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Abstract 

Background:  Advancements in cancer therapeutics have resulted in increases in cancer-related survival; how-
ever, there is a growing clinical dilemma. The current balancing of survival benefits and future cardiotoxic harms of 
oncotherapies has resulted in an increased burden of cardiovascular disease in breast cancer survivors. Risk stratifica-
tion may help address this clinical dilemma. This study is the first to assess the association between a coronary artery 
disease-specific polygenic risk score and incident coronary artery events in female breast cancer survivors.

Methods:  We utilized the Studies in Epidemiology and Research in Cancer Heredity prospective cohort involv-
ing 12,413 women with breast cancer with genotype information and without a baseline history of cardiovascular 
disease. Cause-specific hazard ratios for association of the polygenic risk score and incident coronary artery disease 
(CAD) were obtained using left-truncated Cox regression adjusting for age, genotype array, conventional risk factors 
such as smoking and body mass index, as well as other sociodemographic, lifestyle, and medical variables.

Results:  Over a median follow-up of 10.3 years (IQR: 16.8) years, 750 incident fatal or non-fatal coronary artery events 
were recorded. A 1 standard deviation higher polygenic risk score was associated with an adjusted hazard ratio of 1.33 
(95% CI 1.20, 1.47) for incident CAD.

Conclusions:  This study provides evidence that a coronary artery disease-specific polygenic risk score can risk-stratify 
breast cancer survivors independently of other established cardiovascular risk factors.

Keywords:  Polygenic risk score, Breast cancer, Coronary artery disease, Coronary heart disease, Cardiovascular 
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Introduction
There were approximately 2.1 million new cases of inci-
dent female breast cancer in 2018 globally, accounting for 
25% of cancer cases in women [1]. Long-term survival has 
improved for women over the past 30 years as advances 
in cancer therapy have resulted in reduced cancer-
specific mortality. Consequently, mortality from other 

causes has become more important [2], with cardiovas-
cular disease (CVD) being the leading cause of death in 
older women who survive breast cancer [3]. This is partly 
due to the effect of cytotoxic chemotherapies and radio-
therapy which are associated with an increase in cardio-
vascular morbidity and mortality [4–7]. In this paper, we 
focus on coronary artery disease (CAD), the most com-
mon type of CVD. Particularly for long-term survivors 
at higher CAD risk due to risk factors unrelated to their 
cancer and cancer therapy,  adverse effects of therapy are 
likely to accumulate and thus become relatively more 
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important. It seems likely that risk factors associated with 
CAD in the general population will also be associated 
with CAD in cancer survivors, but empirical evidence is 
needed, particularly in those treated with chemotherapy 
or radiotherapy. Multiple lifestyle and environmental risk 
factors have well-established CAD associations including 
smoking, body mass index (BMI), total cholesterol, type 1 
and type 2 diabetes, and hypertension [8].

Inherited genetic variation is also known to affect risk: 
genome-wide association studies (GWAS) have iden-
tified many common genetic variants associated with 
CAD, and polygenic risk scores (PRS) have been shown 
to provide useful CAD risk discrimination [9–11]. Poly-
genic risk scores are an aggregation of genomic vari-
ant information and GWAS-derived weights reflecting 
magnitude of association for a condition of interest [12]. 
The motivation behind using a PRS is based on the com-
mon variant-common disease hypothesis, where much 
of the genetic risk for common adult-onset diseases can 
be attributed to the cumulative effect of many common 
variants with small effect sizes rather than rare variants 
with large effect sizes [13]. Within research assessing 
clinical utility of polygenic risk scores, most of the evi-
dence appears to come from the study of CAD. While 
the consensus for the clinical utility of CAD PRS is still 
unclear [14–17], CAD PRS is potentially poised to add 
accuracy to clinical risk predictions, define populations 
who would most benefit from statin prescriptions, and 
estimate lifetime risk trajectories [18]. It still remains an 
open question as to whether existing CAD PRS can be as 
predictive in non-European populations, but there has 
been some research that has  sought to validate existing 
PRS in a cohort of South Asian participants [19]. There 
are currently no studies quantifying the performance of 
CAD PRS for risk prediction in breast cancer survivors 
and, furthermore, whether polygenic risk scores inter-
act with oncotherapy for breast cancer. Polygenic risk 
scores in combination with other risk factors may be use-
ful in identifying women with breast cancer in whom the 
adverse effects of treatment may outweigh the benefits. 
The aim of this study was to evaluate the association of 
a published coronary artery disease polygenic risk score 
[10] and incident CAD outcomes in a cohort of women 
with breast cancer.

Methods
Study cohort
The Studies in Epidemiology and Research in Cancer 
Heredity (SEARCH) cohort is a population-based pro-
spective study based in the Eastern Region of England, 
which was served by the East Anglian Cancer registry 
until 2002 and the Eastern Region Cancer Intelligence 
Unit from 2002 to 2016. Recruitment of patients was 

conducted from June 1996 to December 2016. Inci-
dent breast cancer cases were all cases diagnosed under 
the age of 70  years from July 1996 to December 2016. 
Patients completed a self-administered questionnaire 
upon recruitment, which included questions about 
personal information, reproductive history, and other 
medical history. Tumor characteristics were obtained 
from the national cancer registry. Follow-up was ascer-
tained through death registration with the most recent 
update provided by  Public Health England on May 
31st, 2020. This provides the causes of death recorded 
on parts 1  and 2 of the death certificate. The SEARCH 
dataset was restricted to female breast cancer cases 
who had complete genotype information (n = 12413) 
for this study. The final analytic sample contained 8946 
participants after removing those of  non-European 
ancestries (n = 15) and those who experienced an event 
before diagnosis (n = 3452).

Linkage of the SEARCH cohort to hospital episodes 
statistics (HES) data was used to identify incident CAD 
events. HES data comprises a record for each finished 
consultant episode (FCE), which is a period of care for 
a patient under a single consultant at a single hospital 
[20]. Diagnoses coded for each FCE include all diag-
noses noted in the clinical record. Variables of interest 
included the time (years) between diagnosis and hos-
pital admission and the ICD-10 diagnosis code. The 
recorded episode time, admission time, or operation 
time elapsed since diagnosis with breast cancer in HES 
was considered the time of the event. For individuals 
with multiple records in which CAD was one of the 
clinical diagnoses, the earliest time to event was used 
as the analytical  time to event. Prevalent disease at 
baseline was defined as an event occurring before diag-
nosis (encoded as negative time) and these times were 
excluded from the analysis.

Genotype data
A total of 12413 individuals from the SEARCH cohort 
were genotyped in two batches: batch I was geno-
typed on the Illumina Infinium iCOGS array (n = 8404) 
and batch II on the Illumina Infinium OncoArray 
(n = 4009). Both chips provide genome-wide coverage 
of common variants with 211115 SNPs on the iCOGS 
array [21] and 533631 SNPs on the OncoArray [22]. 
Genotyping QC was performed as previously described 
[21, 22]. Genotypes were then phased using SHAPEIT 
and imputed into the 1000 Genomes Project reference 
panel (version 3) using IMPUTE version 2 for iCOGS 
and OncoArray.
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Calculating PRS and quality control
The polygenic risk score (PRS) used in this study was 
derived by Inouye et  al. and is called metaGRS (hence-
forth referred to as PRS), which consists of approximately 
1745180 variants (a detailed description of its deriva-
tion can be found in their Additional file) [10]. The set 
of SNPs and their corresponding weights for PRS were 
taken from the Polygenic Score Catalogue, which is an 
open database of published polygenic risk scores [23]. 
The PRS was calculated as a weighted sum of all the effect 
alleles carried using the imputed allele dosages and the 
published SNP effect sizes (log relative risk). Scores for 
each sample individual were generated using Plink 2.0 
software [24]. SNPs with imputation quality scores of 
less than 0.3 and ambiguous strand SNPs (A/T and G/C 
pairs)  were excluded. Multi-allelic SNPs with only two 
common alleles were treated as bi-allelic. All scores were 
standardized to zero-mean and unit variance.

CAD events
Incident coronary artery disease events were defined 
as a composite endpoint of unstable angina, myocar-
dial infarction, or death due to complications follow-
ing myocardial infarction according to the International 
Statistical Classification of Diseases and Related Health 
Problems 10th Revision (ICD-10) (Additional file  1: 
Table S1). This composite endpoint was chosen to maxi-
mize the number of incident cases, and no differential 
effects were observed between predictor variables and 
different definitions of incident CAD events (Additional 
file 1: Table S2).

Statistical analyses
All statistical analysis was performed using R 4.0.0 [25]. 
We investigated the association between PRS on the 
composite primary endpoint of the first incident coro-
nary event using cause-specific Cox proportional haz-
ards regression. We identified the presence of competing 
risks of non-CAD death (Additional file  1: Figure S1) 
and thus performed Cox regression treating competing 
events as censored [26]. Along the same vein, cumulative 
incidence curves are presented instead of Kaplan–Meier 
curves because Kaplan–Meier curves are known to rep-
resent upward-biased incidence estimates in the presence 
of competing risks [26]. Time zero was date of diagnosis 
with patients entering the at-risk cohort at date of study 
enrolment (left truncation). Participants were right cen-
sored on the date of first occurrence of a  CAD  event, 
death from a cause other than coronary artery disease 
or last follow-up. Schoenfeld residuals for variables used 
in modelling and time were assessed for any significant 
departure from the proportional hazards assumption 

using the “cox.zph” function in the survival package [27]. 
A Wald test was performed to assess whether failure 
events were independent of left truncation [28]. Regres-
sion models were sequentially adjusted, first using only 
continuous PRS as the main exposure variable adjusted 
for age at diagnosis (years, continuous), genotype assay 
(Oncoarray, iCOGs) and eight genetic principal compo-
nents (PCs), and then including sequential adjustments 
for conventional risk factors: BMI (kg/m [2], continuous), 
smoking status (never, past, current); sociodemographic 
variables: drinking status (past, current), education level 
(below GSCE, GSCE, A-level, graduate), index of multi-
ple deprivation (IMD) (continuous); medical variables: 
age at menarche (years, continuous), thyroid disease 
(binary), parity (ordinal), hormone replacement ther-
apy (binary); and oncotherapy variables: chemotherapy 
(binary), radiotherapy (binary), and hormone therapy 
(binary). Note that we did not have available data on 
baseline measurement for blood pressure, cholesterol, 
lipid-lowering medications, diabetes, or familial history.

The models were fit to the same subsample of cohort 
participants with increasingly more complete covariates 
to allow for more consistent comparison of the impact of 
adjustments and reduce the potential for selection bias in 
the scenario of outset restriction to participants with the 
most complete information on adjustment covariates.

We additionally assessed possible variation of the asso-
ciation of PRS with CAD according to smoking status and 
BMI level based on interaction tests. We also assessed the 
incremental improvement in CAD risk prediction from 
the addition of PRS to models including combinations of 
age, BMI, smoking, and other baseline covariates.

We calculated the net reclassification improvement 
and incremental discrimination index using the ncirens 
package to explore the potential clinical utility of PRS 
in women with breast cancer. More details about these 
calculations can be found in the Additional file. All con-
fidence intervals are shown at the 95% level. All p values 
are 2-tailed.

Results
Genotyped participant characteristics
The study cohort of women with breast cancer comprised 
12413 participants who had complete genotype informa-
tion. The mean age at diagnosis was 54.6, and almost all 
participants were of European ancestries. The median 
[5th, 95th percentiles] time from diagnosis to entry into 
the study was 1.8 years [0.4, 4.3], and the median follow-
up time was 10.3 years [2.6, 19.4]. A total of 750 individu-
als experienced a CAD event during follow-up. Out of 
the genotyped participants, 9496 (77%) received adjuvant 
hormonal therapy, 8773 (71%) received radiotherapy, and 
4735 (38%) received adjuvant chemotherapy. A summary 
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Table 1  Genotyped participant characteristics by incident CAD outcome observed during follow-up

Mean (SD) is presented for continuous variables. n/N (%) is presented for categorical variables. Median [p25, p75] is presented for count variables

SEARCH Experienced incident CAD Did not 
experience 
incident CAD

N = 12,413 N = 750 N = 11,663

Age at diagnosis 54.6 (8.9) 59.9 (7.1) 54.2 (8.9)

Received adjuvant chemotherapy 4735 (38%) 202 (27%) 4533 (39%)

Received adjuvant radiotherapy 8773 (71%) 535 (71%) 8238 (71%)

Received adjuvant hormonal therapy 9496 (77%) 580 (77%) 8916 (76%)

Histopathological grade /10859 /10207 /652

Well Differentiated 2088 (19%) 132 (20%) 1956 (19%)

Moderately Differentiated 5364 (49%) 351 (54%) 5013 (49%)

Poorly/Undifferentiated 3407 (31%) 169 (26%) 3238 (32%)

Tumor maximum diameter (mm)* 17 [11, 24] 15.5 [10, 23] 17 [11, 24]

(Missing) 2655 156 2499

Number of nodes excised* 8 [4, 14] 8 [4,13] 8 [4, 14]

(Missing) 2934 170 2764

Number of nodes involved* 0 [0, 1] 0 [0, 1] 0 [0, 1]

(Missing) 3219 198 3021

ER Status /9150 /548 /8602

Negative 1474 (16%) 80 (15%) 1394 (16%)

Positive 7676 (84%) 468 (85%) 7208 (84%)

Highest level of education received /11196 /666 /10530

Below GSCE 2376 (21%) 238 (36%) 2138 (20%)

GSCE or similar 5721 (51%) 322 (48%) 5399 (51%)

A-level or similar 1493 (13%) 54 (8.1%) 1439 (14%)

Graduate 1606 (14%) 52 (7.8%) 1554 (15%)

Index of Multiple Deprivation 13.7 (9.4) 15.1 (10.1) 13.6 (9.3)

Age at menarche 12.8 (1.6) 12.8 (1.7) 12.8 (1.5)

(Missing) 1463 73 1390

Number of full-term pregnancies* 2 [1, 2] 2 [1, 3] 2 [1, 2]

(Missing) 5 0 5

Height (cm) 204 (167) 190 (138) 205 (168)

Weight (kg) 109 (171) 107 (157) 109 (172)

BMI (kg/m2) 26.8 (5.2) 28.6 (5.6) 26.7 (5.2)

(Missing) 830 39 791

Received hormonal replacement therapy 4762/11888 (40%) 381/728 (52%) 4381/11160 (39%)

Smoking history /11815 /719 /11096

Never 6363 (54%) 305 (42%) 6058 (55%)

Past 3534 (30%) 262 (36%) 3272 (29%)

Current, in last year 1918 (16%) 152 (21%) 1766 (16%)

Alcohol Consumption /12413 /750 /11663

Past 4290 (35%) 341 (45%) 3949 (34%)

Current 8123 (65%) 409 (55%) 7714 (66%)

Ethnicity /11980 /731 /11249

European 11,955 (~ 100%) 730 (~ 100%) 11,225 (~ 100%)

African 1 (< 0.1%) 0 1 (< 0.1%)

Asian 2 (< 0.1%) 1 (0.1%) 1 (< 0.1%)

Southeast Asian 0 0 0

Other 22 (0.2%) 0 22 (0.2%)

Thyroid disease 1288/11874 (11%) 115/724 (16%) 1173/11150 (11%)
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of other lifestyle, medical treatment, breast cancer, and 
medical history characteristics is presented in Table  1. 
Summary information is provided for the full SEARCH 
cohort (n = 15,755) and participants who died from 
breast cancer in the Additional file 1: Table S3.

Association of PRS and incident CAD
Age-adjusted models were initially assessed to under-
stand individual associations of each variable with inci-
dent CAD survival (Table  2). There was no evidence of 
a departure from the proportional hazards assumptions 
for any of the variables modelled, and left truncation was 
found to be independent (Additional file  1: Table  S4). 
There was no association between PRS and breast can-
cer-specific survival (HR 1.02; 95% CI 0.96–1.08).

The sample size for the multivariate model was 8946 
with a total of 432 events after including only partici-
pants who experienced an event after entry into the study 
and had European ancestry (Fig. 1). The hazard ratio for 
incident CAD per 1 SD higher PRS adjusted only for age 

at diagnosis, genotype  array, and eight genetic PCs was 
1.36 (95% CI 1.23–1.51). Adjusting for conventional risk 
factors of smoking status and BMI resulted in minimal 
attenuation (Table 3, HRmodel2 = 1.34; 95% CI 1.21–1.49). 
Adjusting for other sociodemographic, lifestyle, and 
medical variables did not substantially change the HR of 
PRS (HRmodel5 = 1.33; 95% CI 1.20–1.47). A similar mag-
nitude HR was found for another polygenic risk score, 
GRS49K [9] (HRmodel5 = 1.31; 95% CI 1.19–1.44). Den-
sity distributions for both standardized PRS and GRS49K 
can be found in Figure S2 in Additional file 1. There was 
no evidence that—with the inclusion or PRS and other 
mediator variables—chemotherapy, radiotherapy, or 
hormone therapy was associated with incident CAD 
in this study. A  sensitivity analysis for follow-up only 
after one year, assuming a lag time to account for treat-
ment completion within one year of diagnosis, was per-
formed. Using model 5, the association between PRS and 
CAD remained largely unchanged (HR = 1.33, 95% CI 
1.20–1.48).

Interaction of PRS and conventional risk factors
Interactions between PRS and established cardiovascu-
lar risk factors, log(BMI) and smoking, were added sepa-
rately to a model containing genotype array, eight genetic 
PCs, log(BMI), smoking, education level, drinking, par-
ity, hormone replacement therapy (Table 4). The baseline 
mediators were selected based on multivariate results 
(Table  3, Model 5). The interaction effect between PRS 
and log(BMI) scaled to the mean was not significant at 
the 95% confidence level. Addition of an interaction term 
between PRS and smoking status slightly attenuated the 
effect of PRS, and the interaction effect between being 
a past smoker and the PRS approached nominal signifi-
cance (P = 0.069). The joint hazard ratios are presented in 
Table 5.

Interaction of PRS and oncotherapy
The hazard ratios of the interaction terms between PRS 
and radiotherapy, PRS and chemotherapy, and PRS and 
anti-hormone therapy were 1.15 (0.92, 1.43), 0.93 (0.74, 
1.16), and 1.15 (0.90, 1.46) respectively in a model con-
taining genotype array, eight genetic PCs, log(BMI), 
smoking, education level, drinking, parity, and hormone 
replacement therapy (Additional file 1: Tables S6–S7).

Ability of PRS to risk‑stratify incident CAD in breast cancer 
survivors
Figure 2 shows the cumulative risk of CAD by PRS quin-
tile. Women in the lowest quintile of risk reached 5% 
cumulative incidence at 15.1 years compared to 8.9 years 
for women in the highest quintile of risk.

Table 2  Age-adjusted univariate associations of baseline 
characteristics and incident CAD

All univariable models were fit to the same sample. All models adjusted for age, 
genotype array, and 8 genetic PCs
* Education reference category is below GSCE
† Smoking reference category is never-smokers
†† Drinking reference category is past-drinkers

Variable Hazard Ratio (95% CI) P value

PRS 1.36 (1.23, 1.50) 6.0 × 10–10

Sociodemographic
Log(IMD) 1.25 (1.08, 1.45) 1.9 × 10–3

Education Level*

GSCE or similar 0.65 (0.51, 0.82) 2.0 × 10–4

A-level or similar 0.60 (0.42, 0.85) 3.8 × 10–3

Graduate 0.50 (0.34, 0.74) 4.6 × 10–4

Lifestyle
Log(BMI) 5.11 (3.05, 8.6) 6.1 × 10–10

Smoking†

Past 1.44 (1.16, 1.78) 8.2 × 10–4

Current 1.93 (1.50, 2.51) 4.8 × 10–7

Drinking†† 0.63 (0.51, 0.76) 1.6 × 10–6

Medical
Age at menarche 0.98 (0.92, 1.05) 0.56

Parity (number of full-term preg-
nancies)

1.12 (1.05, 1.21) 7.6 × 10–4

Hormone replacement therapy 1.17 (0.96, 1.42) 0.11

Thyroid disease 1.16 (0.87, 1.54) 0.29

Oncotherapy
Chemotherapy 1.02 (0.81, 1.28) 0.87

Radiotherapy 0.93 (0.75, 1.16) 0.53

Hormone therapy 0.84 (0.66, 1.07) 0.15
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The discrimination of the PRS alone measured by the 
c-index was somewhat less than that of a model with BMI 
and smoking combined (0.73 vs. 0.74, P = 0.048) after 
adjusting for age, genotype array, and genetic PCs (Fig. 3). 
The addition of PRS made little practical improvement 
to a model including genotype array, eight genetic PCs, 
BMI, smoking status, education level, drinking, IMD, 
age at menarche, parity, hormone replacement therapy, 
and thyroid disease (0.757 vs. 0.764, P = 0.052). The total 
proportion of CAD and non-CAD cases that was reclas-
sified was 22% and 11% respectively. The net proportion 
of CAD and non-CAD cases assigned to a higher risk cat-
egory was 12% and 5.6% respectively for a 10-year CAD 
incidence risk (Additional file 1: Table S8).

Discussion
Based on a large cohort of British women with breast 
cancer, we have provided evidence that a CAD polygenic 
risk score developed for the general population can be 
generalized to breast cancer patients, with an estimated 
33% higher CAD risk per 1 SD higher PRS (HR = 1.33, 
95% CI 1.20, 1.47), independent of established cardio-
vascular risk factors (age, smoking, BMI), oncothera-
pies and other variables associated with cardiovascular 
risk (education level) in a cohort of British women with 
breast cancer. Our results support previous evidence 

that the association of PRS and CAD risk may operate 
through molecular pathways that do not overlap with 
those of traditional risk factors such as smoking and BMI. 
This is consistent with the original PRS analysis which 
found only a modest attenuation for PRS when adjust-
ing for BMI, smoking status, as well as diabetes, hyper-
tension, family history of heart disease, and cholesterol 
levels (HR: 1.58 per SD; 95% CI 1.55–1.61 unadjusted; 
HR: 1.48 per SD; 95% CI 1.45–1.51 adjusted) [10]. Several 
other studies also found only modest attenuation of CAD 
polygenic risk scores when adjusting for variables such as 
lipid treatment at baseline, cholesterol, and systolic blood 
pressure [9, 19, 29].

However, we note that there was an almost significant 
interactive effect between being a past smoker and the 
PRS. Since PRS is known to be correlated to certain con-
ventional CAD risk factors [10, 30], it is plausible that 
some fraction of incident CAD risk explained by PRS may 
be dependent on smoking status. While this paper is not 
expressly predictive in nature, we note that the addition 
of PRS may not have provided additional risk discrimina-
tion on top of BMI and smoking because by middle age, 
the genes that compose this risk score may have already 
exerted their influence, and thus the PRS would not be 
expected to add discriminatory ability.

Fig. 1  Flow diagram of selection of study cohort
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The PRS improves risk discrimination in breast can-
cer survivors. For instance, we found an over twofold HR 
for CAD in a comparison of individuals in the top versus 
bottom one-fifth of the risk score distribution. Further-
more, when considering 10-year risk of incident CAD 
following breast cancer diagnosis, we found that 5.6% 
of lower risk participants who did not have a recorded 
CAD event were reclassified to a higher risk group with 
the addition of PRS to the baseline model (Additional 
file  1: Table  S5). While the change is discrimination is 
small, this may result in meaningful risk reclassification 
in clinical decision-making between the harms and bene-
fits of chemotherapy. Further work is required to evaluate 

whether such reclassification would justify the additional 
cost of genotyping.

We acknowledge the limitation of how treatment 
(chemotherapy, radiotherapy, and anti-hormone ther-
apy) was coded as dichotomous variable (whether or 
not a patient received treatment). The loss of informa-
tion about other treatment aspects (e.g. dose, duration, 
type) may have contributed to measurement error that 
resulted in the associations reported in our paper. Fur-
thermore, the association of the interaction of PRS and 
chemotherapy is likely explained by selection bias, where 
healthy patients are more likely to undergo chemother-
apy. More granular data will be required to further assess 
these associations.

Table 3  Hazard ratios for incident CAD events in sequential models adjusted for baseline mediators

* All models were fit on the same sample. Model 1 represents the “baseline” model of PRS adjusted for age, genotype array and 8 genetic PCs. Model 2 is model 1 
additionally adjusted for conventional risk factors of BMI and smoking. Model 3 is Model 2 additionally adjusted for other sociodemographic variables. Model 4 is 
Model 3 additionally adjusted for medical variables. Model 5 is Model 4 additionally adjusted for oncotherapies

Variable Model 1
(n = 8946;
d = 432)*

Model 2 Model 3 Model 4 Model 5 Model 5
P value

PRS 1.36
(1.23, 1.51)

1.34
(1.21, 1.49)

1.34
(1.21, 1.48)

1.33
(1.20, 1.48)

1.33
(1.20,1.47)

7.6 × 10–9

Age at diagnosis 1.10
(1.09, 1.13)

1.10
(1.09, 1.13)

1.10
(1.08, 1.12)

1.10
(1.08, 1.12)

1.10
(1.08, 1.12)

2.6 × 10–32

Log(BMI) – 4.70
(2.79, 7.92)

3.59
(2.10, 6.10)

3.59
(2.08, 6.20)

3.62
(2.09, 6.24)

3.6 × 10–6

Past smoker – 1.35
(1.08, 1.67)

1.35
(1.08, 1.68)

1.33
(1.06, 1.65)

1.32
(1.06, 1.64)

0.011

Current smoker – 1.88
(1.45, 2.45)

1.74
(1.33, 2.28)

1.70
(1.30, 2.22)

1.70
(1.30, 2.22)

9.1 × 10–5

GSCE education – – 0.73
(0.58, 0.93)

0.74
(0.58, 0.93)

0.74
(0.58, 0.94)

0.011

A-level education – – 0.75
(0.52, 1.07)

0.77
(0.53, 1.10)

0.77
(0.54, 1.10)

0.15

Graduate education – – 0.68
(0.45, 1.02)

0.69
(0.46, 1.04)

0.69
(0.46, 1.04)

0.074

Drinking – – 0.71
(0.57, 0.86)

0.71
(0.58, 0.87)

0.72
(0.58, 0.88)

9.3 × 10–4

Log(IMD) – – 1.09
(0.94, 1.26)

1.08
(0.93, 1.25)

1.08
(0.93, 1.25)

0.29

Age at menarche - – – 0.99
(0.93, 1.06)

0.99
(0.93, 1.06)

0.86

Parity - – – 1.08
(0.99, 1.16)

1.08
1.00, 1.17)

0.049

Hormone replacement therapy - – – 1.20
(0.98, 1.46)

1.20
(0.98, 1.46)

0.068

Thyroid disease - – – 1.02
(0.77, 1.36)

1.03
(0.77, 1.37)

0.85

Chemotherapy – – – – 0.98
(0.77, 1.24)

0.86

Radiotherapy – – – – 0.91
(0.73, 1.14)

0.42

Hormone therapy – – – – 0.87
(0.68, 1.11)

0.25
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The role that PRS may play in breast cancer clinical 
care is currently unclear, but fundamentally, PRS may be 
used to help estimate the lifetime risk of cardiovascular 

disease in a breast cancer survivor. This may have two 
clinically useful benefits: (1) facilitate earlier detection 
of cardiovascular risk in breast cancer survivors to help 
them more effectively manage cardiovascular risk factors 
earlier to reduce future cardiovascular risk and (2) aid in 
treatment decision-making when considering the nega-
tive cardiotoxic effects of their treatment regiments.

This is especially important in breast cancer patients 
who face the unique challenge of needing to maximize 
gains from cancer treatment while also minimizing its 
cardiotoxic effects. More women are surviving breast 
cancer with an increase in 5-year survival for early stage 
breast cancer from 79% in 1990 to 88% in 2012 [31] (there 
were an estimated 3.4 million breast cancer survivors in 
the US in 2015 [32]), so cardiovascular mortality may 
become an increasingly important concern. Bradshaw 
et al. showed that there is nearly a twofold increase in the 
incidence of CVD for long-term breast cancer survivors 
around 7  years after diagnosis [4]. Several large rand-
omized trials have provided evidence of the association 
between chemotherapy, radiotherapy, hormone therapy 

Table 4  Hazard ratios for incident CAD events in interaction 
models adjusted for baseline mediators

Baseline mediators include age, genotype array, 8 genetic PCs, log(BMI), 
smoking, education level, drinking, parity, hormone replacement therapy
* log(BMI) was scaled to its mean

Interaction Model Hazard Ratio (95% CI) P value

With BMI*
PRS 1.31 (1.18, 1.46) 1.5 × 10–7

log(BMI) 1.24 (1.12, 1.37) 2.0 × 10–5

PRS*log(BMI) 1.07 (0.97, 1.18) 0.17

With smoking
PRS 1.24 (1.06, 1.44) 4.0 × 10–3

Past smoker 1.26 (1.00, 1.58) 0.044

Current smoker 1.72 (1.31, 2.27) 9.1 × 10–5

PRS*past smoker 1.23 (0.98, 1.53) 0.069

PRS*current smoker 1.03 (0.79, 1.34) 0.82

Fig. 2  Cumulative risk of CAD by quintiles of metaGRS truncated at 20 years post-diagnosis
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and increased risk of cardiovascular events [33, 34]. For 
instance, Darby et  al. showed that the rate of CAD was 
proportional to the average dose of ionizing radiation 
during radiotherapy for breast cancer, with increases in 

rate continuing as long as 20  years post-exposure [35]. 
This is particularly important for women diagnosed at a 
relatively young age who begin treatment and may then 
have increased risk of CVD mortality. It suggests that 
breast cancer survivors may benefit from a PRS assess-
ment and should be closely monitored for development 
of cardiovascular risk factors following diagnosis and 
subsequent treatment. In our study, cumulative inci-
dence curves of incident CAD events did not appear to 
be substantially different when stratified by oncotherapy 
status (Additional file 1: Figure S3), which suggests that 
more granular data on treatment data, such as dosage, 
frequency, or duration, is needed to better assess the 
interplay between drug cardiotoxicity and genetic car-
diovascular susceptibility. PRS may help clinicians and 
their patients make decisions about whether the benefits 
of adjuvant chemotherapy and other oncotherapies out-
weigh the risks.

Table 5  Joint hazard ratios for incident CAD events in 
interaction models adjusted for baseline mediators

Baseline mediators include age, genotype array, 8 genetic PCs, log(BMI), 
smoking, education level, drinking, parity, hormone replacement therapy
* log(BMI) was scaled to its mean

Interaction model Joint hazard ratio (95% CI)

With BMI* 1 Unit Increase in PRS

log(BMI) (Reference) 1.31 (1,18, 1.46)

1 Unit Increase in log(BMI) 1.40 (1.24, 1.58)

With smoking
Never (Reference) 1.24 (1.06, 1.44)

Past smoker 1.52 (1.29, 1.79)

Current smoker 1.27 (1.03, 1.58)

Fig. 3  Training C-indices for conventional risk factors and metaGRS
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Limitations
There are some limitations in interpreting the current 
findings. The association between PRS and incident CAD 
could not be adjusted for important risk factors such as 
diabetes, hyperlipidaemia, family history of cardiovascu-
lar disease, and hypertension because these data were not 
collected. It is worth noting; however, that the PRS used 
in this study has been shown in other cohorts to provide 
additional predictive benefit over standard cardiovascu-
lar risk prediction algorithms such as the Framingham 
risk score, which include such metabolic risk factors [9]. 
Treatment data were limited to whether the patient had 
received chemotherapy, radiotherapy, and anti-hormone 
therapy. Data on specific drugs or doses received were 
not available. Genotype data were available for predomi-
nantly participants of white European ancestry, which 
suggests the need for studies in people of other ancestries 
to maximize generalizability. Furthermore, the observa-
tional nature of these data limits any inference that might 
be drawn relating to the association between therapy and 
outcome.

Conclusion
Cardiovascular disease is an important long-term risk 
among women who survive breast cancer. This risk is 
increased by some breast cancer therapies. Compre-
hensive risk models for cardiovascular disease have the 
potential to help in the clinical management of this risk 
and may improve long-term outcomes for these women.
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