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Abstract 

Inflammatory breast cancer (IBC) is a rare, aggressive cancer found in all the molecular breast cancer subtypes. 
Despite extensive previous efforts to screen for transcriptional differences between IBC and non‑IBC patients, a robust 
IBC‑specific molecular signature has been elusive. We report a novel IBC‑specific gene signature (59 genes; G59) 
that achieves 100% accuracy in discovery and validation samples (45/45 correct classification) and remarkably only 
misclassified one sample (60/61 correct classification) in an independent dataset. G59 is independent of ER/HER2 
status, molecular subtypes and is specific to untreated IBC samples, with most of the genes being enriched for plasma 
membrane cellular component proteins, interleukin (IL), and chemokine signaling pathways. Our finding suggests 
the existence of an IBC‑specific molecular signature, paving the way for the identification and validation of targetable 
genomic drivers of IBC.
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Introduction
IBC is a rare form of breast cancer associated with poor 
prognosis compared to other subtypes, and this is attrib-
uted to its therapy resistance and a high metastatic 
potential [1–3]. Moreover, the majority of IBC patients 
present with late-stage disease wherein the cancer has 
spread beyond the primary site [4]. To better diagnose 
and treat IBC patients, the IBC research community is 
working on defining an IBC-specific molecular signature. 
The largest study was published through the establish-
ment of the World IBC Consortium which identified 79 
genes, molecular subtype-independent, IBC signature 
[5]. Shortly after, another 132 genes, subtype-independ-
ent, IBC signature was reported [6]. However, both sig-
natures were seen in ~ 16.4% and ~ 25% of breast cancer 

TCGA samples of primarily non-IBC patients, respec-
tively, signifying low specificity in discriminating IBC 
from non-IBC samples [5, 7–9]. Nevertheless, thus far a 
robust tumor cell-intrinsic signature that can define IBC 
from non-IBC or can stratify IBC patients has remained 
elusive [8, 9]. Indeed, a recent comparison of existing 
IBC signatures found minimal or no overlap among the 
proposed genes and none of the signatures could be vali-
dated in an independent dataset [9].

In this report, we reanalyzed publicly available gene 
expression datasets using the nonparametric machine 
learning random forest (RF) approach. RF is superior to 
classic statistical approaches used previously on these 
datasets because (1) It can handle many predictors at 
once while assigning each a predictor importance score. 
(2) It uses bootstrap-aggregated (bagged) decision trees 
to minimize overfitting, allowing for a robust model that 
can be validated in independent datasets. By restricting 
our analysis to microdissected IBC tumor epithelium and 
matching IBC samples with similar receptor-status to 
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non-IBC samples, we have identified an IBC signature of 
59 genes that only misclassified one patient out of a total 
106 patients in pre-treatment datasets.

Methods
Patients’ samples
All analysis was carried out on MATLAB R2018b (Math-
Works). Three microarray datasets were downloaded 
under accession number GSE45581 [6], GSE5847 [10], 
and GSE111477 [11]. The Cancer Genome Atlas (TCGA) 
breast cancer dataset was downloaded from cBioPor-
tal (TCGA Firehose Legacy https:// www. cbiop ortal. org/ 
study/ summa ry? id= brca_ tcga). GSE45581 was used for 
discovery and comprised 20 IBC, 20 non-IBC, and 5 nor-
mal microdissected patient epithelium samples. GSE5847 
is primarily post-treatment samples dataset, comprised 
of 13 IBC and 35 non-IBC microdissected patient sam-
ples. GSE111477 is a dataset of 33 IBC and 28 non-IBC 
pre-treatment patient samples comprised primarily of 
the epithelial tissue.

Genes signature identification, validation, PAM50 
subtyping, and ROR score
IBC-specific signature identification and validation using 
ensemble of decision trees based bagging is detailed in 
Additional file 1: Supp. Methods and illustrated in Fig. 1a. 
For accuracy of 5 previous IBC signatures [Fig.  2c(ii)], 
PAM50 molecular subtyping (Luminal A, Luminal B, 
HER2-enriched, Basal-like, and Normal-like) and Risk 
of recurrence (ROR) computation, see Additional file  1: 
Supp. Methods.

Gene ontology and pathway analysis
The IBC signature genes (Additional file 1: Table S1) were 
subjected to Gene Ontology and Pathway analysis (see 
Additional file 1: Supp. Methods).

Results
Random forest identifies an IBC‑specific gene signature
We reanalyzed the gene expression dataset of micro-
dissected epithelial tissues, comprised of 20 IBC, 20 
non-IBC, and 5 normal patients [6]. To control for any 

variability in signature discovery caused by the molecular 
breast cancer subtypes, we matched both ER and HER2 
status of 22/24 samples used for training (Fig. 1a, left, see 
highlighted ER and HER2 scores). Using the RF approach 
(Fig. 1a), we derived a potential IBC-specific signature of 
59 unique genes (G59, Additional file 1: Table S1).

G59 can comfortably segregate IBC from non-IBC and 
normal samples in unsupervised hierarchical clustering 
analysis (Fig.  1b). Caliński-Harabasz criterion on G59 
profiles indicated that the samples would best be catego-
rized into two groups: IBC versus non-IBC and normal 
samples (Fig. 1c). Consistent with this, the first and sec-
ond principal component scatter plot from the principal 
component analysis (PCA) of the G59 profiles also sepa-
rated the IBC samples from the rest (Fig. 1d).

To verify the efficacy of G59, we used RF to model with 
the 24 training samples (Fig.  1a, left) and subsequently 
classified all the 45 samples using the resultant trained 
model. Remarkably, G59 model accurately identified all 
IBC samples (IBC probability score > 0.5) with no mis-
classification of non-IBC or normal samples (Fig.  1e). 
This accuracy was significantly higher than would be 
expected if the signature was just a random set of genes 
(Fig. 1f ). In addition, G59 prediction was independent of 
ER/HER2 status, molecular subtypes, and ROR (Addi-
tional file 1: Table S2). Thus, G59 is a potential IBC-spe-
cific signature that can predict IBC samples in a machine 
learning RF approach.

The gene signature is predictive in pre‑treatment samples
Prior to Woodward et al. IBC dataset [6], only one other 
microdissected IBC dataset was available [10]. Unlike 
the Woodward et  al. dataset, whose IBC patient sam-
ples were collected from pre-treatment core biopsies, 
this dataset included 13 IBC patients who had primarily 
received neoadjuvant chemotherapy prior to sample col-
lection. G59 training model correctly classified 7/13 IBC 
training epithelium samples, as expected, but misclassi-
fied the other 6 validation IBC samples [Fig. 2a(i)]. Inline 
with this, the signature failed to separate IBC from non-
IBC samples in both PCA scatter plot and unsupervised 
hierarchical clustering analysis [Fig.  2a(ii–iii)]. Next, we 

Fig. 1 Identification of an IBC‑specific gene signature. a Left: List of IBC and non‑IBC samples used for gene signature discovery (GSE45581 dataset). 
Row wise matched HER2/ER scores are highlighted and sample accessions numbers (GSM) from gene expression omnibus (GEO) database are 
indicated. Middle: Strategy for signature discovery. Right: Strategy for signature validation. b Unsupervised hierarchical clustering heatmap of all 
samples (GSE45581 dataset) using the IBC signature genes. c The Optimal number of clusters determined by the Caliński–Harabasz criterion. d 
Principal Component Analysis scatter plot using the first and second principal components. e Waterfall plot for all samples’ IBC probability score 
(see Additional file 1: Supp. Methods) validating the signature. The dotted line demarcates the minimum probability score to classify the sample as 
IBC in the model. PAM50 molecular subtyping and ROR scores are indicated. f Distribution of expected accuracy from models trained using random 
sets of 59 genes (10,000 iterations) compared with the 100% accuracy observed in IBC signature (dotted distribution line versus solid vertical line, 
respectively)

(See figure on next page.)

https://www.cbioportal.org/study/summary?id=brca_tcga
https://www.cbioportal.org/study/summary?id=brca_tcga
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Fig. 1 (See legend on previous page.)
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tested the G59 training model on an independent data-
set comprised of 33 IBC and 28 non-IBC core biopsy 
pre-treatment samples [11]. A trained model using half 
of the samples from each category only misclassified 1 
out of the 61 samples [Fig.  2b(i)], with both PCA scat-
ter plot and unsupervised hierarchical clustering analysis 
largely separating IBC from non-IBC samples [Fig. 2b(ii–
iii)]. This suggests that the G59 signature is predictive of 
IBC pre-treatment epithelial tumor while chemotherapy 
treatment abrogated its predictiveness.

The gene signature is unique to IBC and is enriched 
in membrane proteins and interleukin pathways
Next, we compared G59 to 5 previous IBC signatures 
(See details in Additional file  1: Supp. Methods). 49% 
(29/59) of the genes overlapped with Woodward et  al. 
[6] 132 gene signature with minimal or no overlap with 
the rest of the signatures [Fig. 2c(i)]. Using RF approach 
(detailed in Additional file 1: Supp. Methods), G59 accu-
racy was significantly higher than all the other signatures 
[Fig.  2c(ii)]. Given the reported low specificity of these 
IBC signatures in non-IBC samples [5, 7–9], we tested 
G59 model on TCGA breast cancer dataset, comprised 
of primarily non-IBC samples. Only 1.6% of the TCGA 
samples were classified as IBC-like, suggesting G59 was 
unique to IBC. Indeed, inline with poor overall survival 
in IBC patients, Kaplan–Meier analysis revealed a higher 
risk of death for these IBC-like patients, with a hazard 
ratio of 3.15 (p = 0.037) (Fig. 2d).

Having verified G59 signature in two pre-treatment 
datasets and shown higher specificity in the TCGA 
dataset, we performed gene ontology and pathway 
enrichment analysis of the genes. Protein-coding genes 
presented 88% (52/59) of the gene set (Fig. 2e), with 25% 
(13/52) being plasma membrane proteins (Fig.  2f left, 
Additional file  1: Table  S3). While there was no over-
whelming enrichment of any specific pathway, IL-2, 
G-alpha, and chemokine pathways gave the highest 
gene overlap (8, 4, and 3, respectively) with a significant 
enrichment (Fig. 2f right, Additional file 1: Table S4).

Discussion
We have identified a robust gene signature that can 
characterize IBC from non-IBC with an aim to better 
understand and potentially develop a tailored treatment 
regimen for IBC patients. G59 is the first IBC signature 
to be successfully validated in an independent data-
set and shows the highest accuracy (100% (45/45) in 
GSE45581 and (60/61) 98.4% in GSE111477) in its pre-
diction [9]. This is a significant improvement in accu-
racy as previous signatures accuracy range between 
68 and 88% [5, 8, 9], a range similar to our analysis 
[Fig.  2c(ii)]. Importantly, G59 shows higher specificity 
in primarily non-IBC TCGA samples compared to pre-
vious signatures [5, 7–9].

The low prediction accuracy in primarily post-treat-
ment tumor samples highlights the fact that chemo-
therapy induces changes in gene expression [12]. 
Interestingly, SUM149 and SUM190, the two cell lines 
used in most of the IBC research [13], were derived 
from patients who had already received chemother-
apy treatment [14]. Our analysis suggests the need for 
establishing IBC cell lines from untreated patients to 
fully capture IBC-specific profile.

G59 is a more curated version of the 132 gene list 
selected by Dr. Woodward [6] for IBC assessment with 
49% similarities. Most of the genes in G59 code for 
membrane proteins, suggesting that IBC cells are highly 
communicative with the tumor microenvironment, 
likely playing an essential role in directing their dis-
ease progression. The novel implication of IL-2 inflam-
matory as well as chemokine pathways in IBC (Fig.  2f 
right) adds to the proposed inflammatory pathways 
involvement [8, 15].

Our finding highlights the need to integrate con-
temporary statistical approaches to identify molecular 
signatures previously missed by traditional statistical 
methods. Most important, the IBC-specific molecu-
lar signature we have identified paves the way for IBC 
functional studies, validation, and potentially success-
ful therapeutic interventions.

(See figure on next page.)
Fig. 2 Independent validation of IBC gene signature and its gene ontology/pathway analysis. a, b Validation of post‑treatment samples from 
GSE5847 dataset and pre‑treatment core biopsies samples from GSE111477 dataset, respectively. IBC probability plot, PCA scatter plot and 
unsupervised hierarchical clustering heatmaps are represented similar to Fig. 1. c (i) Venn plots for G59 overlap with 5 previous IBC gene signatures 
(see Additional file 1: Supp. Methods). (ii) Table indicating the accuracy of the signatures in GSE45581 and GSE111477 datasets (See details in 
Additional file 1: Supp. Methods). d Kaplan–Meier plot log‑rank test for G59‑predicted IBC like versus non‑IBC like samples in TCGA (see details in 
Additional file 1: Supp. Methods). The p‑value, hazard ratio (HR) and the 95% confidence interval of ratio are indicated. e Pie chart indicating the 
proportion of gene types in the signature. ncRNA: non‑coding RNA. f Clustergrams of top 10 cellular component and pathway analysis of the 
signature genes, with overlapping genes highlighted (see Additional file 1: Table S3 and S4 for complete list)
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