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Background: Normal human breast tissues are a heterogeneous mix of epithelial and stromal subtypes in different
cell states. Delineating the spectrum of cellular heterogeneity will provide new insights into normal cellular
properties within the breast tissue that might become dysregulated in the initial stages of cancer. Investigation of
surface marker expression provides a valuable approach to resolve complex cell populations. However, the majority
of cell surface maker expression of primary breast cells have not been investigated.

Methods: To determine the differences in expression of a range of uninvestigated cell surface markers between
the normal breast cell subpopulations, primary human breast cells were analysed using high-throughput flow
cytometry for the expression of 242 cell surface proteins in conjunction with EpCAM/CD49f staining.

Results: We identified 35 surface marker proteins expressed on normal breast epithelial and/or stromal
subpopulations that were previously unreported. We also show multiple markers were equally expressed in all cell
populations (e.g. CD9, CD59, CD164) while other surface markers were confirmed to be enriched in different cell
lineages: CD24, CD227 and CD340 in the luminal compartment, CD10 and CD90 in the basal population, and CD34

Conclusions: Our dataset of CD marker expression in the normal breast provides better definition for breast cellular

Keywords: Normal breast, Surface markers, Breast epithelial cells, Stromal, Luminal progenitor, Antibody screen

Background

The human breast is a complex steroid-responsive organ
which undergoes morphological and structural changes
depending on the reproductive stage. The breast epithe-
lium is composed of two known cell types, an outer layer
of myoepithelial/basal cells and an inner luminal layer
composed of separate secretory and hormone receptor-
positive populations. These populations are organised
into a series of ductal networks, surrounded by stromal
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cells and adipocytes [1-3]. This breast network is struc-
tured via a main stem or primary duct ending in a clus-
ter of sac-like lobules termed terminal ductal lobular
units (TDLUs). The origins and development of breast
cancer revealed that most breast cancers originate from
a single TDLUs [4]. Historically mammographic and
histology analyses were limited in defining the exact cell
compartment responsible for neoplastic transformation.
Reliance on immunostaining for specific keratin (K)
markers classifying breast cell types has led to discrep-
ancy. K5 and K14 are often referred to as basal keratins
based on their expression in the mouse mammary gland,
specifically within the basal layer of the ducts, yet they
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were also expressed within the luminal layer of TDLUs
of human breast tissues, therefore making cell identity
difficult to interpret using these markers [5, 6]. A better
understanding of the cellular heterogeneity existing in
the breast epithelium and different cell states provides
useful clues to how these cell types transform into the
distinct breast cancer subtypes.

Many studies have relied on in vitro and in vivo as-
says to understand the hierarchical organisation and
the progenitor/stem capacities of breast epithelial
cells. One of the earliest studies used a combination
of cell surface markers including EpCAM (ESA),
CD10, CD49f (Integrin a6) and MUC1 (CD227) to
identify the basal and luminal populations via flow cy-
tometry [7, 8]. Subsequently, different cell isolation
protocols and cell surface marker combinations were
utilised to identify dissimilar subpopulations adding to
the complexity with minimal overlap between studies
[9-11]. Currently, the combination of two key cell
surface markers, EpCAM and CD49f, are widely used
as differentiation markers to identify the basal, lu-
minal progenitor (LP), mature luminal (ML) and stro-
mal compartments of the normal breast [12-14].
Investigating breast cellular heterogeneity has taken a
leap forward with the enhancement of single cell
omic studies. Single cell transcriptome analysis of pri-
mary human breast tissue confirmed the three main
epithelial cell types and has highlighted that there are
additional cell states within each cell population [15,
16]. The different cell states are essential to predict-
ing a cellular trajectory hierarchy. Validating these
novel cell states is problematic due to technical diffi-
culties in isolating viable live cells based on their
transcriptomic profile. The cell surface proteome is
central to many biological functions which reflect cell
fate, yet expression patterns of many cell surface
markers in the human breast cell subpopulations are
poorly defined.

Here, we identify specific CD marker expression
patterns within the breast epithelium and stromal cell
populations to generate a searchable dataset. We de-
veloped an analysis platform using standard flow cy-
tometry and multiplexing for the simultaneous
examination of epithelial and stromal cell populations.
This protocol allowed us to identify and quantify the
abundance of hundreds of CD markers on single cell
suspensions of reduction mammoplasty specimens.
Our data presents opportunities for new antibody
panels that focus on stricter definitions of the cellular
states of the human breast. Characterisation of CD
proteins expressed by each breast subpopulation is in-
formative as it will not only improve cell state classi-
fications but may also provide insights into biological
function.
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Methods

Dissociation of human mammary tissue

All primary human materials were derived from reduc-
tion mammoplasties at Addenbrookes Hospital,
Cambridge, UK, under full informed consent and in ac-
cordance with the National Research Ethics Service,
Cambridgeshire 2 Research Ethics Committee approval
(08/H0308/178) as part of the Adult Breast Stem Cell
Study. All tissue donors had no previous history of can-
cer and were premenopausal (37-43 years old). Reduc-
tion mammoplasty specimens were transferred from the
operating room on ice in sterile DMEM/F12 1:1 media
(Invitrogen) supplemented with 5% FBS (Gibco/Invitro-
gen). Tissues were dissociated into single cell suspension
as described previously [17]. Briefly, tissue was manually
minced and incubated in DMEM/F12 1:1 medium with
10 mM Hepes plus 2% BSA, 5 pg/ml insulin (Invitrogen),
50 pug/ml gentamycin, 300 U/ml collagenase (Sigma) and
100 U/ml hyaluronidase (Sigma) with gentle shaking at
37 °C, overnight or for 16 h. Tissue fragments were har-
vested by washing with DMEM/F12 and spinning at
450¢ for 5 min at 4 °C. Fragments were triturated in
trypsin-EDTA (0.25%; Stem Cell Technologies) for 2—3
min following a red blood cell lysis using ammonium
chloride solution (Stem Cell Technologies). Cells were
then washed in HBSS without calcium or magnesium,
supplemented with 2% FBS, and centrifuged. Cells were
then triturated in dispase 5 U/ml and 50 pg/ml DNase I
for 1 min, followed by a final wash in HBSS plus 2% FBS
and centrifuged.

Surface protein screening using lyoplate technology

Single cell suspensions from two human mammary re-
ductions were pooled together and analysed using a
commercial antibody screen, the BD Lyoplate™ Human
Cell Surface Marker Screening Panel (BD Biosciences),
containing AlexaFluor®647-conjugated antibodies with
specificity for 242 cell surface markers and 9 isotype
controls, arrayed across three 96-well plates. The cell
surface marker antibody screen was performed twice
using a total of 4 individual mammary reduction sam-
ples. 3-4 x 10° breast cells were used for each antibody
to ensure sufficient cells analysed to obtain a reliable
positive signal. A detailed list of the antibodies can be
found in Supplementary Table 1. Staining was per-
formed as described by the manufacturer’s protocol with
minor modifications. Briefly, the lyophilized antibodies
were reconstituted with 110 pl of deionised water. One
hundred microliters of breast cell suspension was ali-
quoted into three new 96-well plates at a density of 3—4
x 10° cells/well. Twnety microliters of the reconstituted
antibody was added to cells and incubated on ice for 20
min. The cells were then washed twice with HBSS plus
2% FBS and centrifuged at 300xg for 5min to remove
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any unlabelled antibody. The cell pellet was incubated
with the following primary antibodies: CD31-APC/Cy7,
CD45-APC/Cy7, epithelial cell adhesion molecule
(EpCAM)-PE, CD49f-PE/Cy7 (BioLegend). CD45 and
CD31 were used to deplete contaminating haematopoi-
etic and endothelial cells (collectively termed Lin+ cells).
Cells were incubated with 4',6-diamidino-2-phenylindole
(DAPI, Invitrogen) before a final wash and data was ac-
quired by flow cytometry using an LSR II flow cytometer
(BD Biosciences) with a high-throughput sample attach-
ment on the instrument, and 250,000—350,000 events
per well were collected. The lyoplate workflow is shown
in Fig. 1.

Surface protein screening data analysis

Data analysis was accomplished using FlowJo v10 soft-
ware (FlowJo LLC, Treestar, USA). The gating strategy
(Figure S1) was designed to remove debris, dead and
Lin+ cells. EpCAM and CD49f markers were used to
discriminate between the basal, luminal progenitor, ma-
ture luminal and stromal cell types. To analyse each
population for its AlexaFluor®647 positivity, a 1% posi-
tive events in the AlexaFluor*647 gate was the minimum
criteria positive selection for each cell surface marker.
Less than 1% event detections were deemed as negative
cell surface markers and recorded as zero. Analytical
data of percentage of AlexaFluor®647 positive events
were exported to Excel and associated to sample ID,
plate number row and column. To determine signal in-
tensity, histograms were generated, and the control iso-
type median fluorescence intensity (MFI) was calculated
using Flow]Jo. Bisector gating on the histogram was used
to discriminate between positive and negative popula-
tions. Positivity was calculated as being 3 robust stand-
ard deviations of the control MFIL Selecting the positive
population, the median, minimum and maximum fluor-
escence intensities were exported to Excel. Using the
minimum and maximum values, variation in positive
marker signal was categorised into 4 groups: 0 — <1 log
fluorescence intensity; 1 — > 1 and < 1.5 log fluorescence
intensity; 1.5 — > 1.5 and <2 log fluorescence intensity
and 2 — > than 2 log fluorescence intensity.
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Aldehyde dehydrogenase (ALDH) flow cytometry assay
Human breast single cell suspensions were treated to de-
tect the enzyme activity of aldehyde dehydrogenase
(ALDH) using the Aldefluor Kit (StemCell Technologies)
as per the manufacturer’s instructions. The cells were
then preblocked with 10% normal rat serum (Sigma) and
stained with the following antibodies: CD31-APC/Cy7
(Clone WM-59), CD45-APC/Cy7 (Clone HI30),
EpCAM-PE, CD49f-PE/Cy7 (Clone GoH3) (all from Bio-
Legend) in combination with one of the following anti-
bodies CD140b-AF647 (Clone 28D4), CD142-AF647
(Clone HTF-1), CD26-AF647 (Clone M-A261), CD34-
AF647 (Clone 581), CD340 (Her2)-AF647 (Clone
Neu24.7), CD39-AF647 (Clone TU66), CD44-AF647
(Clone G44-26), CD49¢-AF647 (Clone C3 IL.1), CD66 (a,
¢,d,e)-AF647 (Clone B1.1/CD66), CD54-AF647 (Clone
LB-2), CD55-AF647 (Clone 1A10), CD13-AF647 (Clone
WM15), CD73-AF647 (Clone AD2), CD15s-AF647
(Clone CSLEX1), CDI151-AF647 (Clone 14A2.H1),
CD166-AF647 (Clone 3A6), CD282-AF647 (Clone
11G7), CD63-AF647 (Clone H5C6), CD75-AF647 (Clone
LN1), SSEA-4-AF647 (Clone MC813-70), TRA-1-81-
AF647 (Clone TRA-1-81), CLA-Biotin-AF647 (Clone
HECA-452), CD15-AF647 (Clone HI98) (all from BD
Biosciences). Cells were then filtered through a 30-pm
cell strainer and incubated with DAPI. Human cells were
separated using an Influx cell sorter (Becton Dickinson).
Single-stained control cells were used to perform com-
pensation manually. Gates were set in reference to
fluorescence-minus-one controls. The ALDH+ gate was
set in reference to control populations incubated with
the ALDH inhibitor DEAB in addition to Aldefluor.
Flow cytometry data were analysed using FlowJo™
software.

In vitro colony-forming assays

Flow-sorted human luminal progenitor cells were seeded
into 60 mm plates with 2.5 x 10° irradiated NIH-3 T3
feeder cells. The cultures were maintained in Human
EpiCult-B (StemCell Technologies) supplemented with
5% FBS (StemCell Technologies) and 50 pg/ml gentami-
cin for 48 h and then the media changed to serum-free
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Fig. 1 Schematic diagram depicting the experimental overview of the human breast surface protein marker antibody screen
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conditions and maintained for an additional 12 days.
Colonies were fixed with acetone to methanol (1:1),
stained with Giemsa (Fisher Scientific) and enumerated
under a microscope.

Statistical analysis

Data presented are the mean of multiple independent
experiments and the standard error of the mean. One-
way analysis of variance was used to test multiple groups
followed by Tukey’s post-test to test significant differ-
ences between pairs of results. Comparisons between
just two groups were analysed by t-test. Significance was
set at *P < 0.05 and **P < 0.01.

Results

To explore the heterogeneity of normal breast epithelial
and stromal cells and to generate a dataset of surface
protein expression, we subjected human reduction mam-
moplasty specimens to a panel of monoclonal antibodies
specific for 242 human cell surface proteins using the
BD Lyoplate system. Primary human breast tissue from
two healthy donors per antibody screen was dissociated
to single cells and pooled. Single cell suspensions were
arrayed on the 96 well plates containing the Alexa-
Fluor®647-conjugated lyoplate antibodies and controls.
Subsequently, tagged cells were then subjected to the
widely used flow cytometry staining protocol (Fig. 1).
Flow cytometry (FC) analysis gating allowed the elimin-
ation of doublets, debris and endothelial/haematopoietic
cells. The breast epithelial subpopulations and stromal
compartments were then gated to identify negative and
positive antibody markers (Figure Sla-b). The inclusion
of the breast epithelial flow antibody strategy was im-
perative to eliminate the number of false positive surface
markers irrelevant to the stromal/epithelial content of
the normal human breast.

Analysis of the screen revealed 78 out of the 242 lyo-
plate cell surface proteins were positive in the breast epi-
thelial/stromal compartments (Fig. 2, Figure S2a).
Without the inclusion of lineage or live/dead markers,
the number of positive antibodies increased to 144 and
168, respectively (Figure S2b-c). The mean percentage of
positive cells for each cell surface marker (greater than
1% positive) of the different epithelial/stromal popula-
tions was calculated (Fig. 2). As expected, our screen
positively identified a number of well-known breast basal
and luminal epithelial cell surface proteins including
CD10, CD24, CD44, CD227, CD340 and EGFR (Fig. 2)
[7, 10-12, 18, 19]. Furthermore, we identified positive
expression of CD49a, CD49b, CD49c, CD47, CD54,
CD73, CD90, CD95, CD151, CD271, HLA-ABC, HLA-
DR, SSEA-4 and CD201 markers which were reported in
primary human breast cells and tissue [20-25] and on
breast organoids [26]. Surprisingly, CD117 (C-Kit), a
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well-known surface marker expressed on breast epithe-
lial cells, was not detected as being positive in this
screen. C-Kit [27], along with CD105 [28] were detected
in breast epithelial or stromal cells, respectively, via FC.
However, these studies used different clones for CD117/
C-Kit and CD105 compared to the antibodies in this
screen, highlighting that different antibody clones may
yield contrasting results. Although the complete list of
CD markers was not included in this screen, the screen
contained a number of surface markers not previously
examined in breast tissues. The screen identified 35 sur-
face markers that were novel and a further 8 less charac-
terised markers in the normal breast epithelial/stromal
compartments (Fig. 2). The less characterised markers
are of interest, as these markers were previously re-
ported as having expression in normal breast tissues;
however, no distinction between luminal or basal cell
types was documented [29-35]. Quantification revealed
several of the novel and less characterised markers were
widely expressed in breast epithelial cells. For instance,
CD9, CD59 and CD164 expression was detected in
greater than 80% of all epithelial subpopulations (Fig. 2).
Other novel markers including CD40 and CD120b were
expressed in 5% or less of each epithelial subpopulation,
demonstrating the heterogeneity of marker expression in
the normal breast.

Unsupervised hierarchical clustering of the 78 positive
surface markers showed several expression clusters be-
tween the different subpopulations (Fig. 3a). We ob-
served distinct clusters exhibiting high expression in
both epithelial and stromal populations (CD44, CD54,
CD59, CD164, HLA A,B,C) or enriched in epithelial
populations (CD9, CD49¢c, CD49e, CD55, and CD66(a,c,
d,e)). These data indicate that these markers may
contribute towards a general biological function. Other
clusters of CD markers were restricted to epithelial sub-
compartments including the luminal cluster encompass-
ing of CD24, CD227, CD46, CD321, CD166 and CD340
cell surface markers, the luminal progenitor cluster
(EGFR, CD282 and CLA), and the basal cell cluster
(CD10, CD200, CD271, CD142, CD201 and CD104),
suggesting more specialised function in these cell types.
Of note, 62 of the 78 positive surface markers were
expressed on stromal cells (Fig. 2), yet only a few of
these markers were restricted to the stromal compart-
ment (Fig. 3a). It is also notable that several markers
were expressed in both stromal and luminal populations
including CD13, CD75, CD95, CD107a, Hem. Prog. Cell
and GD2 (Figs. 2 and 3a).

Marker positivity gives indication of the proportion of
cells expressing these markers; it does not indicate the
signal intensity or heterogenous marker expression. We
generated histograms of the positive identified surface
markers to determine whether heterogenous expression
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Antibody Basal LP NC Stromal Antibody Basal LP NC Stromal Antibody Basal LP NC Stromal
CD1a 0 0 0 0 CD69 5.745 2.335 0 0 CD178 0 0 0 0
CD1b 0 0 0 0 CD70 0.955 0 0 4.205 CD180 0 0 0 0
CD1d 0 0 0 0 CD71 1.406 1.3 0 7.366 CDh181 0 0 0 0
CD2 0 0 0 0 CD72 0 0 0 0 CD183 0 0 0 0
CD3 0 0 0 0 CD73 4.463 5.83 5.903 731266 CD184 0 0 0 0
CD4 0 0 0 0 CD74 2.236 3.223 1.01 24.8 CD193 0 0 0 0
CD4v4 0 0 0 0 CD75 0.796 5.066 6.046 4.013 CD195 0 0 0 0
CD5 0 0 0 0 CD77 0 0 0 0 CD196 0 0 0 0
CD6 0 0 0 0 CD79b 0 0 0 0 CD197 0 0 0 0
CD7 0 0 0 0 CD80 0 0 0 0 CD200 347 237 055 1635
CD8a 0 0 0 0 CD81 0 0 0 0 CD205 0 0 0 0
CD8b 0 0 0 0 CD83 0 0 0 0 CD206 0 0 0 0
CD9* |O2MEEIS7NB3IBIEEE 25.933 CD84 189 0 0 0 CD209 0 0 0 0
CD10 43.2 4.166 0.956 11.246 CD85 2.17 0.97 0.5 7.105 CD220 0 20.55 1695 O
CD1la 0 0 0 0 CD86 0 0 0 0 CD221 0 0 0 0
CD11b 0 0 0 0 CD87 0 0 0 0 CD226 0 0 0 0
CD11c 0 0 CD88 0 0 0 0 CD227 0 [e44slEEEs 0.58
CD13  4.41576IeN 17.35792 cD89 0 0 0 0 cD229 0 0 0 0
CD14 0 0 0 0 CD90 39.7 5.38 1.68 58151 CD231 0 0 0 0
CD15* 2.135 21 5 0 CD91 0 0 0 0 CD235a 0 0 0 0
CD15s 2.095 20.7 2.16 1.1 CDw93 0 0 0 0 CD243 0 0 0 0
CD16 0 0 0 0 CD9%4 0 0 0 0 CD244 0 0 0 0
CD18 3.145 0 0 13.4 CD95 0.835 4.395 0.5 3.845 CD255 (Tweak) 0 0 0 0
CD19 0 0 0 0 CD97 0 0 0 0 CD268 0 0 0 0
CD20 0 0 0 0 CD98 7.245 25.7 11 5.215 CD271 31.7 5.28 0 9.51
CD21 0 0 0 0 CD99 0 0 0 0 CD273 0 0 0 0
CD22 0 0 0 0 CD99R 0 0 0 0 CD274 0 0 0 0
CD23 0 0 0 0 CD100 0 0 0 0 CD275 0 0 0 0
CD24 1.82 [IS2ISMIB2E88 0.673 CD102 0 0 0 0 cD278 0 0 0 0
CD25 0 0 0 0 CD103 0 0 0 0 CD279 0 0 0 0
CD26 8935 6.805 1.68 30.5 CD105 0 0 0 0 CD282 0.535] 452 16475 O
CD27 0 0 0 0 CD106 0 0 0 0 CD305 0 0 0 0
CD28 0 0 0 0 CD107a* 0 8.865 12.3 2.095 CD309 0 0 0 0
CD29 4235 8.505 1.8 50.35 CD107b 0 0 0 0 CD314 0 0 0 0
CD30 0 0 0 0 CD108 0 0 0 0  CD321 (F11 Reptr)*15.53 [6S7IMNGEN 1.28
CD32 0 0 0 0 CD109 0 0 0 0 Cbw327 0 0 0 0
CD33 0 0 0 0 CD112 0 0 0 0 CDw328 0 0 0 0
CD34 495 3.803 3.71 742 CD114 0 0 0 0 CDw329 0 0 0 0
CD35 0 0 0 0 CD116 0 0 0 0 CD335 0 0 0 0
CD36* 2.186 0.446 O 5.346 CD117 0 0 0 0 CD336 0 0 0 0
CD37 0 0 0 0 CD118 (LIFR cptr) 0 0 0 0 CD337 0 0 0 0
CD38 0 0 0 0 CD119 0 1.63 2.445 0 CD338 0 0 0 0
CD39 2.375 1.47 0.5 40.75 CD120a 6.93 3.5 2.09 3.905 CD340 (Her2) 0.98 [49.4559185 0.38
CD40 2.855 5.42 054 4.42 CD121a 0 0 0 0 abTCR 0 0 0 0
CD41a 0 0 0 0 CD121b 0 0 0 0 B2microglobuliii44105 7SS 2IN5aNS|
CD41b 0 0 0 0 CD122 0 0 0 0 BLTR-1 0 0 0 0
CD42a 0 0 0 0 CD123 0 0 0 0 CLIP 0 0 0 0
CD42b 0 0 0 0 CD124 0 0 0 0 CMRF-44 0 0 0 0
CDh43 0 0 0 0.546 CD126 0 0 0 0 CMREF-56 0 0 0 0
CDh44 40.633 CD127 0 0 0 0 EGF Receptor 13.4 | 49.05 6.075 32.5
CD45 2.826 3.143 1.493 29.466 CD128b 0 0 0 0 fMLP Receptor 0 0 0 0
CD45RA 0 0 0 0 CD130 0 0 0 0 y8TCR 0 0 0 0
CD45RB 0 0 0 0 CD134 0 0 0 0 Hem. Prog. Cell 0.5 3.165 2.065 22.65
CD45RO 0 0 0 0 CD135 0 0 0 0 HLAA,B,C
CD46*  8.52 _% CD137 0 0 0 0 HLAA2 40.1
CcD47 29.95 54.25 483 CD137 Ligand 0 0 0 0 HLADQ 0 0 0 0
CD48 0 0 0 0 CD138 0 0 0 0 HLADR 5.89 322 352 5.205
CD49%a 16.95 2.45 0 37.35 CD140a 0 0 0 0 HLADR,DP,DQ 3.76 @ 27.1 2.325 3.345
CD49% 3.916 CD140b 2.05 1.315 2.625|H65165 Invariant NKT 0 0 0 0
CD49c 53.166 13 CD141 0.935 0 0 1.985 GD2 1.39 5575 149 7.27
Cb49d 198 098 1.03 7.266 CD142 389 154 17.05 5.085 MIC A/B 0 0 0 0
CD49%e  8.44 12.176 12.106|70N766 cD144 0 0 0 0 NKB1 0 0 0 0
CD50 0 0 0 0 CD146 0 0 0 1.875 SSEA-1 0 32.1 9.11 0
CD51/61 0 0 0 0 CD147* 6.445 19.4 14.4 10.905 SSEA-4 0.655 26.65 10.46 2.815
CD53 0 0 0 0 CD150 0 0 0 0 TRA-1-60 0 13.7 6.71 0
CD54 CD151 4225 182 32.85 29.75 TRA-1-81 0 12.85 6.695 0
CD55 47.85 55.85 22.95 11.625 CD152 0 0 0 0 Vb 23 0 0 0 0
CD56 0 0 CD153 0 0 0 0 Vb 8 0 0 0 0
CD57 CD154 0 0 0 0 CcD104 |[W45105 33.25 3.77 2.63
CD58 10.035 7.62 0.895 24.555 CD158a 0 0 0 0 CD120b 413 585 334 277
CD59* CD158b 0 0 0 0 CD132 4.31 6.3 3.005 2.175
CD61 0.743 1.17 0.413 3.533 CD161 0 0 0 0 CD201 413 15.25 4.165 28.85
CD62E 0 0 0 0 CD162 0 0 0 0 CD210 461 9595 2.385 3.3
CcDh62L 0 0 0 0 CD163 0 0 0 0 CD212 0 0 0 0
CD62P 0 0 0 0 CD164 |NSTENCOESEEIEIZ CD267 0 0 0 0
CD63 37.533 22.366 34.166 49.566 CD165 0 0 0 0 CD2%4 0 0 0 0
CcD64 0 0 0 0 CD166 0 25.753MS 1.14 SSEA-3 0 0 0 0
CD66(a,c.d,&)'51:3 BTI75MI55%5 1.135 CD171 0 0 0 0 CLA 6.98 47105 3.795 4.25
CD66b 0 0 0 0 CD172b 0 0 0 0 Integrin b7 8.32 17.25 4.54 6.48
CD66f 0 0 0 0 CD177 0 0 0 0
Fig. 2 (See legend on next page.)
A\
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(See figure on previous page.)

Fig. 2 Lyoplate analysis of surface marker expression patterns in different mammary epithelial and stromal subpopulations. FACS based
expression analysis of 242 surface markers using the BD Lyoplate™ Human Surface Marker Screening Panel on primary human breast cell
populations (blue: basal, green: luminal progenitor (LP), purple: mature luminal (ML), orange: stromal). The values represent the mean percentage
of positive cells for each surface marker antibody within two pooled donor samples from the two antibody screen replicates. Zero indicated that
the percentage of cells ranged from 0 to 1% within the positive gating. CD markers underlined indicate unreported expression in breast
epithelial/stromal cells. CD markers with an asterisk indicate less characterised expression in breast epithelial and stromal cells

patterns exist in the epithelial or stromal subpopulations
(Fig. 3b, Figure S3). We observed that several markers
had strong signal intensities including CD9 and CD59 in
all populations. Luminal cells expressing CD24, CD49b,
and CD13 in the LP populations all showed strong signal
intensities. Basal cells expressing CD44, CD49b and
CD49c also showed strong signal intensity. However, the
vast majority of markers displayed diverse fluorescence
intensities, suggestive of heterogeneity marker expres-
sion. Examining the minimum and maximum signal in-
tensities (Table 1), a small number of markers displayed
a spread of signal intensities greater than 1.5 logs. Many
of the markers with a broad signal intensity were only
detected in less than 5% of the subpopulation. This is
evident in CD36, CD39, CD73 for the basal population;
CD34 for the LP population; CD29, CD34, CD39 and
CD?73 for the ML population, indicating that whilst these
populations may have some heterogenous expression,
the overall proportion of cells expressing these markers
are low. The stromal population contained markers that
had the most heterogenous expression, especially for
cells expressing CD9, CD13, CD26, CD34, CD39, CD44,
CD49a, CD54 and CD73 (Table 1, Figure S3). To valid-
ate the specificity of the screening panel, we selected
well known positive markers in breast epithelial (CD44,
CD340) and stromal cells (CD140b [14], CD34 [25],
CD26 [28]), as well as novel/less characterised epithelial
(CD142, CD49c¢c, CD66, CD54, CD55) and novel stromal
(CD39) CD markers identified from the screen (Fig. 3b)
for expression analysis in an additional two independent
donor samples. The resulting FC analyses indicated that
all positive surface markers selected from the screen for
validation were also detected in subsequent donor sam-
ples (Fig. 3c, Figure S4), however, at times the propor-
tion of cell positivity differed. We observed antibodies
such as CD140b containing 4.5-fold higher proportion
in the basal compartment and a 2-fold reduction in the
stromal compartment. CD142 contained a 2-3-fold re-
duction in luminal and stromal compartments, but a
small increase in the basal compartment (Fig. 3c). Other
antibodies including CD54 and CD55 showed compar-
able proportions between the screens and the subse-
quent donor samples (Fig. 3c). Whilst proportions
differed in some cases between the screen and validation
assays, the trend of positivity was the same, i.e. CD140b
expression was most frequently detected in the stromal

compartment (Fig. 2), and this trend was observed in the
subsequent donor samples (Fig. 3c). This demonstrates
that we have generated a robust dataset as a resource for
identifying a selection of CD marker expression on nor-
mal human breast cells.

The luminal compartment is considered to be the cell
of origin for most breast cancers and understanding the
heterogeneity of surface marker expression in normal
cells may illuminate differences in cell state with rele-
vance to cancer initiation and progression. Focusing on
the luminal compartment we investigated a selection of
novel and less characterised surface markers identified
from the lyoplate screen and confirmed expression in a
further 3-5 donor samples (Fig. 4a). The markers were
selected based on the following criteria: (i) dominant ex-
pression in the LP population (CLA, CD15s and CD15),
(ii) high expression in the luminal population (CD13,
CD282, TRA-1-81 and SSEA-4), (iii) moderate expres-
sion in the luminal population (CD63 and CD151) or
(iv) dominant expression in the ML population (CD166).
Although CD73 and CD75 markers were strongly
expressed in the stromal compartment, positive cells
were detected in the luminal compartments and were in-
cluded for further analysis. CD166 and CD151 were also
selected for further investigation. CD166 and CD151
have previously been detected in the ML and basal com-
partments, respectively; however, detection in the LP
compartment is not well documented and warranted
confirmation in a further 3-5 donor samples (Fig. 4a).
FC analysis confirmed expression patterns reported in
the lyoplate screen. However, we observed a range of
positive cells in the luminal compartments between the
different donor samples (Fig. 4a). CD13 and CD73 sur-
face markers exhibited at least a twofold range of posi-
tive cells (Fig. 4a). CD15s, CD15, CD282 and CLA
displayed a wide range of positive cells, where some
donor samples exhibited a lower proportion of positive
cells, between 2.5% and 33%, for these markers whilst
other donors contained 50% to 100% of LP cells express-
ing these markers (Fig. 4a), showing the disparate vari-
ability of marker expression on human breast cells. The
proportion of cells that were positive for surface markers
in the ML population also varied between donor samples
(Fig. 4a). Again, whilst proportions differed between the
screens and the further validation assays, the trend of
positivity was the same, i.e., CD13 expression was most
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Fig. 3 Validation of positive surface markers. A Heatmap showing expression of the positive detected surface markers antibodies of basal, LP, ML
and stromal populations from the Lyoplate screen analysis. B Example histograms of show intensity staining for CD9, CD10, CD24 and CD39
compared with isotype controls (red) and the two replicate antibody screens (black and grey) in basal, LP, ML and stromal cells on a log scale. C
11 positive surface markers that were selected to validate the Lyoplate screen in human mammary epithelial and stromal subpopulations. Values
represent the mean percentage of expression followed by the range of expression in bracket). ? represent n = 2 independent human breast
donor samples, otherwise n = 3
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Table 1 Minimum and maximum signal intensities. Cell surface markers with 1.5 log fluorescence intensities or greater are
highlighted in the basal (blue), luminal progenitor (green), mature luminal (purple) and stromal (orange) compartments

Basal Luminal Progenitor

Mature Luminal stromal

Lyoplate screen 1 Lyoplate screen 2 Lyoplate screen 1 Lyoplate screen 2 1 Lyoplate screen 1 Lyoplate screen2

Antibody  Median rSD Min Max Logspread  Median rSD Min Max logspread  Median rSD Min Max logspread  Median rSD Min Max logspread  Median rSD Min Max logspread  Median rSD Min Max logspread  Median 1SD Min Max logspread  Median rSD Min Max Logspread
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15 767 1044 103 €25 0O 23 639 141 705 15 624 683 168 8812 15 a8 68 178 7181 15 a7 728 169 1097 2 616 1081 167 5108 1 26 138 62 5993 15 05 a1 78 a2 1
co1ss 2% 15 144 52 0 s a7 134 2065 1 a8 658 171 376 1 480 38 168 3987 1 36 314 166 1960 1 420 385 157 5160 15 157 708 81 675 0 13 12 91 2w 1
18 E3 1 17 1 27 141 18 287 1 638 318 18 304 1 38 275 186 146 1 371 497 157 11183 2 36 24 172 20 1 10 231 75 188 1 25 303 88 w2 1
o2a 23 375 141 765 0 1248 1072 136 3400 1 1554 983 182 6125 15 1695 980 161 5989 15 1705 972 166 SeeE 15 1312 956 176 5705 15 10 104 82 150 1 1 2 8 w2 1
Co26 204 133 101490 1 24 15 107 1827 1 239 g4 130 4885 1 263 38 10 2682 1 05 615 14 2267 1 203 s19 17 4 1 6% %07 79 s202 15 427 61 71 e23 15
b29 308 128 144 2488 1 269 119 147 asa0 1 288 957 171 1564 1 339 130 182 549 15 336 112 169 6194 15 364 428 166 6506 1S 288 449 78 424 1 28 217 75 33 1
b4 333 1370 134 43 1S B4 804 147 03 1 205 182 11 2407 2 1617 748 164 S84 15 259 019 160 18646 2 1972 1366 171 18629 2 227 2027 83 1ams 2 1360 1168 78 16873 2
D36 301 845 136 8768 1S 938 2086 155 12793 2 25 036 18 1797 1 a2 791 161 3087 1 265 937 162 2917 1 23 200 16 %7 0 8 1150 73 871 15 778 1721 78 s 15
D30 360 491 134 6776 1S 73 s 107 M5 1S 00 117 133 1203 1 107 1818 135 7181 15 38 713 124 753 15 1289 1674 115 6736 15 1 us7 77 1502 2 897 1165 77 ses6 15
cpao 173 ss6 %8 81 0 232 244 105 2050 1 2 & 133 69 0 31 02 127 852 0 01 78 us 49 0 24 747 108 96 0 125 68 53 65 0 144 957 51 s 0
Coaa 973 66 141 3400 1 1599 864 152 5561 15 538 503 168 5595 15 a3 373 161 6862 15 at0 299 154 3073 1 487 465 141 8500 15 1017 1003 76 6830 15 2063 1854 76 11686 2
coas  aes 835 107 34 1 826 a2 107 1972 1 318 735 133 496 1 20 846 130 1907 1 205 421 119 3015 1 28 882 14 1638 1 153 1024 53 330 1 815 317 s6 166 1
a6 207 663 101 52 0 207 131 105 1450 1 64 368 127 2722 1 725 a1 11 2% 1 534 338 19 2060 1 &8 476 10 323 1 78 129 51 o141 1 134 874 2 9% 0
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o 231 131 1381031 0 20 126 188 1206 1 259 579 164 1152 256 487 184 571 0 258 624 153 931 0 205 a8 156 893 0 140 541 84 2089 1 20 152 84 047 1
71 s 695 135 71 0 271 931 13 6% 0 278 508 158 &2 293 97 14 80 0 259 605 153 697 0 268 714 153 697 0 166 786 80 60 0 172 209 80 &0 0
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frequently detected in the LP and stromal compartments
(Figs. 2 and 4a). These data highlighted the complexities
of surface marker expression and that inter-individual
variation did not deviate expression patterns in the dif-
ferent epithelial and stromal populations.

To interrogate whether expression of surface makers
enriches proliferative capacity in the LP population,
purified LP cells were seeded into colony-forming assays.
Surprisingly, only cells that were positive for CD13,
CD15s or TRA-1-81 surface markers had increased
colony-forming capacity (CFC), with the rest of the anti-
bodies tested showing no differences in CFC between
cells positive and negatively expressing these markers
(Fig. 4b). Previous reports show that ALDH enriches for
detection of progenitor/stem activity [3, 10, 36]. Asses-
sing the differential expression of ALDH and the indi-
vidual surface marker, we resolved the LP population
into four subtypes: ALDH+surface marker Ab+, ALDH+
Ab-, ALDH-Ab+, ALDH-Ab- groups (Figure S5a).
Twelve surface markers were assessed for co-expression
and only CD73, SSEA-4 or TRA-1-81 surface markers
overlapped with ALDH expression. For instance, 6.8% of
LP cells co-expressed ALDH and CD73 compared to
1.6% of LP cells that expressed CD73 only. Similar pat-
terns were observed for the other two markers, with

7.0% of LP cells being ALDH*SSEA-4" vs 3.6% LP cells
SSEA-4" and 13.2% of LP cells expressed ALDH " TRA-1-
81" vs 5.0% TRA-1-81" LP cells (Figure S5a). The
remaining markers were either equally distributed be-
tween ALDH positive and negative expressing cells (i.e.
CD13, CD282, CD63, CD75 or CLA) or had inverse ex-
pression with ALDH expressing cells (i.e. CD15s, CD151,
CD16 or CD15) (Figure S5a). Interestingly, majority of
ALDH positive cells were also CD13 and CD282 positive,
whilst the remaining markers only contained a smaller
proportion of co-expression with ALDH positivity (Figure
S5a). This result demonstrates even greater heterogeneity
of the LP progenitor population beyond that can be fur-
ther refined by CD markers and ALDH expression. Fur-
thermore, colony-forming assays show that co-expression
of CD73, CD282 or TRA-1-81 cell surface markers to-
gether with ALDH enriches progenitor capacity. Co-
expression of ALDH and CD151 or CD15 markers in-
creased progenitor capacity compared to cells positive for
CD151 or CD15 alone (Figure S5b). An exception to this
finding was CLA. CLA labelled cells had the lowest pro-
genitor activity, suggesting CLA expression may indicate a
committed LP cell subtype (Figure S5b). Showing that
some of the novel/less characterised markers identified
may determine different LP cell states.
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Fig. 4 Lyoplate screen identifies novel luminal progenitor markers. A Analysis of variability in expression of 12 surface markers enriched in the
luminal progenitor population. Bar charts show percentage of positive marker cells in each epithelial/stromal population, all error bars represent
SEM. n = 3-5 independent human breast donor samples. B Bar chart showing the colony-forming ability of the luminal progenitor population
from positive and negative surface marker expressing cells. n = 3-5 independent human breast donor samples, all error bars represent SEM.
Statistical significance was calculated using two-tailed t test. Statistically significant differences are indicated by asterisks. * P < 0.05, ** P < 0.001

Discussion

This screen uncovered greater diversity of surface marker
expression among epithelial and stromal cell lineages in
normal breast tissues than what is currently reported and,
whilst not a complete study of all possible cell surface
markers, is a starting point for generating an overview of
all surface marker expression patterns on breast epithelial
and stromal cells. We identified pan-breast tissue markers
such as CD9, CD54, CD59, CD164 or HLA-A,B,C that

were strongly expressed in majority of epithelial and stro-
mal breast cells, luminal lineage enriched markers includ-
ing CD13, CD15, CD24, CD75, CD166, CD227, CD282
and markers that were enriched within the basal compart-
ments, such as CD49a, CD90, CD200, CD271. This screen
confirms CD expression of several well-characterised
breast epithelial markers (CD10, CD24, CD44, CD227),
and identified several novel surface markers including
CD15s, CD75, CD164, CD282, TRA-1-81, among others.
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Here we compiled a searchable dataset of surface
marker expression for human breast epithelial and stromal
populations that allows greater ability to refine the CDs
that are functionally important for human breast develop-
ment. For instance, we found that CD13 a proteolytic en-
zyme also known as Anpep, was strongly expressed in the
LP population. Anpep” knockout mice have delayed
mammary gland development during pregnancy attributed
to reduced branching morphogenesis within the duct [37].
Furthermore, transgenic mice that overexpress human
ANPEP display a reciprocal phenotype including mam-
mary glands that are hyper-branched during pregnancy
[37]. The LP population is known as the secretory luminal
cell type involved in alveologenesis and milk production
during pregnancy. The reporting of CD13 expression in
the luminal compartment, especially the LP population
supports the hypothesis that CD13 positive cells may con-
tribute to breast morphogenesis during pregnancy. This
finding demonstrates the potential for our screen in iden-
tifying different cell states within the epithelial compart-
ment, data from which can be used to explore the role of
these cells within the breast tissue development.

Breast cellular heterogeneity remains a key obstacle
in understanding the transition of normal cells to-
wards cancer and how different breast cancer sub-
types develop. Our screen provides a starting point
for identifying novel as well as other less charac-
terised cell surface markers that could be useful for
diagnostic as well as predictive of disease progression
or defining invasive tumours. The ability to identify a
cell type based on marker expression/s that enables
cancer development can then be used as a therapy
target. CD44 has been the subject of intense breast
cancer research for several decades and is considered
one such example of a surface marker that is used
diagnostically and for therapy. The COSMIC database
reported 3.7% of breast cancers overexpress CD44
whilst 2.8% of breast cancer samples contain muta-
tions in CD44 [38]. However, the data surrounding
the role of CD44 in cancer stem cells (CSCs) or its
prognostic ability can be conflicting [39]. This screen
reveals that CD44 is highly expressed in all normal
breast epithelial populations and corroborates previ-
ous immunostaining [5]. Therefore, it is evident that
CD44 marks several cell states in normal breast and
breast cancer tissues, including cells that have CSC
and non-CSC roles. Our screen assessed several
known CD markers and identified several novel (i.e.
CD63, CD98 and CD164) and less characterised (i.e.
CD46, CD107a and CD321) breast epithelial markers,
of which are overexpressed in at least 5% of breast
cancer samples in the COSMIC database [38]. Many
studies reporting overexpression of particular markers
are not always substantiated when considering the
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proportion of expression detected in the normal tis-
sue. For example, CD9 is overexpressed in 10% of
breast cancers [38] and has been implicated in breast
tumour invasion [40], yet CD9 is expressed in ap-
proximately 90% of all normal breast epithelial cells,
highlighting that CD9 may mark diverse cell functions
in the different epithelial cell lineages. Use of this
dataset can determine the cell types containing ex-
pression of the surface marker in the normal breast
tissue and whether these CD markers are then over-
expressed in cancer.

Focused investigations on a single surface marker can
assist in understanding biological function of that particu-
lar marker. However, combinatorial analysis of markers
will enhance our understanding of cell states in normal
breast biology and tumour heterogeneity. Multiplatform
single cell technologies have rapidly identified the prote-
omic landscape of normal breast tissue and breast cancer.
However, the use of surface markers without a clear un-
derstanding of the expression pattern in breast epithelial/
stromal populations may lead to interpretation difficulties
of the omic data generated. Mass cytometry/imaging mass
cytometry techniques have enhanced the single cell
phenotypic capacity by simultaneously detecting up to
triple the number of markers achieved by conventional
flow cytometry. Greater proteomic and spatial architecture
atlas of the breast tumour ecosystem [22, 41, 42] and nor-
mal tissue across aged breasts [43] has yielded better con-
nections between different cell lineages. However, these
datasets are limited by the availability of known surface
markers for breast tissue including CD44, Her2/CD340,
EGFR, CD24 markers [22, 42, 44]. A recent publication
utilised several less described surface markers in relation
to normal breast biology including CD47, CD54, CD73
and CD95 [26]. Using our resource, CD47 and CD54 were
detected in all breast cell subpopulations at a frequency of
30-80% for each cell population, whilst CD73 and CD95
positive cells were predominately located in the LP and
stromal compartments.

Conclusions

Our resource can enhance multiplatform system such as
complex surface marker staining, mass cytometry, single
cell omic studies for cell lineage clarity. Using this sur-
face marker dataset, we have identified cell lineage anti-
bodies in addition to the standard panel of Lineage/
EpCAM/CD49f which can be used to investigate the
variation in epithelial and stromal compartments. These
panels include (but not limited to) CD15s/CD73/CLA
for further investigation into the LP compartment, whilst
targeting the ML population can be carried out with the
addition of CD166/CD227/CD340. Investigating hetero-
geneity within the basal compartment can be performed
using CD29/CD142/CD271 antibodies, and antibodies
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targeting the stromal compartment include CD34/
CD39/CD140b. These panels can be used in conven-
tional cytometry for recoverable cellular material and
further functional studies into normal breast and cancer
development. Currently, mass cytometry/imaging mass
cytometry datasets are limited to using known and avail-
able antibodies and many cell surface markers have not
been previously reported. Multiplexing many of the sur-
face markers that were identified in this study allows fur-
ther investigation into spatial locations and relationships
between different cell types in order to understand nor-
mal/disease development and functions in the breast.
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