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Abstract 

Background:  An increasingly popular measure for summarising cancer prognosis is the loss in life expectancy (LLE), 
i.e. the reduction in life expectancy following a cancer diagnosis. The proportion of life lost (PLL) can also be derived, 
improving comparability across age groups as LLE is highly age-dependent. LLE and PLL are often used to assess the 
impact of cancer over the remaining lifespan and across groups (e.g. socioeconomic groups). However, in the pres‑
ence of screening, it is unclear whether part of the differences across population groups could be attributed to lead 
time bias. Lead time is the extra time added due to early diagnosis, that is, the time from tumour detection through 
screening to the time that cancer would have been diagnosed symptomatically. It leads to artificially inflated survival 
estimates even when there are no real survival improvements.

Methods:  In this paper, we used a simulation-based approach to assess the impact of lead time due to mammog‑
raphy screening on the estimation of LLE and PLL in breast cancer patients. A natural history model developed in a 
Swedish setting was used to simulate the growth of breast cancer tumours and age at symptomatic detection. Then, 
a screening programme similar to current guidelines in Sweden was imposed, with individuals aged 40–74 invited to 
participate every second year; different scenarios were considered for screening sensitivity and attendance. To isolate 
the lead time bias of screening, we assumed that screening does not affect the actual time of death. Finally, estimates 
of LLE and PLL were obtained in the absence and presence of screening, and their difference was used to derive the 
lead time bias.

Results:  The largest absolute bias for LLE was 0.61 years for a high screening sensitivity scenario and assuming per‑
fect screening attendance. The absolute bias was reduced to 0.46 years when the perfect attendance assumption was 
relaxed to allow for imperfect attendance across screening visits. Bias was also present for the PLL estimates.

Conclusions:  The results of the analysis suggested that lead time bias influences LLE and PLL metrics, thus requiring 
special consideration when interpreting comparisons across calendar time or population groups.
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Background
Several metrics are available to summarise the prognosis 
of cancer patients. A commonly reported measure is rela-
tive survival at specific time points, for example, 5-year 

relative survival. Under certain assumptions, relative 
survival can be interpreted as net survival, i.e. as the pro-
portion of patients who would still be alive at a specific 
time after diagnosis, in a hypothetical world where it is 
not possible to die from causes other than the cancer of 
interest [1]. Another measure that is being increasingly 
used to report cancer survival is the loss in life expec-
tancy (LLE), which is defined as the reduction in life 
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expectancy, following a cancer diagnosis. LLE can be 
used to quantify the cancer burden for an individual or a 
whole population and has the advantage that it captures 
the entire remaining lifespan, rather than being focused 
on a specific point in time [2]. LLE also has a more intui-
tive interpretation (compared to relative survival), allow-
ing easier communication to a wider audience including 
non-specialists [3]. Instead of referring to a hypothetical 
world of net survival, LLE quantifies the cancer impact in 
a real-world setting where both cancer and other causes 
are present. LLE is however strongly age-dependent, as 
younger patients have more years of life to lose than older 
patients. An additional measure that improves compara-
bility across ages is the proportion of life lost (PLL), cal-
culated by adjusting LLE with the expected remaining 
lifespan.

Various studies have evaluated how LLE, after a cancer 
diagnosis, varies over calendar time and across popula-
tion groups [4–6]. Such comparisons allow the explora-
tion of temporal changes in cancer care as well as the 
identification of especially affected groups. Typically, 
for screened cancers, LLE estimates are assumed to not 
be affected by lead time bias or no mention of the pos-
sibility is made. This is in contrast to relative survival 
estimates where researchers usually recognise the possi-
bility. To our knowledge, no study has formally assessed 
the impact of lead time on LLE. Lead time is the time 
between the time of diagnosis of cancer via screening 
and the time that cancer would have been diagnosed in 
the absence of screening (symptomatically) [7–9]. Earlier 
detection of tumours results in prolonged survival times 
even when there are no actual improvements in time to 
death. Screening can affect survival times both through 
real improvements in survival (e.g. due to tumours being 
diagnosed at earlier stages which leads to better treat-
ment options and better chances of cure or prolonging of 
life) as well as artificially (adding lead time).

Differences in LLE across socioeconomic or education 
groups have been evaluated in previous studies [10, 11]. 
Although many factors have been suggested as poten-
tial drivers for the observed differences in LLE across 
such groups, further research is required to improve 
understanding of how specific differences arise [12–17]. 
For cancers that are screened (e.g. breast, prostate, colo-
rectal) lead time bias is a potential contributing factor. 
The uptake of screening has been found to vary across 
socioeconomic groups, even in countries where screen-
ing programmes are available on a national level, with 
individuals from lower socioeconomic groups being less 
likely to attend screening [18–21]. Thus, lead time bias 
may be larger among individuals from higher socioeco-
nomic groups. Of course early detection can have real 
as well as artificial advantages; partitioning the effect of 

screening into real and artificial survival improvements 
is though challenging as it requires knowledge of what 
would have happened in the absence of screening.

A previous study assessed the impact of lead time bias 
on relative survival estimates through a simulation-based 
approach based on Swedish breast cancer data [22]. The 
analysis showed that in some settings the bias on rela-
tive survival estimates reached 4.0–5.7 percentage points 
and the authors concluded that lead time bias should 
not be neglected when interpreting trends in breast can-
cer survival or differences between population groups 
in settings where there could be differences in screening 
participation. In this paper, we use a similar simulation-
based approach to assess the impact of lead time bias on 
LLE and PLL metrics and carry out a sensitivity analysis, 
assuming different screening programmes of low, moder-
ate and high screening sensitivity and allowing for differ-
ent attendance rates across screening visits. We compare 
estimates of marginal 10-year relative survival, LLE and 
PLL in the absence of screening with equivalent esti-
mates in the presence of a screening programme, in order 
to calculate the lead time bias.

The remainder of the paper is structured as follows. 
First, we describe the relative survival framework and 
introduce the metrics of interest, i.e. loss in life expec-
tancy and proportion of life lost. In addition to condi-
tional measures, we also define marginal measures and 
show how to obtain estimates using regression stand-
ardisation. Following, we describe the simulation-based 
approach performed to assess bias in LLE and PLL esti-
mates due to lead time as well as the  findings of the sim-
ulation study. Finally, we summarise the main findings 
and provide a discussion on the strengths and limitations 
of our approach.

Methods
Excess mortality and relative survival
When analysing cancer registry data the event of interest 
is usually death due to a specific cancer. However, com-
peting events, such as death due to other causes, may be 
present. Cancer prognosis is often summarised as rela-
tive survival (and its mortality analogue, excess mortal-
ity) [1]. The popularity of the relative survival metric is 
driven by the fact that it circumvents issues regarding 
the availability and the accuracy of the cause of death 
information (that can be challenging in a cause-specific 
approach) and provides estimates without relying on the 
cause of death classification [23]. The excess mortality 
approach accounts for non-cancer mortality by incorpo-
rating the expected mortality rates of a comparable group 
which is assumed to be free from the cancer under study. 
Individuals from cancer and non-cancer populations are 



Page 3 of 12Syriopoulou et al. Breast Cancer Research           (2022) 24:15 	

assumed to have similar characteristics such as age, sex 
and calendar year.

Using the relative survival framework, the all-cause 
mortality rate of an individual i with covariate pattern 
Z = zi can be written as:

where h∗(t) is the expected mortality rate and �(t) is 
the excess cancer mortality rate. The expected mortality 
rates are considered to be known and are obtained from 
stratified population lifetables of the general population. 
In Eq.  (1), Z denotes the set of all covariates of interest 
which can be partitioned into two subsets: Z1 and Z2 
denoting the covariates for which there is variation in 
expected and excess mortality, respectively. Covariates in 
Z1 correspond to the covariates for which the population 
lifetables are stratified. Often Z1 will be a subset of Z2 : in 
that case Z2 and Z will be the same.

By transforming to the survival scale, the all-cause sur-
vival of the ith individual is given by

where S∗(t|Z1 = z1i) and R(t|Z2 = z2i) denote the 
expected and relative survival probability, respectively. 
Once again, the expected survival probability is consid-
ered to be known/fixed and is obtained from available 
population lifetables of a comparable population.

Under assumptions, relative survival is interpreted 
as survival in a hypothetical world where the cancer of 
interest is the only possible cause of death: (1) the two 
competing events are conditionally independent and (2) 
the population lifetables are sufficiently stratified [24].

Loss in life expectancy
Cancer prognosis can also be quantified in terms of loss 
in life expectancy. The loss in the life expectancy (LLE) 
for a cancer patient is defined as the difference between 
the life expectancy of an individual with similar charac-
teristics in the general population that is free of the can-
cer of interest and the life expectancy of that patient. This 
can be written as:

In theory, the integrals should have limits of 0 and ∞ . 
In practice, a time point tmax , denoting an assumed time 
at which survival functions become zero, is used for 
the upper limits. However, the survival curves needed 
for the calculation of LLE are usually not observed up 
until tmax , due to limited follow-up, and therefore they 
have to be estimated by extrapolating beyond available 
data. Andersson et  al.  [2] showed how to consistently 

(1)h(t|Z = zi) = h∗(t|Z1 = z1i)+ �(t|Z2 = z2i)

(2)S(t|Z = zi) = S∗(t|Z1 = z1i)R(t|Z2 = z2i)

LLE(Z = zi) =

∫ tmax

0

S∗(t|Z1 = z1i)dt −

∫ tmax

0

S(t|Z = zi)dt

extrapolate the survival curves using flexible parametric 
models. The main idea is to replace the all-cause survival 
using Eq. (2) and to extrapolate the relative and expected 
survival curves instead of the all-cause survival:

While LLE is a very relevant and easily interpreted met-
ric, it is however highly dependent on age since younger 
individuals have more years of life to lose. To improve 
comparability across ages, a proportional measure can 
be obtained in addition to the absolute measure. The 
proportion of life lost (PLL) for a cancer patient i with 
covariate vector Z = zi is equal to their loss in life expec-
tancy divided by the life expectancy of an individual 
with similar characteristics ( Z1 = z1i ) from the general 
population:

By using the expected life expectancy of an individual 
in the denominator, PLL accounts for higher life expec-
tancy among younger individuals and varies less across 
ages in comparison to LLE. However, PLL is a relative 
measure and does not allow conclusions about whether 
the loss in life expectancy is meaningful or not in prac-
tice. Absolute measures, such as the LLE, are better for 
understanding whether the impact of cancer is clinically 
meaningful for an individual or a population. Thus, we 
encourage the estimation of both LLE and PLL as each 
measure can help us understand different aspects of the 
cancer impact.

Marginal measures
In addition to conditional measures, marginal measures 
over the whole population can also be defined. Marginal 
estimates have a simple interpretation as a single measure 
for each time point of interest, even after fitting complex 
models with nonlinear effects and interactions between 
covariates. There are many ways to obtain marginal esti-
mates, but in this paper, the focus is on regression stand-
ardisation methods [25]. Standardised estimates are 
obtained by averaging over the marginal distribution of 
some covariates. For instance, the marginal 10-year rela-
tive survival can be estimated by the standardised relative 
survival [26]:

where N is the number of individuals in the study popu-
lation and R̂(t = 10|Z2 = z2i) is the predicted 10-year 

L̂LE(Z = zi) =

∫ tmax

0

S∗(t|Z1 = z1i)dt −

∫ tmax

0

S∗(t|Z1 = z1i)× R̂(t|Z2 = z2i)dt

PLL(Z = zi) =
LLE(Z = zi)∫ tmax

0 S∗(t|Z1 = z1i)dt

(3)
1

N

N∑
i=1

R̂(t = 10|Z2 = z2i)
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relative survival for individual i. Equation (3) is an aver-
age over the individual predictions of everyone in the 
study population.

Quite often a natural choice for the standard covari-
ate distribution is the observed sample distribution, as 
described in Eq. (3). However, depending on the research 
question, an external standard distribution might be 
more appropriate in some settings, e.g. when we want to 
apply a reference age distribution in two contrasting pop-
ulations such as countries [27]. For instance, the marginal 
10-year relative survival can be derived as the externally 
age-standardised relative survival [26]:

where wi denotes the weight for individual i. Weights wi 
are calculated as the ratio of the proportion within an age 
group in the reference population ( ws

i ) to the proportion 
of the corresponding group in the study population ( ai ) 
and can be written as wi = ws

i/ai . Weights above one are 
applied to groups that are underrepresented in the study 
population compared with the standard population. Sim-
ilarly the marginal LLE can be estimated as the externally 
age-standardised LLE:

and the marginal PLL by the externally age-standardised 
PLL:

Simulation approach
To assess the impact of lead time on estimates of LLE and 
PLL, we applied a simulation-based approach similar to 
the one described by Andersson et al. [22]. The study was 
coded using R and Stata, and all simulation code is openly 
available online at https://​github.​com/​syriop-​elisa/​lead_​
time_​bias. We first simulated data in the absence of a 
screening programme. We generated birth cohorts con-
sisting of 10,000 individuals for every year between 1870 
and 1965. This corresponds to approximately one fifth 
of the actual size of birth cohorts of females in Sweden. 
The potential onset of breast cancer tumour was simu-
lated based on age-specific probabilities of tumour onset 
(see details in “Appendix”). For simplicity, only one breast 
cancer was allowed for each individual. For individu-
als with onset of breast cancer, we also simulated their 
tumour growth, tumour detection and age at death (see 

(4)
1

N

N∑
i=1

wi × R̂(t = 10|Z2 = z2i)

(5)
1

N

N∑
i=1

wi × L̂LE(Z = zi)

(6)
1

N

N∑
i=1

wi × P̂LL(Z = zi).

details in “Appendix”). These correspond to a scenario 
when there is no screening programme applicable and 
only symptomatically diagnosed tumours are considered.

After simulating data without screening, we then 
imposed different screening scenarios on the same simu-
lated data. Under screening, some individuals have the 
same symptomatic diagnosis as in the no screening sce-
nario, some individuals are diagnosed earlier and some 
individuals that died before being detected symptomati-
cally in the no screening scenario are diagnosed through 
screening and included in the analysis. We considered a 
range of screening scenarios, assuming different screen-
ing sensitivities and attendance probabilities.

For our analysis, we first estimated marginal 10-year 
relative survival, LLE and PLL from the simulated data 
in the absence of screening (only symptomatic cases). 
We then obtained estimates of marginal 10-year relative 
survival, LLE and PLL after imposing different screening 
scenarios. We compared estimates when no screening is 
imposed to estimates in the presence of a screening pro-
gramme to obtain the lead time bias. To allow calculating 
the lead time, the actual time of death was not changed 
for screen-detected cases. In practice, screening might 
also result in improved survival outcomes of patients but 
the aim of our simulation study was to isolate the impact 
of lead time bias. We repeated the analysis to create 200 
simulated datasets.

More details on simulating time to death and screen-
ing scenarios as well as obtaining the estimates of interest 
and lead time bias can be found in the following sections.

Time to death
For each individual, we generated both a time to death 
from cancer and a time to death due to other causes; 
the minimum between the two was taken as the time to 
death.

Time to death due to cancer was measured from age 
at symptomatic diagnosis, and simulated from a flexible 
parametric relative survival model. Flexible paramet-
ric models (FPM) are based on a generalisation of the 
Weibull distribution and explicitly estimate the baseline 
log-cumulative hazard using restricted cubic splines for 
the logarithm of time rather than assuming linearity 
with time [28, 29]. In this way, FPMs allow a wide range 
of hazard functions to be captured. The choice for the 
number of knots used to create the spline function (or 
number of degrees of freedom, df, which is equal to the 
number of knots minus one) is dictated by the complex-
ity of the available data and is made by the analyst. The 
relative survival FPM used to generate time to death due 
to cancer in the simulation included age at symptomatic 
diagnosis as a continuous variable and assumed 3 degrees 

https://github.com/syriop-elisa/lead_time_bias
https://github.com/syriop-elisa/lead_time_bias
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of freedom for the baseline excess hazard. The fitted 
model can be written mathematically as

where ln(�(t)) is the log cumulative excess hazard, 
s(ln(t)|γ , k0) is a restricted cubic spline function of log 
time with γ spline coefficients and k0 knots for the log 
baseline cumulative hazard, and α is the regression coef-
ficient for age at symptomatic diagnosis. The parameters 
values were obtained by fitting the model to real data 
from the Swedish Cancer Registry on breast cancers 
diagnosed in Sweden between 1970 to 1974 and can be 
found at https://​github.​com/​syriop-​elisa/​lead_​time_​
bias. For individuals with cancer onset, age at death from 
breast cancer was calculated as the summation of their 
age at symptomatic detection and the survival time from 
breast cancer.

For the above, we used an old dataset on breast can-
cers in Sweden and survival was lower than breast cancer 
survival estimates reported using more recent data; LLE 
was also higher. In particular, 10-year relative survival 
was 50.7%, LLE was equal to 7.74 years, and the PLL was 
42.6%. These are externally standardised estimates using 
the age distribution of a reference population [27]. We 
chose to include years prior to the introduction of mam-
mography screening in Sweden as it was important to 
use incidence rates that are not affected by screening. 
The worse prognosis in our data should only have a small 
impact on bias estimates.

Time to death due to causes other than breast cancer 
was simulated from birth. This was generated from expo-
nential distributions using mortality rates in the Swedish 
population life tables stratified by sex, age and calendar 
year and assuming 100 years for the longest possible life-
time. Since our study population consists of women, only 
a subset of the life tables is utilised (i.e. the expected mor-
tality rates of women). Specifically, we used the inversion 
method (as described by Bender et al. [30]):

where U is a random variable with U ∼ U(0, 1) . More 
specifically, expected mortality rates for years 1870–2011 
were obtained from the Human Mortality database [31], 
while mortality rates beyond year 2011 were obtained 
from mortality projections created by Statistics Swe-
den [32]. To account for the increase in attained age, 
we applied a different rate for each year of follow up. If 
a value greater than one was generated, the individual 
was assumed to be alive at the start of the next year-long 
interval; otherwise, if the value was less than one, it was 
assumed that the individual had died in the interval.

(7)ln(�(t)) = s(ln(t)|γ , k0)+ αAge

T = −
log(U)

mortality rate

Finally, for each individual, age at death was defined as 
the minimum of age at death due to breast cancer and 
age to death due to other causes.

Screening sensitivity and attendance scenarios
We also imposed a mammography screening programme 
where individuals were assumed to be invited to screen-
ing every second year from the age of 40 until the age of 
74. In this setting, some individuals were diagnosed ear-
lier, via screening, while others were diagnosed symp-
tomatically. Under screening there will also be some 
tumours detected that would have remained undetected 
in the absence of screening (because the individuals 
would have died due to causes different to cancer before 
they are detected symptomatically). Screening sensitivity 
was assumed to follow the logistic function:

where d denotes the tumour diameter at the relevant 
point in time. As in Andersson et al.  [22], values β1 and 
β2 were selected based on the previous work of Abra-
hamsson and Humphreys [33]. In particular, Abra-
hamsson and Humphreys estimated parameter values 
for screening sensitivity by fitting the growth model 
(described in “Modelling tumour growth and symp-
tomatic detection” section of the “Appendix”) to data 
on tumour size and screening history from Swedish 
women with postmenopausal breast cancer [34]. In their 
approach, the authors allowed screening sensitivity to 
depend on both mammographic density and tumour 
size. Andersson et al. used the point estimate as well as 
the upper and lower confidence limits of the parameters 
(obtained by Abrahamsson and Humphreys [33]) to sim-
ulate scenarios of moderate ( β1 = − 5.04 and β2 = 0.56 ), 
low ( β1 = − 5.45 and β2 = 0.48 ) and high ( β1 = − 4.67 
and β2 = 0.65 ) screening sensitivity, respectively, assum-
ing the same mammographic density for all individuals 
[22]. The values of β1 and β2 result in screening sensitivi-
ties of 0.58, 0.84 and 0.96 for low, moderate and high sen-
sitivities, respectively, for a tumour that is 12 mm wide. 
We use the same values/criteria here.

In addition to considering three screening sensitivities, 
we also considered two screening attendance scenarios. 
We allowed some individual to have a higher probability 
to attend their screening and some individuals to miss 
some visits but attend others. Specifically, attendance 
at each screening visit was assumed to be either perfect, 
where everyone attends all screening visits, or imper-
fect, where 80% of the individuals attend each scheduled 
screen visit with a probability of 0.9 and 20% of individu-
als attend each scheduled screen visit with a probability 
of 0.15.

Screening sensitivity =
exp(β1 + β2d)

1+ exp(β1 + β2d)

https://github.com/syriop-elisa/lead_time_bias
https://github.com/syriop-elisa/lead_time_bias
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Estimates of interest
For each simulated dataset, we obtained externally age-
standardised estimates of 10-year relative survival, LLE 
and PLL for individuals diagnosed during the years 
1970–1974, both in the presence and in the absence of 
screening. For this, we fitted a relative survival FPM 
with 3 degrees of freedom for the baseline excess hazard, 
including age as a continuous, linear variable while allow-
ing for a time-dependent effect (3 degrees of freedom). 
Follow-up was assumed to occur from time of diagnosis 
until date of death or 12 years after diagnosis, which-
ever occurred first (mimicking administrative censor-
ing). After fitting the model, estimates were obtained by 
averaging the individual specific predictions and utilising 
external weights as in Eqs.  (4), (5) and (6). We used the 
international cancer survival standards (ICSS) weights 
to match the age distribution of a reference population 
[27]. The weights correspond to an age distribution with 
proportions 7%, 12%, 23%, 29% and 29% for age groups 
44 and below, 45–54, 55–64, 65–74 and 75 and above, 
respectively. These are standard weights that are often 
used to conduct comparisons between population groups 
and countries that may have different age distribution.

Lead time bias
To be able to isolate the artificial changes in our estimates 
due to lead time the actual survival time was not changed 
for the screen-detected cases and remained the same as 
in the no screening scenario. Thus, estimates under no 
screening correspond to the actual values. For each of 
the three screening sensitivity scenarios and each of the 
two attendance scenarios, we calculated the difference in 
estimates compared to the no screening setting. By aver-
aging the differences across 200 simulations, we obtained 
the lead time bias (on the absolute scale). The relative 
bias was also calculated by dividing lead time bias with 
the point estimates obtained under no screening.

Results
As shown in Andersson et al. [22], the simulation strategy 
resulted in data that correspond well with registry data 
from the Swedish Cancer Registry and the Stockholm-
Gotland regional quality register for breast cancer, with 
slightly older age distribution and slightly larger tumours 
in the simulation datasets compared to data from the reg-
ister. More specifically, in the absence of screening there 
were 2955 cases diagnosed on average for each simulated 
dataset; this was slightly higher in the presence of screen-
ing (Table 1). Age at diagnosis was lower under screening 
settings, with a median of 60 years for screening assum-
ing moderate screening attendance and imperfect attend-
ance and 61 under no screening. There were also more 
tumours with a smaller size among the screening setting. 

More details on the simulated data in the presence of 
screening assuming moderate screening sensitivity and 
imperfect adherence as well as the simulated data in the 
absence of screening can be found as averages over 200 
simulations in Table 1.

The proportion of screen-detected tumours increased 
from 35.2 to 53% for low to high screening sensitiv-
ity scenarios when perfect screening attendance was 
assumed for all individuals (Table  2). These values are 
averages across 200 simulated datasets. When an imper-
fect attendance was allowed, with some individuals miss-
ing some visits but attending others, the proportion of 
screen-detected tumours ranged from 27.1 to 42.1% for 
low to high screening sensitivity scenarios. The screen-
detected proportions in our simulated data were much 
higher among ages 40–74 when individuals were invited 
for screening, ranging from 38.4 to 58% across screen-
ing sensitivity scenarios and assuming imperfect attend-
ance (see Additional file 1: Table S1). These proportions 
are in good agreement with reports from countries with 
mammography screening programmes available on a 
national level: approximately half of all cases of breast 
cancer in Sweden are detected during mammography 
screening [35], while the screen-detected proportion in 
the UK between April 2008 and March 2009 was 27% 
[36]. Mean and median lead time among screen-detected 
tumours were 2.42 and 1.32  years, respectively, for a 
moderate screening sensitivity scenario and allowing 
for imperfect attendance (Table  2). These values sug-
gest that many of the screen-detected tumours would 
have been detected symptomatically within the first two 
years following their screening detection. The mean and 
median lead time were slightly lower for a low sensitiv-
ity screening programme and slightly higher for a high 

Table 1  Desciptives (averages from 200 simulations) for the 
simulated datasets without screening and with screening 
assuming moderate screening sensitivity and imperfect 
attendance

No screening Screening

Number diagnosed 2955 3010

Mean age at diagnosis 61 60

25th percentile of age 50 49

Median age 62 61

75th percentile of age 73 72

% Dead within 12 years 63.0 60.9

% Size smaller than 17.5 39.0 56.8

% Size 17.5–32.5 44.2 30.2

% Size 32.5–47.5 12.2 8.9

% Size larger than 47.5 4.6 4.1
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sensitivity screening programme, with negligible dif-
ferences between the perfect and imperfect screening 
attendance scenarios.

In the absence of screening, by averaging across 200 
simulated datasets, externally age-standardised 10-year 
relative survival was 50.96%, LLE was 8.08 years and PLL 
was 44% (Table  3). As expected due to the artificially 
prolonged survival times, when a screening programme 
was imposed, estimates of 10-year relative survival were 
higher while estimates of LLE and PLL were lower. 
When comparing estimates in the absence of screening 
to those obtained in the presence of screening, a maxi-
mum absolute bias of approximately 4 percentage points 
was observed for 10-year relative survival under screen-
ing with high sensitivity and perfect attendance (Fig. 1). 
The bias was reduced with lower screening sensitivity 
and was also lower under imperfect screening attend-
ance but it remained higher than one percentage point 
across all scenarios. A similar pattern was also observed 
for the bias of LLE and PLL. The bias of LLE was nega-
tive with the absolute bias varying from 0.3 to 0.6 years 
across low, moderate and high screening sensitivities 
when perfect attendance was assumed. When imperfect 
attendance was allowed it was reduced but it remained 
above 0.2 years. Negative bias was also observed for PLL 
with the absolute bias varying from approximately 1–3 

percentage points across all scenarios. The confidence 
intervals for the bias, which were calculated based 
on Monte Carlo errors, were narrow for all metrics of 
interest (Fig. 1).

Figure  2 shows the average relative bias for each 
screening sensitivity and screening attendance sce-
nario, with the 2.5 and 97.5 percentiles across 200 sim-
ulations. The average relative bias was of similar size 
for 10-year relative survival and LLE but of opposite 
directions. For instance, when a high sensitivity screen-
ing programme was imposed and perfect attendance 
was assumed, the estimates of 10-year relative survival 
were overestimated by 7.6%. However, under the same 
screening scenario, estimates of LLE were underesti-
mated by 7.5%. Slightly lower relative bias was observed 
for PLL. In general, lower relative bias was observed 
for lower screening sensitivity and imperfect screening 
attendance. More detailed information on the actual 
values of bias, both on the absolute and relative scale, 
can be found in the supplementary material (see Addi-
tional file 1: Tables S2 and S3).

Discussion
We have assessed the impact of lead time bias, which, 
for breast cancer, is introduced in the presence of mam-
mography screening, on the estimation of loss in life 

Table 2  Proportion screen detected, and mean and median lead-time (in years) among screen detected cases in different simulation 
screening scenarios

All numbers are averages (with 2.5 and 97.5 percentiles in parenthesis) based on 200 simulations

Attendance Screening Number diagnosed % screen detected Lead time (mean) Lead time (median)

Perfect Low 2999 (2901–3098) 35.2 (33.7–37.1) 2.01 (1.83–2.22) 1.01 (0.92–1.10)

Perfect Moderate 3028 (2925–3136) 45.1 (43.2–47.1) 2.45 (2.27–2.64) 1.34 (1.22–1.45)

Perfect High 3062 (2959–3171) 53.0 (51.0–54.9) 2.98 (2.80–3.22) 1.72 (1.61–1.84)

Imperfect Low 2988 (2887–3075) 27.1 (25.1–28.8) 1.98 (1.74–2.27) 1.01 (0.91–1.11)

Imperfect Moderate 3010 (2904–3106) 35.3 (33.7–36.8) 2.42 (2.22–2.67) 1.32 (1.19–1.45)

Imperfect High 3035 (2928–3143) 42.1 (40.6–44.0) 2.93 (2.71–3.19) 1.70 (1.55–1.83)

Table 3  Estimates of externally age-standardised 10-year relative survival (RS) in percentages, loss in life expectancy (LLE) in years 
and proportion of life lost (PLL) in percentages in the absence of screening as well as in the presence of screening across different 
screening sensitivities and attendance scenarios

All numbers are averages (with 2.5 and 97.5 percentiles in parenthesis) based on 200 simulations

Attendance Screening 10-Year RS LLE PLL

— None 50.96 (48.18–54.04) 8.08 (7.62–8.50) 44.13 (41.58–46.39)

Perfect Low 52.35 (49.36–55.44) 7.80 (7.37–8.20) 42.95 (40.56–45.13)

Perfect Moderate 53.47 (50.72–55.91) 7.63 (7.24–8.00) 42.18 (39.95–44.21)

Perfect High 54.81 (52.27–57.50) 7.48 (7.08–7.89) 41.47 (39.29–43.73)

Imperfect Low 52.05 (49.29–54.91) 7.87 (7.45–8.29) 43.22 (40.84–45.56)

Imperfect Moderate 52.83 (49.69–55.65) 7.74 (7.33–8.16) 42.69 (40.37–44.95)

Imperfect High 53.83 (51.24–56.47) 7.63 (7.20–8.07) 42.16 (39.88–44.65)
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expectancy metrics using a simulation-based approach. 
Different scenarios were assumed for screening sensitiv-
ity as well as screening attendance to allow for settings 
where individuals may attend some visits but miss oth-
ers. Estimates of LLE and PLL in the absence of screen-
ing were compared with estimates when screening was 
imposed to obtain the lead time bias. Earlier detec-
tion through screening can result in both real and arti-
ficial advantages. However, partitioning the effect of 

screening into real and artificial survival improvements 
is challenging as it requires knowledge of what would 
have happened both in the presence and in the absence 
of screening. In our simulation-based approach stage 
shifting due to screening was not allowed as the aim was 
to isolate the impact of lead time in estimates of LLE 
and PLL and not to look at improvements in survival 
due to screening. Estimates in the absence of screen-
ing correspond to the actual values, while estimates in 

Proportion of Life Lost

Loss in Life Expectancy

10-Year Relative Survival

Low Moderate High

0.0

1.0

2.0

3.0

4.0

-0.6

-0.4

-0.2

0.0

-2.0

-1.0

0.0

Screening Sensitivity

B
ia

s 
(w

ith
 9

5%
 C

.I.
)

Attendance Perfect Imperfect

Fig. 1  Bias for externally age-standardised 10-year relative survival, 
loss in life expectancy (LLE) and proportion of life lost (PLL) across 
different screening sensitivities and attendance scenarios, with 95% 
confidence intervals based on the Monte Carlo error for bias (across 
200 simulations). Bias was obtained as the difference to the setting in 
which no screening is imposed and all cases are symptomatic

Proportion of Life Lost

Loss in Life Expectancy

10-Year Relative Survival

Low Moderate High

0.0%

2.5%

5.0%

7.5%

10.0%

-10.0%

-7.5%

-5.0%

-2.5%

0.0%

-7.5%

-5.0%

-2.5%

0.0%

Screening Sensitivity

A
ve

ra
ge

 R
el

at
iv

e 
B

ia
s 

(w
ith

 2
.5

 a
nd

 9
7.

5 
P

er
ce

nt
ile

s)

Attendance Perfect Imperfect

Fig. 2  Average relative bias for externally age-standardised 10-year 
relative survival, loss in life expectancy (LLE) and proportion of life lost 
(PLL) across different screening sensitivities and attendance scenarios, 
with 2.5 and 97.5 percentiles based on 200 simulations. The reference 
scenario is the setting in which no screening is imposed and all cases 
are symptomatic



Page 9 of 12Syriopoulou et al. Breast Cancer Research           (2022) 24:15 	

the presence of screening are influenced by prolonged 
survival times due to an earlier diagnosis even though 
the time of death remains unchanged under screen-
ing in our simulation. The largest absolute bias for LLE 
was 0.61  years for a high screening sensitivity scenario 
and assuming perfect attendance. The absolute bias 
was reduced to 0.46  years when the perfect attendance 
assumption was relaxed to allow for imperfect attend-
ance across screening visits. Bias was also present in the 
estimates of the PLL metric.

Bias for LLE remained above 0.2  years across all sce-
narios, suggesting that, even in situations when there are 
no real improvements in survival, loss in life expectancy 
metrics may be influenced by lead time. Consequently, 
lead time bias might explain part of the differences in LLE 
that have been previously reported across population 
groups (such as socioeconomic groups). For instance, a 
recent Swedish study investigated differences in LLE by 
education groups and found that women belonging to a 
lower education group and diagnosed with breast cancer 
at age 55 lose on average 5.42 years due to cancer, while 
women diagnosed at the same age but belonging to a high 
education group, lose on average 5.03 years, resulting in 
a difference of 0.39 years [10]. Differences varied across 
ages but the gap between different education groups per-
sisted. Another study using English registry data found a 
difference of 0.62 years in marginal LLE between individ-
uals from the least and most deprived groups, with the 
most deprived groups losing the most years of life [11]. 
Even though the drivers for participation in mammogra-
phy screening are still not well-understood, potential fac-
tors of non-attendance such as low socioeconomic status 
or low education have been reported before [37–39]. 
As we showed in our simulation approach, if screening 
attendance is lower in some groups, differences in prog-
nosis across population groups could partly be explained 
by lead time bias that introduces artificial improvements 
in survival. In a real-world setting, the reasons for the 
observed differences across population groups reported 
by several studies are likely multifactorial, including both 
cancer-related and other factors. In addition to lead time 
bias, earlier diagnosis through screening may also result 
in better treatment options and thus better prognosis for 
some subgroups. Another factor that may also explain 
part of the differences is pre-existing comorbidities that 
circumvent some groups from receiving treatment [40].

It is important to recognise that our analyses are based 
on assumptions about the natural history of breast can-
cer. The tumour growth rates used for the simulation are 
based on previously published research using Swedish 
data. The average rate is similar to what has been esti-
mated from in vivo studies; slightly slower than [41], but 
slightly faster than [42, 43], although one of these in vivo 

studies [43] was based on ER+ breast cancers only, which 
are known to grow more slowly than ER– cancers/can-
cers on average. If our rates are too fast then we will have 
underestimated the true lead time, and vice-versa. With 
slower growth rates there would be more screen-detected 
tumours. Furthermore, a possible bias introduced by 
screening is overdiagnosis. Overdiagnosis is present in 
our simulation, in one sense, as indicated by the small 
differences in the number diagnosed between the screen-
ing and no screening scenarios (Table 1). Often overdiag-
nosis corresponds to the detection of tumours that would 
have remained undetected in an individuals lifetime if 
they had not attended screening [44]. This will to some 
extent always be present when cancers are diagnosed 
earlier. However, overdiagnosis is particularly an issue 
for slow-growing or even regressive tumours, and in situ 
cancers. The tumour growth model applied to gener-
ate the data in our simulation assumes that all tumours 
will eventually show symptoms and was based on an only 
invasive breast cancer, so we did not consider overdiag-
nosis due to indolent or in  situ cancer. In  situ tumours 
are often excluded in analyses of cancer registry data [10, 
11] and so our simulation-based approach provides a 
good realisation of such analyses.

Even though we attempted to imposed a screening 
programme very similar to the current one in Sweden 
(women aged 40–74 invited every second year), screen-
ing settings have changed over time and in different 
counties within Sweden. Furthermore, our simulation 
was based on data in Sweden from the early 70s before 
the introduction of mammography screening, and there 
have been many improvements in survival since then. 
However, for this project, it was particularly important 
to use incidence and survival rates that are not affected 
by screening. Even though these rates may differ from 
today’s rates, the lead time bias observed in our simula-
tions is also relevant to recent data. We note also that 
Andersson et  al.  [22], considered scenarios with lower 
and higher survival than the one considered in our sim-
ulation and found similar bias across all survival sce-
narios (except for differences due to random variation). 
Finally, even though our approach is developed for breast 
cancer data, it could be modified to other cancer types 
that might be affected by lead time bias. These may even 
include cancers for which there is no screening pro-
gramme, but which are diagnosed earlier in the natural 
history of the disease for some groups compared to oth-
ers (or across calendar time).

In this paper, we focus on estimating LLE using age at 
cancer diagnosis as the starting point, which is a popular 
approach for estimating the impact of a cancer diagnosis 
on the remaining lifespan [4–6, 10, 11]. In this way, the 
life expectancy of a cancer patient at the age of diagnosis 
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is compared to their expected life expectancy had they 
not had a cancer diagnosis (at that age). As age of diag-
nosis will differ in the presence and absence of screen-
ing, we showed that LLE is subject to lead time bias. An 
important feature of the LLE is that by comparing the 
life expectancy of the cancer patients to that of the gen-
eral population, LLE captures the years lost due to can-
cer both directly (e.g. failure of a vital organ in which the 
tumour developed) and indirectly (e.g. adverse treatment 
effects). A related measure that might be less influenced 
by lead time is given by the number of life years lost, 
which can be estimated using age at death among the 
patients who died from the cancer of interest as the start-
ing point [45]. However, this corresponds to a different 
quantity compared to our definition of LLE. Under this 
approach, the number of years lost for a cancer patient 
is calculated based on the expected remaining life expec-
tancy at their age at death from cancer. Thus, only the 
years lost directly due to cancer are estimated. Moreover, 
as this measure requires to be able to identify patients 
who died from their cancer, accurate cause of death 
information is required. This may not be readily available, 
or may be problematic in some cases. Finally, all patients 
who died from cancer are included in the calculation of 
this second measure, regardless of when they were diag-
nosed, making it inappropriate for drawing conclusions 
for a specific cohort of patients, e.g. life years lost among 
patients diagnosed in a specific calendar year.

Conclusions
We have shown that lead time bias introduced due 
to mammography screening may result in seemingly 
improved estimates of LLE and PLL even when there is 
no real improvement. It is therefore important to care-
fully consider the impact of lead time bias when com-
paring life expectancy measures across time or across 
population groups of cancer patients.

Appendix: Simulation study details
Onset of breast cancer
The age of onset of breast cancer tumour was simulated 
based on breast cancer incidence rates (by 5-year age 
groups) in Sweden from 1973, which is the year before 
the introduction of mammography screening in Sweden 
and therefore our incidence rates are not influenced by 
screening. To convert incidence rates to probabilities of 
cancer onset, we assumed that all tumours were initi-
ated 10  years prior to diagnosis. This assumption was 
only used to obtain probabilities of cancer onset. For 
each simulated dataset, the age at symptomatic detec-
tion, among individuals with breast cancer onset, was 
then simulated from a natural history model described 

in the following section (“Modelling tumour growth 
and symptomatic detection”). The available incidence 
rates were zero for ages younger than 20, so under our 
assumptions the earlier onset of disease was at age 10. 
The incidence rate values used for the simulation can 
be found at https://​github.​com/​syriop-​elisa/​lead_​time_​
bias.

Modelling tumour growth and symptomatic detection
We simulated age and size of tumour at symptomatic 
diagnosis using a tumour growth model from onset of 
cancer that is described by Plevritis et  al.  [46] and by 
Abrahamsson and Humphreys [33].

We assume that each tumour is spherical and grows 
exponentially, with volume at time t years after onset 
equal to

where V0 denotes the volume of the tumour when its 
diameter was 0.5 mm (unlikely to be detected at screen-
ing) and r is the inverse growth rate of the tumour. By 
defining ‘onset’ in this way, we assume that tumours are 
only detectable with (non-zero) probability from a vol-
ume corresponding to a diameter of 0.5  mm. Talking-
ton and Durrett (2015) fitted different growth models 
to in  vivo data on different cancers; for breast cancer 
data exponential growth fitted data better than a model 
based on Gompertz, logistic and power growth functions 
[47]. Different tumours grow at very different rates; to 
allow for this inverse growth rates were generated from 
a Gamma distribution with shape and rate parameters τ1 
and τ2 , respectively, and density function

The rate of symptomatic detection was assumed to be 
proportional to the volume of the tumour, so that

where Tdet is the time from onset to symptomatic 
detection.

Under Eqs.  (8), (9) and (10), the conditional distribu-
tion of tumour volume at symptomatic detection, Vdet , 
given a growth rate r, can be shown [46] to be

and, using Eq. (8),

(8)V (t) = V0 exp

(
t

r

)

(9)fR(r) =
τ
τ1
2

Ŵ(τ1)
exp(−τ2r), r ≥ 0

(10)
P(Tdet ∈ [t, t + dt)|Tdet > t) = ηV (t)dt + o(dt)

(11)FVdet|R(v) = 1− exp (−ηr(v − V0)), v ≥ V0,

https://github.com/syriop-elisa/lead_time_bias
https://github.com/syriop-elisa/lead_time_bias
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Age at symptomatic detection was then calculated by 
adding the age at cancer onset to time Tdet . For param-
eters τ1 , τ2 and η we choose values that are consistent with 
the tumour size distribution of breast cancers diagnosed 
during the years 1977–1979 in the Stockholm–Got-
land region of Sweden as previously done in Andersson 
et  al.  [22]. Based on the marginal distribution of Vdet 
and assuming τ1 = τ2 for identifiability, (maximum like-
lihood) estimates were obtained and those were then 
used for the simulation. In specific, τ1 = τ2 = 1.385 
and η = 0.0002566 . We note that with these values the 
median tumour doubling time is 195 days which is close 
to the median tumour doubling time of 212 days reported 
by Fournier et  al.  [42] from a study measuring tumour 
size change in vivo, using sequential mammograms.
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