prospective case–control studies nested in three cohorts of European ancestry par‑
ticipants, including a total of 1,655 breast cancer cases, we calculated three methylation-based measures of lifestyle 
factors (body mass index [BMI], tobacco smoking and alcohol consumption) and seven measures of epigenetic aging 
(Horvath-based, Hannum-based, PhenoAge and GrimAge). All measures were regression-adjusted for their respective 
risk factors and expressed per standard deviation (SD). Odds ratios (OR) and 95% confidence intervals (CI) were calcu‑
lated using conditional or unconditional logistic regression and pooled using fixed-effects meta-analysis. Subgroup 
analyses were conducted by age at blood draw, time from blood sample to diagnosis, oestrogen receptor-positivity 
status and tumour stage.

Results:  None of the measures of epigenetic aging were associated with risk of breast cancer in the pooled analysis: 
Horvath ‘age acceleration’ (AA): OR per SD = 1.02, 95%CI: 0.95–1.10; AA-Hannum: OR = 1.03, 95%CI:0.95–1.12; Pheno-
Age: OR = 1.01, 95%CI: 0.94–1.09 and GrimAge: OR = 1.03, 95%CI: 0.94–1.12, in models adjusting for white blood cell 
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Introduction
Numerous studies have investigated the association 
of blood DNA methylation and breast cancer risk, for 
example, at breast cancer-specific genes [1–3], and over-
all found mixed results [4]. Lower global levels of DNA 
methylation are thought to reflect genomic instability 
and have been hypothesised to increase the risk of can-
cer [5], but while several studies were conducted in the 
context of breast cancer [6–9] they together suggested 
that there is no substantial association [10]. At indi-
vidual cytosine-guanine (CpG) sites, our meta-analysis 
of individual-participant data (1,663 incident cases and 
matched controls) from the Melbourne Collaborative 
Cohort Study (MCCS), the European Prospective Inves-
tigation into Cancer and Nutrition (EPIC) (EPIC-Italy 
and EPIC-IARC), and the Prostate, Lung, Colorectal, 
and Ovarian Cancer Screening Trial (PLCO) did not find 
evidence of associations with breast cancer risk [10]. In 
contrast, a case-cohort analysis within the Sister Study 
(1,566 breast cancer cases), a US cohort of women with 
a sister diagnosed with breast cancer, revealed associa-
tions at over 2,000 CpGs [11]. Another study with a large 
sample size found that genetically predicted methylation 
levels were associated with breast cancer risk [12], but it 
is unclear how predicted methylation relates to measured 
methylation, given that methylation varies with age and 
exposures accumulated over the life course [13–16].

Methylation-based markers of aging, such as Horvath-
based [17], Hannum-based [18], PhenoAge [19] and 
GrimAge [20], have become popular tools to evaluate the 
association between biological aging and risk of disease. 
While the ‘first-generation’ measures (Horvath-based 
and Hannum-based) were developed to predict age accu-
rately, PhenoAge and GrimAge are methylation-based 
predictors of composite measures (using clinical and 
physiological data) that are predictive of mortality. The 
residual of each of these measures on chronological age, 
named ‘age acceleration’, best reflects the concept of bio-
logical aging. A positive association between epigenetic 
aging (Horvath first-generation measure) and risk of 
breast cancer was first reported in an EPIC-IARC study 
[8], and later confirmed in the Sister Study for Horvath, 

Hannum and PhenoAge measures [21], but not for Grim-
Age [22]. Only the age acceleration based on Horvath 
methylation age [17] was therefore studied in relation 
to breast cancer risk in both previous published studies, 
so there is a need to accumulate evidence, particularly 
in women unselected for family history. Associations of 
epigenetic aging measures with risk of several other types 
of cancer were also observed in the MCCS, and these 
tended to be stronger for PhenoAge and GrimAge than for 
the first-generation measures [23, 24].

Factors other than age, mainly tobacco smoking [14, 
25], alcohol consumption [15, 26] and body mass index 
[13, 27, 28] strongly influence blood DNA methylation 
and may also increase the risk of breast cancer. Similar 
to epigenetic aging, methylation marks of lifestyle could 
be useful markers to increase the precision with which 
we measure their association with cancer risk. These 
could reflect unmeasured past and cumulative expo-
sures, imperfect assessments provided by questionnaires, 
or different individual responses to exposure; epigenetic 
predictors of lifestyle may therefore have potential to 
improve the prediction of breast cancer risk.

The aim of this study was to examine the association of 
previously derived 1) seven methylation-based measures 
of aging, and 2) methylation-based measures of body 
mass index, alcohol consumption and tobacco smoking, 
with breast cancer risk in a meta-analysis of individual-
participant data including 1,655 breast cancer cases sam-
pled from the MCCS, EPIC and PLCO.

Methods
Data sources
We used data from four methylation studies nested 
within three prospective cohorts of European ancestry 
participants: the Melbourne Collaborative Cohort Study 
(MCCS) [29], the European Prospective Investigation 
into Cancer and Nutrition (EPIC) (EPIC-Italy [7] and 
EPIC-IARC [8]), and the Prostate, Lung, Colorectal, and 
Ovarian Cancer Screening Trial (PLCO) [30]. Details 
about these cohorts and design of the methylation stud-
ies were described previously [10] and are provided in 
the Additional file 1. We used the same case selection as 

proportions, body mass index, smoking and alcohol consumption. The BMI-adjusted predictor of BMI was associated 
with breast cancer risk, OR per SD = 1.09, 95%CI: 1.01–1.17. The results for the alcohol and smoking methylation-based 
predictors were consistent with a null association. Risk did not appear to substantially vary by age at blood draw, time 
to diagnosis or tumour characteristics.

Conclusion:  We found no evidence that methylation-based measures of aging, smoking or alcohol consumption 
were associated with risk of breast cancer. A methylation-based marker of BMI was associated with risk and may pro‑
vide insights into the underlying associations between BMI and breast cancer.

Keywords:  Prospective study, DNA methylation, Epigenetic aging, Lifestyle, Breast cancer risk
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in our previous meta-analysis. Ductal carcinoma in  situ 
cases were excluded from the analysis [10].

DNA extraction, bisulphite conversion and DNA 
methylation data processing
Methods relating to DNA extraction and bisulphite con-
version, and DNA methylation data processing have 
been described previously and are detailed in Additional 
file 1 and are the same as in our previous pooled analy-
sis [10]. In brief, the MCCS, EPIC-Italy and EPIC-IARC 
measured DNA methylation using the Illumina Infinium 
450  k BeadChip methylation array, and PLCO used the 
llumina InfiniumEPIC 850 k BeadChip methylation array. 
The pipeline for normalization of the methylation data 
was the same across the four studies (Additional file 1). 
β-values were calculated for each CpG site for each sam-
ple using the R package minfi. β-values were calculated 
for each CpG site for each sample using the R package 
minfi. Methylation measures with a detection P-value 
higher than 0.01 were considered missing. Samples 
with > 5% of CpG methylation measures missing were 
excluded, and CpGs with values missing for more than 
20% of samples were excluded. White blood cell pro-
portions were estimated using the Houseman algorithm 
modified by Jaffe and Irizarry [31, 32], using the R func-
tion estimateCellCounts implemented in minfi, or Hor-
vath’s calculator, to derive the proportion of CD8 + T 
cells, CD4 + T cells, NK cells, B cells, monocytes and 
granulocytes.

Methylation‑based measures
Epigenetic aging
We used the normalised DNA methylation data to cal-
culate the epigenetic measures of aging developed by 
Horvath [7] and Hannum et al. [8], as well as PhenoAge 
[9], and GrimAge [20] (composite biomarkers enriched 
for adverse phenotypes) as these have been shown to 
be accurate predictors of chronological age, and their 
deviation from chronological age (i.e. ‘age acceleration’ 
[AA]) was consistently found to be associated with risk 
of disease, cancer and death. These measures are calcu-
lated using methylation data at 353, 71, 513 and 1,030 
CpGs, respectively, and were obtained using Horvath’s 
online calculator https://​dnama​ge.​genet​ics.​ucla.​edu/​new 
[17, 19, 20]. Their respective age acceleration measures, 
defined as the residuals of the regression on chronologi-
cal age, were also computed using the online calcula-
tor. Similar to other publications [21, 23], AA-Horvath 
and AA-Hannum measures were modified based on 
cell proportions. Specifically, ‘intrinsic’ epigenetic age 
acceleration (IEAA) is a measure of age acceleration 
independent of age-related changes in blood cell compo-
sition. It is computed as the residuals of the methylation 

age (Horvath or Hannum) on chronological age and 
methylation-based blood cell count estimates. ‘Extrinsic’ 
epigenetic age acceleration (EEAA) is computed as the 
residual of the Horvath methylation age on chronologi-
cal age and a weighted average of age-related changes in 
blood cell composition. It is thought to be a measure of 
immune system aging. Both IEAA measures (IEAA-Hor-
vath and IEAA-Hannum) and EEAA were estimated via 
the online calculator.

Methylation‑based predictors of lifestyle
We considered a priori three established lifestyle factors 
associated with breast cancer risk for which there is sub-
stantial evidence of an association with DNA methyla-
tion in blood, i.e. smoking [14, 25], alcohol consumption 
[15, 26] and BMI [13, 27, 28]. We used the predictors by 
McCartney et al. [33] as these were developed and vali-
dated in a large sample of participants of mainly Euro-
pean ancestry (Generation Scotland) using regularised 
regression. The proportion of trait variance explained 
by these predictors was previously reported to be 61%, 
12.5% and 12.5% for log of smoking pack-years, alcohol 
intake and BMI, respectively. Methylation predictors for 
BMI, smoking and alcohol consumption were calculated 
as the weighted average of methylation β-values at the 
corresponding number of CpGs, using weights avail-
able from the original publication at 1,109, 233, and 450 
CpGs, respectively [33]. In each study, the methylation 
scores for each participant were calculated after exclu-
sion of CpGs with missing methylation values. Each 
predictor was regressed on its respective risk factor—
log(BMI), log(smoking pack-years) and log(alcohol con-
sumption)—to obtain adjusted measures.

Statistical analysis
Linear regressions between each trait and its respec-
tive epigenetic predictors were conducted to assess their 
association and variance explained in each predictor 
(Additional file 1: Table S1).

The four studies individually performed conditional 
(MCCS, EPIC-Italy, EPIC-IARC) or unconditional 
(PLCO) logistic regression to estimate the odds ratio 
(OR) and 95% confidence interval (95%CI) for breast can-
cer risk per one standard deviation (SD) increase for each 
of the age acceleration, smoking, alcohol intake and BMI 
methylation-based measures. Associations were also cal-
culated per five-year AA increase for comparison with 
other studies.

Models adjusted were appropriate for the matching 
variables specific to each study (see Additional file 1), 
cell-type proportions estimated with the House-
man algorithm (percentage CD8T + , CD4T + , NK, 
B-cell, monocytes, granulocytes) and other variables 

https://dnamage.genetics.ucla.edu/new
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to account for batch effects, such as plate or surrogate 
variable analysis (SVA) and additional adjustment for 
smoking (continuous pack-years), alcohol intake (con-
tinuous, grams/day) and BMI (continuous, kg/m2). 
Models with i) no adjustment and ii) adjustment for 
white blood cell proportions only, yielded very similar 
results and are shown in Additional file 1. Participants 
with missing data in any of the adjusting variables were 
excluded from the analysis.

Subgroup analyses within each study were carried 
out by conducting the same analyses (Model 1) for 
the following case characteristics: age at blood draw 
(< 50; ≥ 50  years old), time between blood draw and 
diagnosis (< 5; ≥ 5 years), oestrogen receptor (ER) pos-
itivity status, stage (I; II or higher).

For all analyses, estimates of pooled OR and 95%CI 
were calculated using fixed-effects meta-analysis, and 
P-values were calculated using the Wald test statistic. 
Heterogeneity in the ORs across studies was examined 
using the I2 statistic.

Results
A total of 1,655 breast cancer cases were included in the 
analysis. The median age at blood draw was 53 years in 
EPIC-IARC and EPIC-Italy, 57  years in the MCCS and 
62  years in PLCO. The median time from blood draw 
to diagnosis ranged between 6.5  years (EPIC-Italy) and 
8.4 years (PLCO). Most tumours were ER positive (71% 
in the PLCO to 83% in EPIC samples) and diagnosed at 
low stage (~ 60%). For all studies, there were no large 
case–control differences in terms of smoking, alcohol 
consumption and BMI (Table 1). The description of the 
methylation-based predictors for each study is shown in 
Table 2. The range of variance explained of age by epige-
netic aging measures across cohorts was: Horvath: 39% 
to 60%; Hannum: 48% to 64%; PhenoAge: 32% to 50%; 
GrimAge: 50% to 69%. The variance explained by meth-
ylation-based predictors for BMI ranged from 14 to 22%; 
for smoking from 41 to 54% and for alcohol consumption 
from 3 to 9%. All measures were strongly associated with 
their respective risk factor (Additional file  1: Table  S1). 
All adjusted measures had mean 0 and standard deviation 
1 and were uncorrelated with their respective variable.

Table 1  Characteristics of study participants

MCCS Melbourne Collaborative Cohort Study; EPIC European Prospective Investigation into Cancer and Nutrition; IARC​ International Agency for Research on Cancer; 
PLCO Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial; IQR interquartile range; ER oestrogen receptor

Participant characteristics MCCS EPIC-IARC​ EPIC-Italy PLCO

Number of participants

 Controls 408 416 248 805

 Cases 408 416 248 583

Age at blood draw (cases), 
median (IQR)

57.4 (49.8, 62.8) 53.4 (44.7–58.9) 53.6 (48.0–57.6) 62.0 (58.3, 66.2)

Time to diagnosis, median 
(IQR)

7.7 (4.4, 11.1) 7.7 (5.0, 10.3) 6.5 (2.5, 10.6) 8.4 (5.6, 10.5)

ER status, n (%)

 Positive 296 (73%) 347 (83%) 156 (63%) 411 (71%)

 Negative 103 (25%) 69 (17%) 32 (13%) 78 (13%)

 Missing 9 (2%) 0 (0%) 60 (24%) 94 (16%)

Stage, n (%)

 I 246 (60%) 205 (49%) 71 (29%) 337 (58%)

 II or higher 140 (35%) 143 (34%) 40 (16%) 245 (42%)

 Missing 22 (5%) 68 (16%) 137 (55%) 1 (0.1%)

Smoking, n (%) Cases Controls Cases Controls Cases Controls Cases Controls

 Current 27 (7%) 27 (7%) 88 (21%) 94 (23%) 51 (21%) 57 (23%) 47 (8%) 51 (6%)

 Former 94 (23%) 113 (28%) 87 (21%) 91 (22%) 49 (20%) 50 (20%) 203 (35%) 255 (32%)

 Never 287 (70%) 268 (66%) 241 (58%) 231 (56%) 148 (60%) 141 (57%) 333 (57%) 499 (62%)

Smoking pack-years, median 
(IQR)

0 (0, 4.0) 0 (0, 5.7) 0 (0, 7.0) 0 (0, 6.5) 0 (0,5.1) 0 (0, 5.4) 0 (0,18.5) 0 (0,14.3)

Alcohol intake (g/day), 
median (IQR)

0 (0, 8.6) 0 (0, 9.5) 4.5 (0.5,16.0) 3.4 (0.4, 11.8) 2.9 (0,13.1) 2.8 (0,13.4) 0.7 (0, 7.7) 0.6 (0, 3.5)

Body mass index (kg/m2), 
median (IQR)

26 (23, 30) 26 (23, 29) 25 (23, 28) 25 (23, 28) 26 (23, 29) 25 (23, 28) 26 (23, 29) 26 (23, 30)
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Although the Horvath measures of epigenetic aging 
AA and IEAA were associated with risk in EPIC-IARC 
(similar to [8], AA-Horvath: OR per SD = 1.22, 95%CI: 
1.02–1.45, IEAA-Horvath: OR = 1.22, 95%CI: 1.03–1.45), 
no evidence of association was found in the other cohorts 
(for AA: point ORs of 0.94, 0.89 and 1.03 in MCCS, EPIC-
Italy, and PLCO, respectively). The pooled estimates were 
consistent with a null association: OR = 1.02, 95%CI: 
0.95–1.10 for AA-Horvath and OR = 1.03, 95%CI: 0.96–
1.11 for IEAA-Horvath after adjustment for white cell 
proportions, body mass index, smoking and alcohol con-
sumption (Table  3). Similar findings were obtained for 
the EEAA, AA-Hannum and IEAA-Hannum measures, 

with pooled OR per SD = 1.02 (0.93–1.11), OR = 1.03 
(0.95–1.12) and OR = 1.04 (0.96–1.12), respectively. 
AA-PhenoAge and AA-GrimAge age-adjusted measures 
also showed no association with breast cancer risk, with 
OR per SD: 1.01 (0.94–1.09) and OR = 1.03 (0.94–1.12), 
respectively), Table 3. The results for all epigenetic aging 
measures were virtually unchanged in models without 
adjustment for white blood cell proportions or lifestyle-
related factors (Additional file 1: Table S2).

Associations for methylation-based predictors of life-
style-related factors are shown in Table 3. The predictor 
of BMI was positively associated with breast cancer risk 

Table 2  Description of methylation-based measures

MCCS Melbourne Collaborative Cohort Study; EPIC European Prospective Investigation into Cancer and Nutrition; IARC​ International Agency for Research on Cancer; 
PLCO Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial; IQR Interquartile range

*Variance explained of age, BMI, smoking and alcohol consumption by the corresponding methylation-based measures

Methylation-
based measures

MCCS EPIC-IARC​ EPIC-Italy PLCO

Median (IQR) R2,* (%) Median (IQR) R2,* (%) Median (IQR) R2,* (%) Median (IQR) R2,* (%)

Horvath age 54 (47; 60) 49 51 (44; 57) 60 52 (46; 57) 64 65 (62; 69) 39

Hannum age 62 (55; 68) 59 53 (46; 60) 64 59 (53.6; 62.9) 72 56 (52; 59) 48

PhenoAge 54 (46; 61) 39 44 (36; 51) 50 42 (35; 48) 56 51 (47; 56) 32

GrimAge 53 (48; 57) 66 52 (47; 57) 69 59 (55; 63) 62 46 (42; 50) 50

BMI score 0.0 (−0.6; 0.7) 16 0.0 (−0.7; 0.7) 14 −0.1 (−0.6; 0.7) 18 0.0 (−0.7; 0.6) 22

Smoking score −0.2 (−0.6; 0.3) 41 −0.4 (−0.6; 0.1) 44 −0.4 (−0.6; 0.2) 54 −0.3 (−0.6; 0.2) 41

Alcohol score −0.1 (−0.6; 0.6) 3 −0.1 (−0.7; 0.6) 7 −0.1 (−0.6; 0.6) 3 −0.1 (−0.6; 0.5) 9

Table 3  Odds ratiosa for the association between methylation-based measures of breast cancer risk factors and risk of breast cancer

Bold values indicate results pooled across the four studies
a Adjusting for white blood cell proportions, BMI, smoking and alcohol consumption
b These models were not adjusted for white blood cell proportions because these are integrated in the IEAA and EEAA measures
c Residuals from the regression of the scores on the log of their respective lifestyle variables

Methylation-based measures MCCS EPIC-IARC​ EPIC-Italy PLCO I2 (%) Pooled P
OR [95%CI] OR [95%CI] OR [95%CI] OR [95%CI] OR [95%CI]

Epigenetic aging
 AA-Horvathb 0.95 [0.81–1.10] 1.22 [1.02–1.47] 0.89 [0.73–1.08] 1.05 [0.93–1.18] 57 1.02 [0.95–1.10] 0.59

 IEAA-Horvathb 0.96 [0.83–1.10] 1.23 [1.03–1.47] 0.88 [0.72–1.06] 1.07 [0.95–1.20] 62 1.03 [0.96–1.11] 0.40

 EEAAb 0.99 [0.84–1.18] 1.15 [0.94–1.41] 0.86 [0.70–1.06] 1.06 [0.92–1.22] 31 1.02 [0.93–1.11] 0.67

 AA-Hannumb 0.97 [0.83–1.14] 1.19 [0.97–1.45] 0.86 [0.70–1.06] 1.09 [0.96–1.24] 51 1.03 [0.95–1.12] 0.43

 IEAA-Hannumb 0.98 [0.84–1.13] 1.18 [0.98–1.42] 0.88 [0.72–1.08] 1.08 [0.96–1.22] 45 1.04 [0.96–1.12] 0.34

 PhenoAge 0.97 [0.83–1.14] 1.12 [0.94–1.34] 0.89 [0.73–1.10] 1.03 [0.91–1.17] 4 1.01 [0.94–1.09] 0.75

 GrimAge 1.03 [0.86–1.25] 1.08 [0.90–1.30] 0.94 [0.79–1.13] 1.05 [0.91–1.21] 0 1.03 [0.94–1.12] 0.53

Lifestyle-related factors
 BMI methylation score 1.17 [1.01–1.36] 1.06 [0.92–1.23] 1.25 [1.03–1.52] 1.02 [0.91–1.15] 26 1.10 [1.02–1.18] 0.01

 Adjusted BMI scorec 1.11 [0.96–1.28] 1.02 [0.88–1.17] 1.27 [1.04–1.55] 1.06 [0.94–1.19] 12 1.09 [1.01–1.17] 0.02

 Smoking methylation score 0.98 [0.84–1.14] 0.95 [0.82–1.11] 1.11 [0.90–1.35] 1.13 [1.00–1.27] 24 1.04 [0.97–1.12] 0.25

 Adjusted smoking scorec 1.01 [0.87–1.17] 0.94 [0.81–1.09] 1.13 [0.94–1.34] 1.08 [0.97–1.22] 6 1.04 [0.97–1.12] 0.29

 Alcohol methylation score 0.95 [0.82–1.11] 1.01 [0.87–1.17] 0.83 [0.67–1.03] 1.07 [0.95–1.20] 32 1.00 [0.93–1.07] 0.91

 Adjusted alcohol scorec 0.95 [0.82–1.11] 0.96 [0.83–1.12] 0.85 [0.69–1.05] 1.03 [0.91–1.16] 0 0.97 [0.90–1.04] 0.42
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in the pooled analysis with an OR of 1.10 per SD (95%CI: 
1.02–1.18), with little heterogeneity across cohorts 
(I2 = 26%). This association was virtually not attenuated 
when considering the adjusted measure, i.e. BMI pre-
dictor regressed on BMI: OR = 1.09, 95%CI: 1.01–1.17 
(I2 = 12%). Estimates were similar in unadjusted mod-
els (Additional file  1: Table  S2). There was limited evi-
dence that the methylation-based predictors of smoking 
(OR = 1.04, P > 0.05) and alcohol consumption (OR = 1.0, 
P > 0.05), or their respective adjusted measures, were 
associated with breast cancer risk (Table 3).

None of the associations of epigenetic aging or lifestyle 
measures with breast cancer risk showed substantial het-
erogeneity by age at blood draw, time to diagnosis, ER 
positivity or tumour stage at diagnosis (Table 4); for AA-
GrimAge, the association appeared stronger for ER-neg-
ative cases (OR = 1.18, 95%CI: 1.00–1.40). The adjusted 
BMI measures appeared somewhat more strongly asso-
ciated with risk for women diagnosed within five years 
from blood draw (OR = 1.15, 95%CI: 1.01–1.32) com-
pared with those diagnosed more than five years after 
blood draw (OR = 1.08, 95%CI: 1.00–1.17).

Discussion
We have assessed seven measures of epigenetic aging 
and three methylation-based predictors of lifestyle for 
their association with breast cancer risk in a large sam-
ple (1,655 cases) of women from Western countries 
(Australia, Europe and the USA). We found overall no 
associations between measures of epigenetic aging and 
risk of breast cancer. A positive association was observed 

for the BMI methylation score, but not for smoking and 
alcohol consumption.

To our knowledge few studies have investigated the 
association of epigenetic aging with breast cancer risk. 
We included in this meta-analysis the samples for which 
an association was reported previously in EPIC-IARC 
[8]. Slightly different models were used but the results 
were very similar. The association previously observed 
in EPIC-IARC was restricted to postmenopausal women 
(per 1-year IEAA-Horvath: OR = 1.06, 95%CI: 1.02–1.11) 
compared with OR = 1.00 for premenopausal women. We 
found no evidence of an association in our meta-analysis, 
including when restricted to ages older than 50  years. 
Our results are overall consistent with the findings from 
the Sister Study [34], which reported relatively weak asso-
ciations: based on 1,566 cases, per 5-year AA-Hannum: 
hazard ratio (HR) = 1.10, 95%CI, 1.00–1.21, AA-Hor-
vath: HR = 1.08, 95%CI = 1.00–1.17, and AA-PhenoAge: 
HR = 1.15, 95%CI = 1.07–1.23. In our study, the ORs 
expressed per 5-year AA were compatible for AA-Han-
num and AA-Horvath (HR = 1.02, 95%CI, 0.94–1.10 and 
HR = 1.01, 95%CI = 0.94–1.08, respectively) and more 
discrepant for AA-PhenoAge: HR = 1.00, 95%CI = 0.95–
1.06. Similar to our findings, the authors did not find 
substantial heterogeneity by, for example, menopausal 
or ER-positivity status. For AA-GrimAge, the authors 
expressed the association per standard deviation [22] and 
found HR = 1.06, 95%CI: 0.98, 1.14, which is also similar 
to our study OR = 1.03, 95%CI: 0.94–1.12. Although AA-
GrimAge appeared somewhat more strongly associated 
with risk for postmenopausal women in the Sister Study, 

Table 4  Odds ratiosa (pooled analysis) for subgroup analyses of the association between methylation-based measures of aging and 
lifestyle (regressed on their respective risk factors) and risk of breast cancer (N = 1,655)

a Adjusting for white blood cell proportions, except for AA-Horvath and AA-Hannum
b Regressed on age
c Regressed on log(BMI), log(pack-years) and log(alcohol in grams/day), respectively

AA-Horvathb

OR [95%CI]
AA-Hannumb

OR [95%CI]
PhenoAgeb

OR [95%CI]
GrimAgeb

OR [95%CI]
Adj. BMI scorec

OR [95%CI]
Adj. smoking scorec

OR [95%CI]
Adj. alcohol scorec

OR [95%CI]

Time to diagnosis

 < 5 years 1.01 [0.88–1.16] 0.98 [0.84–1.13] 1.01 [0.88–1.17] 1.04 [0.92–1.19] 1.15 [1.01–1.32] 0.99 [0.87–1.13] 1.01 [0.88–1.15]

 ≥ 5 years 1.02 [0.94–1.11] 1.06 [0.97–1.16] 1.03 [0.95–1.13] 1.05 [0.96–1.14] 1.08 [1.00–1.17] 1.06 [0.98–1.14] 0.96 [0.88–1.05]

Age at blood draw

 < 50 1.12 [0.92–1.36] 1.08 [0.89–1.32] 1.02 [0.84–1.23] 1.10 [0.93–1.30] 1.10 [0.93–1.30] 0.99 [0.85–1.14] 0.96 [0.81–1.14]

 ≥ 50 1.00 [0.92–1.09] 1.03 [0.94–1.12] 1.03 [0.95–1.12] 1.03 [0.95–1.11] 1.10 [1.02–1.19] 1.04 [0.96–1.13] 0.96 [0.89–1.05]

ER positivity status

 ER positive 1.06 [0.98–1.16] 1.04 [0.95–1.14] 1.01 [0.93–1.10] 1.03 [0.95–1.12] 1.05 [0.97–1.14] 1.03 [0.95–1.12] 0.97 [0.89–1.06]

 ER negative 0.87 [0.73–1.04] 0.93 [0.77–1.12] 1.02 [0.85–1.23] 1.18 [1.00–1.40] 1.15 [0.97–1.37] 1.05 [0.89–1.23] 0.92 [0.76–1.10]

Stage

 I 1.05 [0.95–1.16] 1.04 [0.94–1.16] 1.02 [0.92–1.12] 1.07 [0.98–1.18] 1.09 [0.99–1.19] 1.03 [0.94–1.14] 0.96 [0.87–1.06]

 II or higher 1.00 [0.88–1.15] 1.08 [0.93–1.25] 1.04 [0.91–1.20] 1.08 [0.94–1.24] 1.08 [0.95–1.23] 1.12 [0.98–1.28] 1.02 [0.89–1.17]
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the evidence for heterogeneity was weak and there was 
no indication of this in our data (HR = 1.03 for women 
aged ≥ 50 years at blood draw).

The main differences between the cohorts included 
in our meta-analysis and the Sister Study are that it was 
enriched for family history of breast cancer and had sub-
stantially shorter length of follow-up than ours (for the 
cases, mean time to diagnosis of 3.9  years, compared 
with > 6  years for all studies we included). We neverthe-
less did not observe that OR estimates were larger when 
blood was collected closer to diagnosis (within 5  years: 
OR ~ 1.01, 0.98, 1.01, 1.04 for AA-Horvath, AA-Hannum, 
AA-PhenoAge and AA-GrimAge, respectively). The study 
of Durso and colleagues [35] compared Horvath and 
Hannum age acceleration measures between 233 Ital-
ian women who developed breast cancer (mean age at 
recruitment: 52.4 years, mean time to diagnosis: 3.8 years) 
and cancer-free controls and found no evidence of an 
association. A study of multiple health outcomes using 
Generation Scotland data included 83 incident breast 
cancer cases, diagnosed over 13  years of follow-up in 
women aged ~ 51  years at baseline [36]. A tendency for 
risk associations to be positive was observed: per SD, AA-
Horvath, HR = 1.01 (P = 0.95), AA-Hannum: HR = 1.24 
(P = 0.07), AA-PhenoAge: HR = 1.36 (P = 0.01), and AA-
GrimAge = 1.19 (P = 0.16), respectively, in age-adjusted 
models. The literature to date therefore includes, to our 
knowledge, approximately 3,550 breast cancer cases and is 
consistent with a weak (of roughly 8% increase per 5-year 
AA for AA-PhenoAge) or null association between epige-
netic aging measured in blood and breast cancer risk.

There has not been to our knowledge any study exam-
ining methylation-based predictors of lifestyle-related 
factors with risk of breast cancer. A handful of studies 
have examined risk of overall mortality [33], survival 
from oropharyngeal cancer [37] and risk of several types 
of cancer in the Melbourne Collaborative Cohort Study 
[38]. Another study used the Cancer Genome Atlas data-
sets to develop lifestyle predictors based on tumour DNA 
methylation [39] and found that the BMI-associated 
methylation signature was predictive of shorter breast 
cancer survival. For the methylation-based predictors 
used in our study, the variance explained was somewhat 
higher than that originally reported by McCartney et al. 
[33] for BMI (12%), but somewhat lower for smoking and 
alcohol consumption (61% and 12%, respectively). For 
smoking, it may be because it was trained to predict log 
(pack-years) in current smokers, and our analysis also 
included former smokers; analyses of the MCCS data 
showed that the R2 was 66% when former smokers were 
excluded (not shown). Other methylation-based meas-
ures of lifestyle have been developed showing similar 
accuracy, e.g. for alcohol [26], or smoking [25, 40], and 

were not tested in the current study; we chose to use 
these predictors because they were developed using a 
large sample size of people of similar ancestry (Scottish) 
and were well validated. In MCCS analyses of other can-
cer types, the choice of predictor did not appear to make 
a substantial difference in the observed associations [38]. 
In another analysis of the Sister Study data, the authors 
used as inputs to predict breast cancer risk 36 methyla-
tion-based measures of biological aging and physiological 
characteristics and methylation values at 100 individual 
CpGs (i.e. using altogether methylation values at thou-
sands of CpGs) and derived a risk score that showed 
reasonable performance with an area under the curve of 
0.63, which was similar to, and independent of, the asso-
ciation observed for the 313-SNP polygenic risk score 
[41]. We did not attempt to combine methylation scores 
in our study because most associations were weak, but 
it is likely that this type of approach may yield improve-
ments to breast cancer risk prediction in the future.

That we observed only weak or null associations may 
be explained by the fact that none of BMI, alcohol con-
sumption or smoking are strong risk factors for breast 
cancer. Previous studies have generally found weak to 
moderate associations [33, 37, 38], except for lung can-
cer in the MCCS [38], for which the effect of smoking is 
dramatic. We had hypothesised that methylation predic-
tors of BMI, alcohol and smoking could contain more 
information about lifestyle than the measured risk fac-
tors—for example, exposures accumulated over the life-
time, in particular, during sensitive periods such as early 
life or the periconceptional period, which could be bet-
ter captured by DNA methylation compared with ques-
tionnaires at older ages. BMI has consistently been found 
to be positively associated with risk of breast cancer for 
postmenopausal women and negatively for pre-meno-
pausal women [42]; we did not observe this using methyl-
ation scores as the estimates of associations were similar 
by age at blood draw (< 50  years: HR = 1.10 [0.93–1.30] 
and ≥ 50  years: HR = 1.10 [1.02–1.19]). The association 
we observed for BMI might also reflect the combined 
effect of several aspects of obesity beyond BMI [43] that 
could be captured by changes in DNA methylation. For 
other breast cancer risk factors, there is to date no con-
vincing evidence that they are strongly associated with 
blood DNA methylation changes, e.g. for mammographic 
density [44] or lifetime oestrogen exposure [45]. Addi-
tional risk factors for breast cancer were not adjusted 
for, but this would probably make little difference to the 
results given their confounding effect on the lifestyle 
methylation-breast cancer association is likely small.

The main strength of our study is the largest sample 
size to date of ~ 1,650 cases with long follow-up and 
comprehensive assessment of epigenetic measures for 
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association with risk. The same analysis method was 
applied across cohort datasets and participants were 
representative of the general population. Limitations 
of our study include the relative heterogeneity of the 
pooled samples; even though most participants were of 
European ancestry, there was some variation in terms 
of age at inclusion, follow-up time or sample process-
ing. All studies used the same pipeline for normalisa-
tion of the data, but PLCO used the EPIC assay, which 
may result in small measurement differences.

Conclusion
Our study found overall weak associations of methyla-
tion-based measures of aging and lifestyle-related with 
breast cancer risk. The association observed for a BMI 
methylation score might provide insights in the under-
lying association between BMI and breast cancer and 
should be further investigated in additional studies.
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