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Radiomics predicts the prognosis 
of patients with locally advanced breast cancer 
by reflecting the heterogeneity of tumor cells 
and the tumor microenvironment
Xuanyi Wang1†, Tiansong Xie2†, Jurui Luo1, Zhengrong Zhou2*, Xiaoli Yu1* and Xiaomao Guo1* 

Abstract 

Background:  This study investigated the efficacy of radiomics to predict survival outcome for locally advanced 
breast cancer (LABC) patients and the association of radiomics with tumor heterogeneity and microenvironment.

Methods:  Patients with LABC from 2010 to 2015 were retrospectively reviewed. Radiomics features were extracted 
from enhanced MRI. We constructed the radiomics score using lasso and assessed its prognostic value. An external 
validation cohort from The Cancer Imaging Archive was used to assess phenotype reproducibility. Sequencing data 
from TCGA and our center were applied to reveal genomic landscape of different radiomics score groups. Tumor infil-
trating lymphocytes map and bioinformatics methods were applied to evaluate the heterogeneity of tumor microen-
vironment. Computational histopathology was also applied.

Results:  A total of 278 patients were divided into training cohort and validation cohort. Radiomics score was 
constructed and significantly associated with disease-free survival (DFS) of the patients in training cohort, validation 
cohort and external validation cohort (p < 0.001, p = 0.014 and p = 0.041, respectively). The radiomics-based nomo-
gram showed better predictive performance of DFS compared with TNM model. Distinct gene expression patterns 
were identified. Immunophenotype and immune cell composition was different in each radiomics score group. The 
link between radiomics and computational histopathology was revealed.

Conclusions:  The radiomics score could effectively predict prognosis of LABC after neoadjuvant chemotherapy and 
radiotherapy. Radiomics revealed heterogeneity of tumor cell and tumor microenvironment and holds great potential 
to facilitate individualized DFS estimation and guide personalized care.
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Background
Breast cancer is the most commonly diagnosed cancer 
and the leading cause of death among females world-
wide [1]. Locally advanced breast cancer (LABC) con-
sists of breast cancer with different stages and prognoses 
and requires comprehensive treatment [2]. Neoadju-
vant chemotherapy (NAC) is the standard treatment for 
LABC and radiotherapy (RT) is an important compo-
nent of comprehensive treatment for LABC. Prospective 
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randomized trials, meta-analyses, and observational 
data have demonstrated that postoperative radiotherapy 
(PORT) reduces locoregional recurrences (LRR), dis-
tant recurrences, and breast cancer mortality (BCM) in 
pN + patients [3, 4]. Given the treatment complexity and 
tumor heterogeneity, it is difficult to precisely predict the 
prognosis of LABC. At present, prognostic assessment 
for these patients is mainly dependent on the clinical and 
pathological evaluations in terms of TNM staging and 
molecular subtypes. Therefore, the development of a new 
method to assess the prognosis of patients with LABC 
undergoing neoadjuvant chemotherapy and postopera-
tive RT is important.

Radiomics is a noninvasive method that extracts quan-
titative features from medical imaging in a high-through-
put manner [5], and much progress has been made in 
this new and promising field. Radiomics have been used 
to guide cancer management, including diagnosis, prog-
nosis prediction, tumor staging, and treatment response 
evaluation [6–9]. Recent studies have demonstrated 
that radiomics can improve or outperform the existing 
method in terms of tumor diagnosis and prognosis pre-
diction. Several publications have suggested that radi-
omics can predict prognosis in malignant tumors such 
as pancreatic cancer, gastric carcinoma, breast cancer, 
and nasopharyngeal carcinoma [10–13]. Indeed, radiom-
ics have been applied to predict the complete pathologi-
cal remission (pCR) rate for patients with breast cancer 
receiving NAC [14]. However, data on the use of radiom-
ics in patients with LABC after NAC and PORT (postop-
erative radiotherapy) are limited, and whether radiomics 
can be used to predict the survival outcome of patients 
with breast cancer after NAC and RT is unknown.

Accumulating evidence suggests that imaging subtypes 
are associated with distinct gene expression patterns 
[15–18]. Both pro-oncogenic and anti-oncogenic path-
ways are enriched in different image subtypes, includ-
ing the mTOR and cell cycle pathway. Previous studies 
have mainly focused on the association of radiomics 
and tumor cell heterogeneity. However, the association 
between radiomics and the tumor microenvironment, 
which comprises heterogeneous cell types and plays a 
pivotal role in determining prognosis, remains unclear.

Additionally, computational histopathology has been 
developed to quantify histopathological patterns in his-
topathology image slides. Both radiomics and computa-
tional histopathology are derived from tumor tissue and 
extract tumor morphological phenotypes to reveal tumor 
heterogeneity [19, 20]. Therefore, computational histo-
pathology may be able to reflect morphological changes 
detected by radiomics and vice versa. However, whether 
and how computational histopathology could be com-
bined with radiomics remains unknown.

Here, we constructed and validated an MRI-based 
radiomics score (RS) to assess the DFS of patients with 
locally advanced breast cancer after NAC and PORT. By 
incorporating radiomics with genomic and computa-
tional histopathological data, we evaluated the associa-
tion between radiomics and heterogeneity of tumor cells 
and their microenvironment.

Methods
Study population and treatment
The design of the study is presented in Fig. 1. The study 
population comprised a training cohort, validation 
cohort, and an external validation cohort (TCGA-BRCA 
cohort).

Training and validation cohorts were collected in 
Fudan University Shanghai Cancer Center. A total of 441 
patients who presented with clinical stage II–III breast 
cancer and who underwent NAC and PORT from 2010 
to 2015 were retrospectively reviewed. The study was 
approved by the Institutional Review Board, and the 
reviewed data included clinical, histopathological, and 
imaging data.

The inclusion criteria of this study are presented in the 
supplement. Finally, 278 patients were enrolled and were 
randomly divided at a 1:1 ratio into training and valida-
tion cohorts.

The baseline clinical characteristics and pathologic 
data were derived from patients’ medical records and 
included age, laterality, cT stage, cN stage, pT stage, pN 
stage, estrogen receptor (ER) status, progesterone recep-
tor (PR) status, human epidermal growth factor recep-
tor-2 (HER-2) status, treatment response, chemotherapy 
regimen, and RT plan. Preoperative breast MRI scans 
were recorded and extracted from the picture archiv-
ing and communication system (PACS) in the Depart-
ment of Radiology in Fudan University Shanghai Cancer 
Center. The TNM staging for each patient was reclassi-
fied according to the eighth edition of the Cancer Stag-
ing Manual of the American Joint Committee on Cancer 
(AJCC)/International Union Against Cancer. The patho-
logical results were reviewed and confirmed by the cen-
tral laboratory of the Department of Pathology in Fudan 
University Shanghai Cancer Center. The pCR of the pri-
mary tumor after NAC was defined as the eradication 
of all invasive diseases in the breast and regional lymph 
nodes.

The systemic treatment, surgery, and RT plan were 
consistent with the previously published data [21]. The 
taxane-based PC (paclitaxel and carboplatin) regimen 
was the most commonly used NAC regimen. Most 
patients underwent mastectomy and axillary lymph 
node dissection (ALND). PORT was performed after 
the completion of adjuvant chemotherapy. Regional 
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nodal irradiation (RNI) was delivered to the ipsilat-
eral supraclavicular region and the infraclavicular 
region + / − internal mammary lymph nodes (IMNs). 
The dissected axillary region was excluded from the 
irradiation fields. The prescription dose for most 
patients who underwent mastectomy was 50  Gy in 25 
fractions. For patients who underwent lumpectomy, 
a boost of 10  Gy in five fractions was delivered to the 

lumpectomy cavity. IMNI was given according to the 
discretion of radiation oncologists, and the prescrip-
tion dose was 50 Gy in 25 fractions. RT fields were con-
firmed by reviewing each RT plan.

The external validation cohort (TCGA-BRCA cohort) 
was collected from The Cancer Imaging Archive 
(TCIA). Breast cancer cases from TCIA TCGA-BRCA 
cohort without enhanced MRI or those with had no 
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Fig. 1  The overview of this study
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clear lesions on MRI were excluded. As a result, 91 
cases were enrolled.

Endpoints and follow‑up
The primary endpoints of this study were DFS (defined as 
the interval from the date of curative surgery to disease 
recurrence, secondary malignancy, death, or the last visit) 
and RFS (recurrence-free survival, defined as the interval 
from the date of curative surgery to disease recurrence, 
death, or the last visit).

Patients treated in our center were followed up every 
3  months in the first 2  years, every 6  months in the 
next 3 years, and once a year after that. Physical exami-
nation, laboratory test, and ultrasound of the breast, 
lymph nodes, and abdominal organs were performed at 
every follow-up. Radiological imaging such as chest CT 
and mammogram was performed once a year. Breast 
MRI was performed when necessary. Follow-up data for 
the external validation cohorts were obtained from the 
TCIA.

MRI acquisition and segmentation
Patients from our center underwent breast MRI in the 
4  weeks before NAC. A detailed description of MRI 
acquisition is presented in the supplement.

MRI imaging segmentation were performed before 
feature extraction. To obtain the good contrast between 
tumor and surrounding breast parenchyma, the 
T1-enhanced MRI digital imaging and communication 
in medicine (DICOM) images that have been archived 
in PACS were acquired. The target MRI image was then 
loaded into personal computer for segmentation. Two 
experienced radiologists reviewed MRI images respec-
tively. They were blinded to prognosis but aware that 
these patients were eventually diagnosed as breast can-
cer. Region of interest (ROI) of tumor was manually seg-
mented along the lesion in every slice by the first reviewer 
and then reviewed by the second reviewer. The intra- and 
inter-observer agreement of features extraction was 
assessed by ICC. We randomly selected 20 patients from 
our center and calculated ICC of all radiomics features. 
Inter- and intra-ICC greater than 0.75 represent good 
agreement between reviewers.

MRI‑based texture analysis
Image preprocessing, tumor segmentation, and feature 
extraction were performed via 3D Slicer (version 4.11.0; 
http://​www.​slicer.​org) and its extension “slicer radiomics” 
derived from Pyradiomics. A detailed description is pre-
sented in the supplement.

Feature selection and radiomics score building
A three-step feature selection procedure was applied 
to the training cohort to construct the radiomics score 
(RS). First, features with both inter-observer and intra-
observer ICC higher than 0.75 were selected for further 
analysis. Second, a univariable analysis was performed 
using the Cox proportional hazards model. All features 
were ranked according to the p value. Only features 
with p value < 0.05 were kept for further analysis. With 
the remaining features, the least absolute shrinkage 
and selection operator (LASSO) method was applied to 
select features from training cohort. LASSO regression 
is an appropriate feature selecting method for high-
dimensional data which has been applied in many radi-
omics studies.

A time-dependent receiver operator characteris-
tic curve (ROC) was applied to evaluate the predic-
tive accuracy of rad-score and calculate the best cutoff 
value.

Prognostic value of radiomics score
The potential association between radiomics score and 
DFS was assessed in the training cohort and validation 
cohort. Patients were divided into a high-score group 
(radiomics score higher than the cutoff value) and a 
low-score group (radiomics score lower than cutoff 
value) groups according to the cutoff rad-score value. 
Kaplan–Meier survival analysis was performed in both 
cohorts. The baseline characteristics between the two 
groups were compared with Chi-square test.

Univariate and multivariate Cox proportional haz-
ards model was applied in this study. Factors with a p 
value < 0.1 in univariate analysis and clinically signifi-
cant variants were included in multivariate analysis.

External validation of radiomics score
The feasibility of the radiomics score was further vali-
dated using the TCGA-BRCA cohort from the TCIA 
(external validation). The same radiomics score calcula-
tion procedure was applied, and the same cutoff value 
was used to divide the cohort into the low- and high-
score groups.

Predictive value of radiomics score
We constructed three prediction models to assess the 
incremental prognostic value of the radiomics score. 
The TNM model was based on cTNM staging, and 
the clinical model was based on all clinicopathological 
data, including the TNM stage, ER status, and PR sta-
tus and subtype. Eventually, the radiomics model was 
based on radiomics and clinicopathological data. The 

http://www.slicer.org
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concordance index (C-index) and AUC were calculated 
for each model.

The incremental prognostic value of the radiomics 
score to TNM staging was calculated using integrated 
discrimination improvement (IDI) and net reclassifica-
tion improvement (NRI). Decision curve analysis (DCA) 
was performed to analyze the clinical usefulness of the 
radiomics model, which incorporated radiomics score 
and clinicopathological data via quantitatively measuring 
the net benefit at different threshold probabilities.

We further explored the prognostic value of the radi-
omics score in the non-pCR subgroup and the HR + /
HR − subgroup. Subgroup analysis was performed in the 
training and validation cohorts. Kaplan–Meier survival 
analysis and multivariate analysis were applied.

Development and validation of radiomics nomogram
A radiomics nomogram was constructed based on 
the radiomics model. The calibration curve and time-
dependent ROC were applied to assess the calibration of 
the nomogram.

Gene set enrichment analysis of groups with different 
radiomics scores
To examine the hypothesis that radiomics may reflect 
tumor heterogeneity, and to identify the associa-
tion between radiomics score and gene expression, we 
extracted and incorporated genomic data with the radi-
omics score in the TCGA-BRCA cohort. Patients from 
the TCGA-BRCA cohort with RNA-seq and microRNA-
seq were enrolled (n = 64 cases). RNA-seq data were also 
downloaded from the TCGA. Patients were divided into 
three groups according to the radiomics score. Patients 
with high radiomics scores (top 1/3; 21 cases) were 
defined as the high-score group, patients with low radi-
omics scores (bottom 1/3; 21 cases) were defined as the 
low-score group, and patients who did not fall into either 
category were defined as the intermediate-score group 
(22 cases).

Gene set enrichment analysis (GSEA) was performed 
to identify enriched biological pathways associated with 
the high- and low-score groups. FDR < 0.1 and p < 0.05 
were considered statistically significant. False discov-
ery rate was calculated using the Benjamini and Hoch-
berg procedure. The gene expression data of more than 
100 normal breast tissues in the TCGA were set as the 
baseline.

Identification of differentially expressed genes (DEGs) 
and functional annotation
DEGs (mRNA, lncRNA, and miRNA) between the high- 
and low-score groups were identified using “lemma” and 
“edgeR.” An absolute log2-fold change (|FC|) > 1 and 

an adjusted p value < 0.05 were set as the cutoff criteria. 
We conducted Gene Ontology (GO) enrichment, Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analyses based on the DEGs using a web tool Metascape 
(http://​metas​cape.​org/) and the “clusterProfiler” pack-
age. GO terms and KEGG pathways with adjusted p val-
ues < 0.05 were considered statistically significant and 
visualized.

Prognostic value of DEGs
The identified DEGs were examined for their prognos-
tic value. Survival analysis was performed based on 
TCGA-BRCA data. Data were obtained from UCSC 
Xena (https://​xenab​rowser.​net/). Clinical and RNA-seq 
data were derived from TCGA-BRCA and GSE118527. 
GSE118527 (FUSCC-TNBC cohort) was from our center 
and applied to further validate the prognostic value of the 
DEGs [22].

Identification of the association of radiomics score 
with the tumor microenvironment and immunophenotype
To test the hypothesis that the radiomics score could 
reflect the heterogeneity of the tumor microenviron-
ment, the ESTIMATE method was used to infer tumor 
purity of the high- and low-score groups [23]. Further-
more, The TCGA TIL MAP was applied to assess the spa-
tial distribution of tumor infiltration lymphocytes (TILs) 
in these patients. The TIL map data were downloaded 
from the TCIA (https://​cance​rimag​ingar​chive.​net/​datas​
cope/​TCGA_​TilMap) [24]. The CIBERSORTx web tool 
was applied to characterize the abundance of 22 immune 
cell types based on the RNA-seq data of the high- and 
low-score groups [25]. Only samples with p values < 0.05 
were kept for analysis because of the high reliability of 
the inferred cell composition. The abundance of the 22 
infiltrative immune cells was compared between the 
two groups using Chi-square test. Finally, to character-
ize the immunophenotype difference between the high- 
and low-score groups, the immunophenscore (IPS) was 
calculated for each case and compared between the two 
radiomics groups using the Kolmogorov–Smirnov test 
(https://​tcia.​at/​tools/​tools​Main) [26].

Association between computational histopathology 
and radiomics
As implied by GO analysis results, we applied an open-
source software QuPath to characterize computational 
histopathological features [27]. The whole slide images 
(WSIs) of patients from different score groups were 
obtained from https://​portal.​gdc.​cancer.​gov/.

Computational histopathological features were 
extracted by QuPath to represent the levels of tumor 
cell differentiation and tumor morphology. The features 

http://metascape.org/
https://xenabrowser.net/
https://cancerimagingarchive.net/datascope/TCGA_TilMap
https://cancerimagingarchive.net/datascope/TCGA_TilMap
https://tcia.at/tools/toolsMain
https://portal.gdc.cancer.gov/
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extraction procedure was as follows: ROI on WSIs was 
cut into tiles with the width and height set as 100 µm ; 
next, given the size difference between tumor cells and 
TILs within ROI, the QuPath automated cell detec-
tion function was applied to detect tumor cells. The cell 
detection strategy was similar to that outlined in a pre-
vious study. The detailed thresholds were as follows: 
detection image, hematoxylin OD; requested pixel size, 
0.3  µm; background radius, 8  µm; median filter radius, 
0 µm; sigma, 1.5 µm; minimum cell area, 24 µm2; maxi-
mum cell area, 1,000 µm2; and threshold, 0.1. The qual-
ity control of the automated cell detection was confirmed 
by a pathologist. A total of 85 features based on tumor 
cells and tumor tiles were calculated by QuPath and then 
aggregated across the case-level tiles by the min, median, 
max, 25-quantiles, and 75-quantiles of the values.

The correlation between radiomics features and com-
putational histopathological features was assessed. Com-
putational histopathological features were compared 
between the two groups (low vs intermediate, low vs 
high). FDR < 0.1 and p < 0.05 was consider statistically sig-
nificant (FDR was calculated using Benjaminiand Hoch-
berg procedure).

Statistical analysis
The differences in baseline characteristics were exam-
ined using two-sample t test, Pearson’s Chi-square test, 
and Fisher’s exact test as appropriate. The Kaplan–Meier 
method and log-rank test were used to estimate DFS. 
Multivariate analysis was conducted using the Cox pro-
portional hazards model. The C-index was applied to 
measure the accuracy of the predictive model. The cell 
type distribution was assessed by Chi-square test, and 
the proportion of immune cells was assessed by t-test.

Statistical analysis was performed using R software 
(version 4.0.2, www.​Rproj​ect.​org) and SPSS (Chicago, 
v20). A two-sided p value < 0.05 was considered to be sta-
tistically significant.

Results
Baseline characteristics
The study overview is presented in Fig.  1. The base-
line characteristics in the training cohort and validation 
cohort are presented in Table  1. The two cohorts were 
well-balanced (p values ranging from 0.200 to 0.971). 
The median follow-up time for all 278 patients was 
52  months. In the training cohort, the 5-year DFS and 
OS were 76.0% (95% confidence interval [CI] 68.2–83.8%) 
and 89.6% (95% CI 84.1–95.1%), respectively. In the vali-
dation cohort, the 5-year DFS and OS were 72.3% (95% 
CI 64.3–80.3%) and 85.7% (95% CI 79.2–92.2%), respec-
tively. As for the final follow-up, the number of primary 

Table 1  Demographic and clinical characteristics

Training cohort Test cohort

Characteristics Number (%) Number (%) P value

Case 139 (100.0%) 139 (100.0%)

Age (y) 0.628

 ≤ 45 58 (41.7%) 62 (44.6%)

 ≥ 46 81 (58.3%) 77 (55.4%)

cT stage 0.521

T1 15 (10.8%) 11 (7.9%)

T2 83 (59.7%) 92 (66.2%)

T3 27 (19.4%) 20 (14.4%)

T4 14 (10.1%) 16 (11.5%)

cN stage 0.200

N0 19 (13.7%) 9 (6.5%)

N1 75 (54.0%) 76 (54.7%)

N2 27 (19.4%) 35 (25.2%)

N3 18 (12.9%) 19 (13.7%)

ypT stage 0.360

T0 52 (37.4%) 49 (35.0%)

T1 63 (45.3%) 75 (53.6%)

T2 20 (14.4%) 12 (8.6%)

T3 4 (1.4%) 4 (1.4%)

ypT stage 0.332

T0 64 (46.0%) 53 (38.1%)

T1 36 (25.9%) 43 (30.9%)

T2 24 (17.3%) 32 (23.0%)

T3 15 (10.8%) 11 (7.9%)

pCR 0.887

pCR 33 (23.7%) 32 (23.0%)

Non-pCR 106 (76.3%) 107 (77.0%)

ER status 0.708

Positive 90 (64.7%) 87 (62.6%)

Negative 49 (35.3%) 52 (37.4%)

PR status 0.400

Positive 77 (55.4%) 70 (50.4%)

Negative 62 (44.6%) 69 (49.6%)

HER-2 status 0.694

Positive 96 (69.1%) 99 (71.2%)

Negative 43 (30.1%) 40 (28.8%)

Adjuvant chemotherapy 0.462

Yes 81 (58.3%) 87 (62.6%)

No 58 (41.7%) 52 (37.4%)

IMNI 0.407

Yes 32 (23.0%) 38 (27.3%)

No 107 (77.0%) 101 (72.7%)

Anti-HER2 therapy 0.971

Yes 11 (15.7%) 11 (15.9%)

No 59 (84.3%) 58 (84.1%)

Hormonal therapy 0.622

Yes 32 (23.0%) 32 (23.0%)

No 102 (73.4%) 105 (75.5%)

Unknown 5 (3.6%) 2 (1.4%)

http://www.Rproject.org
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endpoint events was 32 (23.0%) and 38 (27.3%) for the 
training and validation cohorts, respectively.

Building the radiomics score and predictive model
Feature selection and radiomics score building
The detailed workflow of the radiomics model construc-
tion and clinical value assessment is shown in Additional 
file 1: Fig. S1. Among the 850 features extracted from the 
training cohort, 616 features with inter- and intra-ICC 
(intraclass correlation coefficient) > 0.75 were selected 
(Additional file  2: Fig. S2A, B), then the univariate Cox 
model identified 250 features with p < 0.05 among the 
616 features. A further 15 features with nonzero coef-
ficients were selected from the 250 features using the 
LASSO (Additional file 2: Fig. S2C, D), and the radiom-
ics score was then calculated accordingly. The formula is 
shown in the supplement. The cutoff value was − 51.7682 
calculated by time-dependent ROC. The AUC was 0.891 
(Additional file  2: Fig. S2E). Accordingly, patients from 
both the training and validation cohorts were classified 

into the high-score group (radiomics score >  − 51.7682) 
and low-score group (radiomics score ≤  − 51.7682).

Analysis of the prognostic value of the radiomics score
Patients in the low-score group showed a significantly 
better DFS and OS compared to those in the high-score 
group in the training cohort (p < 0.001, p = 0.034, respec-
tively) (Fig.  2a, b). The median DFS was 74.0  months 
(95% CI 62.8–82.3) in the high-score group, whereas the 
median DFS was not reached in the low-score group. The 
results were consistent in the validation cohort, in that 
patients in the low-score group showed a significantly 
better DFS (p = 0.014) (Fig. 2c, d).

Clinicopathological factors, including age, cTNM stage, 
HR status, HER2 status, pCR, IMNI, and radiomics score, 
were included in the multivariate model. Multivariate 
analysis showed that the radiomics score was an inde-
pendent prognostic factor for DFS in the training cohort 
(p < 0.001, HR 3.866, 95% CI 2.537–5.891) (Table  2), 
which was similar to the result observed in the valida-
tion cohort (p = 0.042, HR 1.002; 95% CI 1.000–1.005) 
(Table 3).

External validation of the radiomics score
The TCGA-BRCA cohort consisting of 91 cases served 
as an external validation. The same feature extraction 

Table 1  (continued)
ER estrogen receptor, PR progesterone receptor, HER2 human epidermal 
growth factor receptor 2, pCR pathologic complete response, NAC neoadjuvant 
chemotherapy, IMNI internal mammary node irradiation

Fig. 2  Kaplan–Meier survival analysis according to the best cutoff value of the radiomics score in the training cohort (left pane) and validation 
cohort (right pane). We calculated p values using the log-rank test. a, b Disease-free survival analysis. c, d Overall survival analysis
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procedure and radiomics score calculation function were 
applied. The cutoff value was − 51.7682; patients in this 
cohort were further divided into the high-score group 
and low-score group. Survival analysis showed a similar 
result, in that the high-score group was associated with a 
poor prognosis (p = 0.041), which validated the radiomics 
score (Additional file 3: Fig. S3A).

Development and validation of the radiomics nomogram
As previously described, the radiomics features extracted 
in this study showed a clear association with breast can-
cer prognosis. We further used the radiomics score to 
build a prognostic model. A radiomics-based nomo-
gram was constructed based on the multivariate analy-
sis of the training cohort (Fig.  3a). The C-index for the 
radiomics nomogram for the training and validation 
cohorts was 0.820 (95% CI 0.744–0.896) and 0.612 (95% 
CI 0.528–0.696), respectively. The C-index of radiomics 
score alone was 0.810 (95% CI 0.743–0.877) and 0.614 
(95% CI 0.522–0.706) for training cohort and validation 
cohort. The C-index for the cTNM-based nomogram for 
the training and validation cohorts was 0.620 (95% CI 

0.504–0.700) and 0.516 (95% CI 0.426–0.606), respec-
tively. The calibration curve plot showed good agreement 
between observation and prediction in the training and 
validation cohorts (Fig. 3b, Additional file 4: Fig. S4). The 
time-dependent ROC curve at two timepoints showed 
good predictive accuracy (Fig. 3c).

The predictive value of radiomics score
The prognostic model of TNM was first constructed 
based on cTNM staging only. IDI and NRI were used to 
evaluate the incremental predictive value of the radiom-
ics score to cTNM staging. The inclusion of the radiom-
ics score in the TNM model yielded an IDI of 0.247 (95% 
CI 0.126–0.343, p < 0.01) and 0.027 (95% CI 0.002–0.058, 
p < 0.01) in the training and validation cohorts, respec-
tively. The NRI was 0.539 (95% CI 0.244–0.682, p < 0.01) 
and 0.127 (95% CI 0.029–0.346, p = 0.07) in the training 
and validation cohorts, respectively. We also constructed 
a clinical model based on all clinicopathological param-
eters except radiomics score. DCA showed that the radi-
omics model outperformed the TNM model and clinical 
model (Fig. 3d).

Subgroup analysis
Non-pCR patients require additional systemic therapy. 
Due to the limited number of pCR patients (65 cases, 
23.4%), subgroup analysis was performed on the non-
pCR subgroup only. The results showed that radiomics 
scores could stratify tumor recurrence risk in the non-
PCR subgroup (p < 0.001) (Fig.  3e, f ). Consistent with 
the non-pCR subgroup results, the radiomics score also 
stratified tumor recurrence risk in the HR + subgroup 
(p < 0.001 for training cohort, p = 0.022 for validation 
cohort) (Fig. 3g, i). Multivariate analysis showed that the 
radiomics score was an independent prognostic factor 
(data shown in supplement).

Gene set enrichment analysis of groups with different 
radiomics scores
Researchers have hypothesized that radiomics reflects 
tumor heterogeneity. We supposed that radiomics scores 
may reflect tumor heterogeneity by showing an associa-
tion with gene expression. We purposed that the gene 
expression pattern existed in the different radiomics 
score group. Thus, the association between radiom-
ics score and gene expression was investigated, and 
the workflow is presented in Additional file  5: Fig. S5. 
Patients from the TCGA-BRCA cohort were equally 
divided into high-score, intermediate-score, and low-
score subgroups based on individual radiomics score. 
GSEA showed that DNA repair, G2/M checkpoint, and 
PI3K/Akt/mTOR pathways were enriched in both the 
high- and low-score groups, which is consistent with 

Table 2  Multivariable analysis for DFS in the training cohort

HR hormonal receptor, HER2 human epidermal growth factor receptor 2, IMNI 
internal mammary node irradiation

Variables HR 95% CI p value

Age 1.0431 1.006–1.082 0.024

cTNM stage

IIIa-b vs II 1.6461 0.685–3.957 0.265

IIIc vs II 1.8162 0.622–5.302 0.275

pCR (Yes vs No) 1.229 0.4647–3.248 0.678

IMNI (Yes vs No) 0.724 0.284–1.845 0.498

HR (HR + vs HR −) 0.742 0.301–1.829 0.516

HER2 (HER2 + vs HER2 −) 0.688 0.285–1.664 0.407

Radiomics score 3.866 2.537–5.891  < 0.001

Table 3  Multivariable analysis for DFS in the validation cohort

HR hormonal receptor, HER2 human epidermal growth factor receptor 2, IMNI 
internal mammary node irradiation

Variables HR 95% CI p value

Age 0.981 0.951–1.012 0.232

cTNM stage (III vs II)

IIIa-b vs II 1.092 0.510–2.339 0.820

IIIc vs II 1.884 0.752–4.717 0.176

pCR (Yes vs No) 1.022 0.456–2.295 0.957

IMNI (Yes vs No) 1.427 0.702–2.904 0.326

HR (HR + vs HR −) 1.297 0.553–3.041 0.550

HER2 (HER2 + vs HER2 −) 1.085 0.495–2.380 0.839

Radiomics score 1.002 1.000–1.005 0.042
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Fig. 3  Predictive performance of the radiomics score. We constructed and validated a radiomics-based model. Subgroup analysis was performed. 
a A radiomics-based nomogram based on multivariate analysis to estimate the DFS of LABC patients. b Calibration curves of the radiomics 
nomogram showed good agreement between the estimated and actual survival time. c Time-dependent ROC showed good predictive accuracy at 
1,5-year timepoint in both cohorts. d DCA analysis was performed in all three models and showed that radiomics-based nomogram outperformed 
the TNM model and clinical model. e–i Kaplan–Meier survival analysis was in non-pCR and HR-positive subgroups in both cohorts. Radiomics score 
stratified tumor recurrence risk in non-pCR subgroup and HR-positive subgroup. Forest plot was shown based on training cohort
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Fig. 4  The association between radiomics score and gene expression pattern. a, b GSEA analysis in low-score group and high-score group. 
Hallmark gene sets with p value < 0.05 were presented. Estrogen response pathway, DNA repair pathway, mTOR pathway, and interferon pathway 
were enriched. c Volcano plot showed upregulated and downregulated genes in low-score group and high-score group. Over 170 DEGs were 
identified. d–g function annotation was performed in DEGs. GO analysis showed that DEGs were relate to cornification, keratinization, and 
keratinocyte differentiation, suggesting that low-score group were different from high-score group in terms of cell differentiation
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the findings of a previous study [15] (Fig.  4a). Interest-
ingly, immune-related pathways were also enriched. 
Interferon-α pathway was enriched in both groups, and 
the interferon-γ pathway was enriched only in the high-
score group compared to normal samples (Fig. 4b).

Identification of DEGs and functional annotation
DEGs between the high- and low-score groups were 
calculated. A total of 174 DEGs were identified using 
RNA-seq from the TCGA, among which 93 DEGs were 
upregulated and 81 DEGs were downregulated in the 
low-score group (Fig. 4c).

Functional annotation was applied to differentially 
expressed protein-coding genes using both KEGG path-
way and GO analysis (Fig. 4d, e). Cell metabolism path-
ways and cytokine–cytokine interaction pathways were 
downregulated, while GO analysis showed that biologi-
cal processes, such as cornification, epidermal cell dif-
ferentiation, and cell metabolism, were enriched (Fig. 4f, 
g). These results indicated the tumors in the low-score 
group were different from those in the high-score group 
in terms of cell differentiation.

As addressed previously, the high-score group was 
associated with poor prognosis, and the low-score group 
was associated with good prognosis. Therefore, we sup-
posed that the upregulated DEGs in the low-score group 
may be associated with a good prognosis and that the 
downregulated DEGs in the low-score group may be 
related to poor prognosis; thus, to understand this fur-
ther, survival analysis was applied to these DEGs. The 
results demonstrated that DEGs downregulated in the 
low-score group, such as skin differentiation marker 
SLURP1 and transcription factor PAX7, were indeed 
associated with poor prognosis (p = 0.045, p = 0.016, 
respectively), while those upregulated in the low-score 
group, such as UCP1 and ABCA10, were associated 
with good prognosis (p = 0.017, p = 0.020, respectively) 
(Fig. 5a, b). We found that most (24/28, 85.7%) DEGs fit-
ted our assumption (Fig. 5a–d, Additional file 6: Fig. S6, 
Additional file 11: Table S1).

Association of radiomics score with the tumor 
microenvironment and immunophenotype
As shown previously, immune-related pathways, such 
interferon-α pathway and interferon-γ pathway, were 
enriched in the low- and high-score groups by GSEA, and 
cytokine–cytokine interaction pathways were downregu-
lated in the low-score group. These results suggest that 
the tumor immunity and tumor microenvironment are 
different between the low- and high-score groups. There-
fore, we investigated the association between radiomics 
and heterogeneity of the tumor microenvironment.

First, tumor purity was calculated using the ESTIMATE 
method, which showed no significant difference between 
the two groups (Fig. 6a); this suggested that the number 
of immune and stromal cells was similar between the two 
groups. Second, tumor immunophenotype, comprising 
molecules involved in tumor escape mechanisms, was 
assessed. The high-score group showed a significantly 
lower MHC molecule score, indicating the ability to avoid 
T cell recognition (Fig. 6b, Additional file 7: Fig. S7A–C). 
Third, data from TILs Map were used to assess the spa-
tial distribution of TILs in both groups, although no sig-
nificant differences were observed (Fig. 6c). Finally, given 
that the amount and spatial distribution of immune cells 
were not significantly different between groups, CIBER-
SORTx was applied to evaluate immune cell composition 
in the tumor environment. We calculated the proportion 
of 22 immune cell types of groups (Fig. 6d). Activated NK 
cell was higher in low-score group (p = 0.047) (Fig. 6e).

Association between computational histopathology 
and radiomics
A previous study suggested that tumor cells from dif-
ferent imaging subtypes present with variations in his-
topathological features [20]. Results from functional 
annotation indicated that tumor cells from different score 
groups went through different stages of epidermal cell 
differentiation. Therefore, tumor cells in the low-score 
group may display a less “squamous cell/keratocyte” phe-
notype and, thus, have different morphologies. We sup-
posed that the morphological difference resulting from 
cell differentiation may be subtle, so that the tumor cell 
phenotype would not completely transfer from adeno-
carcinoma to squamous carcinoma. To assess the subtle 
changes in tumor cell morphology, we applied compu-
tational histopathology to extract quantitative features 
from H.E slices of these patients. A total of 440 features 
were extracted for 44 patients and used in further analy-
sis. Among the 53 patients with complete computational 
histopathological data, 18 cases belonged to the low-
score group, 18 cases to the intermediate-score group, 
and 17 cases to the high-score group. We established a 
correlation map between computational histopathologi-
cal and radiomic features (Fig. 7a, Additional file 8: Fig. 
S8, Additional file 9: Fig. S9, Additional file 10: Fig. S10). 
Twenty-three computational histopathological features 
were significantly different between the high- and low-
score groups (Fig. 7b, c, Additional file 12: Table S2). The 
two groups differed in terms of cell eccentricity, nucleus 
caliper, and diameter. In contrast, no feature was found 
to be significantly different between the intermediate- 
and low-score groups. Thus, tumors in the high-score 
group were morphologically different from those in the 
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Fig. 5  Kaplan–Meier survival analysis according to the optimal or median expression level of 4 DEGs. We calculated p values using the log-rank test. 
a–d DFS analysis of PAX7, SLURP1, UCP1 and ABCA10 based on public cohort (TCGA-BRCA)

(See figure on next page.)
Fig. 6  The association between radiomics score and tumor microenvironment. a The immune score calculated by ESTIMATE showed that tumor 
purity were not significantly different between two groups. b MHC score calculated by tumor immunophenscore were significantly lower in 
high-score group, indicating a better change to avoid T cell recognition. c TILs map showed no significant difference in the spatial distribution of 
tumor infiltration cells between high-score group and low-score group. Five TILs map variables were presented. d The proportion of 22 immune cell 
types predicted by CIBERSORTx was significantly different in low-score group and high-score group (Chi-square test p value < 0.001). e Activated NK 
cell was higher in low-score group (p = 0.047) (e)
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Fig. 6  (See legend on previous page.)
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low-score group, which supports the idea that the radi-
omics score reflects differences in cell differentiation.

Discussion
To the best of our knowledge, this is the first report to 
predict individual DFS in patients with breast cancer who 
received NAC and PORT by radiomics. In this study, we 
constructed and validated the radiomics score to predict 
the DFS among patients with breast cancer after neoad-
juvant chemotherapy and postoperative radiotherapy. 
Furthermore, by incorporating multi-omics data, we 
examined the hypothesis of radiomics and revealed the 
heterogeneity of tumor cells and the tumor microen-
vironment between different radiomics score groups. 
These results demonstrated that radiomics could predict 
the prognosis of patients with locally advanced breast 
cancer and reveal the heterogeneity of tumor cells and 
the tumor microenvironment.

Radiomics is a noninvasive approach that extracts 
quantitative features from medical imaging and reflects 
tumor heterogeneity. Compared to other conventional 

methods such as biopsy, radiomics is low-cost, safe, and 
repeatable and can be used to evaluate tumor heteroge-
neity at any time point. Therefore, radiomics have been 
applied in many aspects of breast cancer research, such 
as tumor staging and prognosis prediction [28, 29]. The 
estimation of DFS is important for individualized man-
agement of breast cancer patients. Only a few studies 
have provided insights into breast cancer prognosis using 
radiomics. Park et al. reported that radiomics could pre-
dict the DFS of patients with breast cancer [11]. They 
selected four radiomic features using LASSO, which was 
the same feature selection method used in our study. 
Multivariate analysis demonstrated that a high radiomics 
score was associated with poor DFS. Wu et al. reported 
that radiomic features could stratify patients with breast 
cancer based on recurrence-free survival (RFS) [15].

However, few studies have examined the prognostic 
value of radiomics in DFS estimation for LABC, and most 
previous studies have focused on early-stage breast can-
cer. For example, more than 40% patients with breast can-
cer were stage I, and patients after NAC were excluded 

Fig. 7  Computational histology reveals the morphological difference of tumor cells between low-score group and high-score group. a The 
correlation heatmap showed the association between radiomics features and computational histological features. b, c Tumor cells from different 
groups showed distinct histological features. Two histopathological features were presented
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from the study reported by Park et  al. Moreover, given 
that not all of the enrolled patients received RT in these 
two studies, the evidence supporting the application of 
radiomics in the estimation of prognosis in patients with 
NAC and PORT is limited. The assessment of prognosis 
for patients with breast cancer after NAC and PORT is of 
great importance for individualized patient management. 
Therefore, we constructed this study and validated a radi-
omics score based on 15 radiomic features selected from 
851 features to assess the DFS for patients with locally 
advanced breast cancer after NAC and PORT. We also 
constructed a nomogram integrating clinicopathological 
factors with radiomics score, which showed good predic-
tive accuracy. Additionally, we assessed the incremental 
predictive value of the radiomics score and demonstrated 
that incorporating the radiomics score could improve 
the predictive performance of the TNM staging system. 
The results of DCA showed that incorporating the radi-
omics score to the TNM staging system was superior to 
the existing TNM staging system in terms of predictive 
accuracy.

Previous studies have addressed the relationship 
between pCR and survival outcome [30]. Results from 
the CREATE-X trial supported that additional con-
solidate treatment improved the survival outcome in 
non-pCR patients [31]. However, we divided non-pCR 
patients into two groups based on radiomics score and 
found that low radiomics score was associated with a bet-
ter prognosis in non-pCR patients. This finding demon-
strated that the radiomics score could be used to further 
tailor subsequent treatment. Radiomics score allows pre-
cise selection of patients who need treatment or have a 
chance to omit additional treatment.

After constructing and validating a radiomics score, we 
examined the theoretical basis: whether and how radi-
omics reflect tumor heterogeneity. Previous research has 
identified gene expression patterns in different image 
subtypes. Hugo et  al. identified the association between 
gene expression and radiomic features in lung cancer and 
head & neck squamous carcinoma. Wu et  al. and Fan 
et al. identified pathways enriched in breast cancer radi-
omic features, including DNA repair and proliferation 
[15, 16]. Consistent with the GESA of our study, Wu et al. 
found that pathways such as mTOR were associated with 
image subtype, while cell metabolism pathways were also 
enriched in the low-score group.

Notably, the interferon pathway and cytokine–cytokine 
interaction pathway were also enriched in our study, 
which suggested that the tumor immunity and tumor 
microenvironment were different in the high- and low-
score groups, and further hinted that radiomics reflects 
heterogeneity derived from the tumor microenviron-
ment. Yu et al. reported that the TIL level may be related 

to a few radiomics features [32]. Therefore, we investi-
gated the tumor microenvironment from three angles: 
(1) tumor purity (the amount of tumor stroma and TILs); 
(2) the spatial distribution of TILs; and (3) the propor-
tion of different types of immune cells. We found that the 
proportion of immune cells was significantly different 
between image subtypes. Notably, NK cell was higher in 
the low-score group. NK cells are important and promis-
ing targets for cancer immunotherapy, and tumors with 
high NK cell levels may benefit from NK cell therapy. 
Additionally, a previous study constructed an immu-
nophenotype score based on three classes of molecules 
involved in tumor immune escape mechanism. We found 
that the high-score group had lower MHC molecule 
expression, suggesting that the poor prognosis of the 
high-score group was caused by the escape from tumor 
surveillance and T cell recognition.

Interestingly, GO analysis demonstrated that genes 
related to cornification, keratinization, and epidermal cell 
differentiation were enriched in downregulated DEGs, 
suggesting that tumors of the high-score group under-
went epidermal cell differentiation and were different 
from those of the low-score group in terms of degree of 
differentiation. Additionally, the marker for epidermal 
cells was significantly higher in the high-score group.

H.E slices are commonly used to determine cell type 
and differentiation degree [20, 33]. Previous studies 
showed that, like radiomics, computational histopathol-
ogy could reflect particular gene expression patterns and 
mutation by extracting features from WSI. Shao et  al. 
reported that the combination of radiomics and compu-
tational histopathology could predict survival outcome 
[34]. Therefore, we applied computational histopathology 
to quantify tumor morphology in different MRI-based 
image subtypes. We found that tumors of the high-score 
group were morphologically different from those of the 
low-score group, which indicated that the tumor hetero-
geneity revealed by radiomics could also be detected by 
computational histopathology. The link between radi-
omics and computational histopathology suggested that 
radiomics and computational histopathology reflected 
tumor heterogeneity only on different dimensions and, 
thus, were somewhat equivalent. Therefore, we propose 
a new hypothesis that tumor heterogeneity reflected by 
radiomics results from tumor histomorphology that 
stems from cell differentiation.

This study has several limitations. First, this was a 
retrospective analysis, and, although an independent 
external validation cohort was applied in this study, a 
multi-center prospective study with a larger data set is 
warranted. Second, the external validation cohort was 
from the TCGA. Only a small number of patients had 
both MRI, H.E slices, and genomic data. Although we 
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used RNA-seq and clinical data from our center (FUSCC-
TNBC), they were triple-negative breast cancer patients, 
while many cases in the TCGA-BRCA cohort were hor-
monal receptor positive. Third, radiomics features were 
extracted from enhanced MRI from our center, which 
were, to some extent, different from the MRI images in 
the TCIA; therefore, a consistent MRI image acquisition 
method is needed in the future.

Conclusions
In conclusion, this is the first study to apply radiom-
ics to assess survival outcome for LABC patients after 
NAC and postoperative RT. We present a radiomics-
based prognostic tool, which effectively predicts prog-
nosis. Radiomics may reflect differences in tumor cell 
differentiation and cell composition in the tumor micro-
environment and hold great potential for improving 
individualized DFS estimations and guiding treatment 
strategies for patients with breast cancer.
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