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Abstract

Backgrounds: In contrast to developed countries, breast cancer in China is characterized by a rapidly escalating
incidence rate in the past two decades, lower survival rate, and vast geographic variation. However, there is no
validated risk prediction model in China to aid early detection yet.

Methods: A large nationwide prospective cohort, China Kadoorie Biobank (CKB), was used to evaluate relative and
attributable risks of invasive breast cancer. A total of 300,824 women free of any prior cancer were recruited during
2004–2008 and followed up to Dec 31, 2016. Cox models were used to identify breast cancer risk factors and build
a relative risk model. Absolute risks were calculated by incorporating national age- and residence-specific breast
cancer incidence and non-breast cancer mortality rates. We used an independent large prospective cohort,
Shanghai Women’s Health Study (SWHS), with 73,203 women to externally validate the calibration and
discriminating accuracy.

Results: During a median of 10.2 years of follow-up in the CKB, 2287 cases were observed. The final model
included age, residence area, education, BMI, height, family history of overall cancer, parity, and age at menarche.
The model was well-calibrated in both the CKB and the SWHS, yielding expected/observed (E/O) ratios of 1.01 (95%
confidence interval (CI), 0.94–1.09) and 0.94 (95% CI, 0.89–0.99), respectively. After eliminating the effect of age and
residence, the model maintained moderate but comparable discriminating accuracy compared with those of some
previous externally validated models. The adjusted areas under the receiver operating curve (AUC) were 0.634 (95%
CI, 0.608–0.661) and 0.585 (95% CI, 0.564–0.605) in the CKB and the SWHS, respectively.

Conclusions: Based only on non-laboratory predictors, our model has a good calibration and moderate
discriminating capacity. The model may serve as a useful tool to raise individuals’ awareness and aid risk-stratified
screening and prevention strategies.
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Introduction
Breast cancer is the most common and rapidly increas-
ing female malignancy in China [1]. Compared with de-
veloped countries, breast cancer in China is
characterized by a rapidly increasing incidence rate,
lower survival rate, and vast geographic variation. The
annual percent increase in breast cancer incidence was
4.5% and 9.1% in urban and rural areas of China, re-
spectively [2]. In 2015, there were 304,000 newly diag-
nosed cases and 70,000 deaths from breast cancer, with
an incidence rate of 54.3 per 100,000 in urban areas and
34.5 per 100,000 in rural areas [3]. The 5-year relative
survival rates during 2003–2015 only ranged from 73.1%
to 82.0% in Chinese women (55.9% to 72.9% for rural
women), which were much worse than that of 90% for
American women [4]. Early detection is the cornerstone
of preventing morbidity and mortality due to breast can-
cer. However, it was impeded by the lack of individuals’
awareness and national scale screening program.
Following the pioneering model derived by Gail et al.

in 1989 [5], multiple models have been developed [6].
However, most models were developed in the western
populations and may not be applicable to Chinese
women, even the Gail model modified for Chinese-
Americans [7]. A previous meta-analysis showed that
these models tended to overestimate the risk of Asia
women [8], and some predictors, such as the number of
prior breast biopsies, are not available for most Chinese
women. Several models have also been developed in
China [9–15]. However, most of them were developed
using a case-control design, which is subjected to selec-
tion and recall bias. Additionally, all these studies were
conducted with participants from the eastern provinces
of China, where breast cancer incidence rates are higher
than those in the other areas of China [1]. More import-
antly, of the seven models, only one, which was con-
ducted in Shandong province, has been externally
validated in a small cohort with only 34 cases. Therefore,
a validated breast cancer risk prediction model based on
data from Chinese women with good generalizability is
more than timely and much needed.
In this study, we used data from a large nationwide pro-

spective cohort, the China Kadoorie Biobank (CKB), as
well as national age- and residence (urban and rural)-spe-
cific invasive breast cancer incidence rates and non-breast
cancer mortality rates to develop a risk prediction model
considering competing risk, and used data from another
large prospective cohort, the Shanghai Women’s Health
Study (SWHS), to independently validated the model.

Methods
Data for model development
Data from the CKB, a large-scale prospective study, was
used to derive the relative risk (RR) model [16]. The

study took place in 10 study sites, 5 in urban area (Qing-
dao, Harbin, Haikou, Suzhou, Liuzhou) and 5 in rural
area (Pengzhou, Tianshui, Hui county, Tongxiang,
Liuyang) of China. The regions were selected according
to local disease patterns, exposure to certain risk factors,
population stability, quality of death and disease regis-
tries, local commitment, and capacity. Potential eligible
participants were identified through official residential
records. Invitation letters (with study information leaf-
lets) were delivered door-to-door by local community
leaders or health workers. The estimated population re-
sponse rate was ~ 30% (26–38% in the five rural areas
and 16~50% in the five urban areas). Overall, a total of
512,715 participants aged 30–79 years old, including
302,510 (59.0%) women were recruited during 2004–
2008. All participants had completed a questionnaire
and had physical measurements taken.
Incident cases of invasive breast cancer and mortality

were identified chiefly through the linkage with the na-
tional health insurance claim database and disease regis-
tries, supplemented with local residential records and
annual active confirmation. The International Classifica-
tion of Diseases, 10th Revision was used to code all
breast cancer (C50) by trained staff who were blinded to
baseline information. We excluded women who had
missing data for any reproductive factors or who pro-
vided implausible data on age at menarche or age at first
live birth. We further excluded women who reported
previous histories of cancer at baseline or had missing
data for body mass index (BMI), leaving 300,824 women
in the analysis.

Data for external validation
Independent data from the SWHS was used to externally
validate the derived model based on CKB data [17]. In
brief, 74,942 women were recruited from seven urban
communities in Shanghai, China during 1996–2000.
At baseline, all information involved in the current

analysis was collected through in-person interviews and
anthropometric measures following standard protocol.
Incident breast cancer cases (ICD-9 code 174) were
identified by a combination of active re-surveys every 2
to 4 years and annual linkage with the Shanghai Cancer
Registry and the Shanghai death certificate registry. The
cancer diagnosis was verified through home visits and
reviews of medical charts obtained from the hospitals
where the patients were diagnosed. Applying the same
exclusion criteria as the CKB data, 73,203 SWHS partici-
pants were included.

Statistical Methods
Relative risk prediction model
Participants were considered at risk from the enrollment
to the diagnose of invasive breast cancer, death, loss to
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follow-up, or Dec 31, 2016, whichever came first. Cox
proportional hazards model was used to estimate the
hazard ratios as the metric of relative risk (RR) for each
variable in the model, with age as the timescale, and
stratified jointly by 10 study sites and age at enrollment
in a 5-year interval (i.e., 100 strata to control the con-
founding by age and study sites).
We initially considered the following variables to con-

struct the model: education, tobacco smoking, alcohol
drinking, total physical activity, consumption of soybean,
BMI, height, first-degree family history of overall cancer,
menopausal status, number of live birth, age at menar-
che, total duration of breastfeeding, and usage of contra-
ceptives. Because we did not collect information on
family history of breast cancer, we used the family his-
tory of overall cancer as a surrogate. The continuous
variables were converted to categorical variables to re-
duce overfitting. Cutoffs of BMI were chosen according
to the well-established criteria for Chinese [18]. And, the
quartile of height was used as cutoffs of height. For other
predictors, cutoffs were chosen when the model
achieved the smallest Bayesian Information Criterion
(BIC). We assessed the proportional hazards assumption
by the Schoenfeld residuals. In line with previous studies
[19, 20], we found only BMI was subject to time-varying
effects. Therefore, we further split follow-up time into
two age intervals at 50 years and added an interaction
term of attained age and BMI. We first assessed all vari-
ables with P < 0.05 together in the model. Variable selec-
tion was repeated using stepwise backward elimination,
which yielded the same result. The variables were con-
verted to ordinal variables if their RRs were proportional
to levels and no evidence of nonlinearity was detected
using fractional polynomials. All first-order interactions
were tested one by one using the likelihood ratio test
comparing models with and without the interaction
term. For all variables in the final model, the lowest risk
category was regarded as the reference group, to facili-
tate population attributable risk (PAR) computation.
Given the higher incidence rate of breast cancer in

urban areas than that in rural areas, we also tempted to
build residence (urban/rural)-specific models, i.e., vari-
able selection and predictors coefficients were separately
done in urban and rural datasets. Interestingly, we found
that the relative risks were similar between urban and
rural areas, and there was no significant interaction be-
tween area and risk factors (see Additional file 1). There-
fore, we used the same set of relative risk estimates for
all participants in the CKB to maintain model parsimony
and to more reliably estimate hazard ratios.

Absolute risk projection
We used an approach similar to that described by Gail
et al. to project absolute risk from initial age to final ag

e[5, 21]. Briefly, the absolute risk that a woman who is
age a and who has risk factors x will develop breast can-
cer by age a + τ is

P a; τ; xð Þ ¼
Z aþτ

a
h1 t; xð Þ exp −

Z t

a
h1 u; xð Þ þ h2 uð Þð Þdu

� �
dt

ð1Þ

where h1(t, x) is the age-specific hazards of developing
breast cancer and h2(t) is the age-specific hazards for
competing causes at age t. We can estimate h1(t, x) =
h10(t)RR(x) as the product of age-, residence-specific
baseline hazards h10(t) and relative risks RR(x) from the
relative risk model described above. RR(x) are age-
constant for all risk factors x except for BMI, which has
two different RR for < 50 and ≥ 50 years old.
To have a robust and generalizable model, we calcu-

lated the baseline age- and residence-specific hazards
h10(t), by multiplying age-specific incidence rates in
2014 from the National Central Cancer Registry of
China (NCCR) [22] by one minus population attribut-
able risk (PAR). The PAR was estimated using the for-
mula described by Bruzzi et al. [23] and can be
interpreted as the fraction in the incidence of breast can-
cer that would have been reduced during follow-up if all
six predictors in the relative risk model (i.e., education,
BMI, height, family history of overall cancer, parity, and
age at menarche) took the lowest risk category of predic-
tors. PAR of 1 indicates all breast cancer incidence attri-
bute to the factors, while PAR of 0 indicates no breast
cancer incidence attribute to these factors. The distribu-
tion of risk factors in four groups defined by attained
ages (below/above 50 years old) and residence (urban/
rural) were different, so we estimated the PAR separately
in the four above-mentioned groups. Further, death from
causes other than breast cancer will prevent the occur-
rence of breast cancer, of which risk increased with age.
To account for the competing risk, we calculated age-
and residence-specific mortality rates of non-breast can-
cer, h2(t), as age- and residence-specific all-cause mortal-
ity rates in 2014 from Health Statistics Yearbook [24]
minus age- and residence-specific breast cancer mortal-
ity rates in 2014 from the NCCR. These incidence and
mortality rates are listed in Additional file 2.
As a sensitivity analysis, we built an absolute risk

model using breast cancer incidence rates and non-
breast cancer mortality rates from the CKB cohort to
understand calibration of internal validation. As another
sensitivity analysis, we built an absolute risk model using
breast cancer incidence rates and non-breast cancer
mortality rates from Shanghai in the external validation
(calibrated model) to evaluate whether robust local rates,
if available, can improve model performance.
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Validation
The above development process was first done using
whole CKB data and repeated in a random two-thirds of
the CKB data (derivation subcohort). We found that the
same set of predictors was selected and the RRs for pre-
dictors were similar using the above-mentioned two
methods (Additional file 3). We used data splitting ap-
proach for internal validation, i.e., the model was fitted
to random two-thirds of the CKB data and evaluated on
the remaining one-third (test subcohort). To have more
precise estimations of model parameters, we still used
the model developed from the whole CKB dataset for
external validation in the SWHS dataset. We assessed
calibration by comparing the expected number of breast
cancer cases (E) with the observed number (O) overall
and for subgroups defined by predictors. The calibration
plot was drawn to examine the agreement across deciles
of predicted risk in the total population. The projected
probability of breast cancer was calculated from the age
at enrollment to the younger of either the age at last
follow-up or the age on Dec 31, 2016, for the CKB par-
ticipants or Dec 31, 2014, for the SWHS participants.
The 10-year projected risk was also estimated. The 95%
confidence intervals (CIs) of E/O ratios were calculated
based on Poisson distribution. An E/O ratio above one
indicates that the model overestimates cancer risk, and
an E/O less than one indicates that the model underesti-
mates cancer risk. Discrimination was quantified by cal-
culating the area under the receiver-operating
characteristic curve (AUC), also known as c-statistics,
for 10-year risk model. Age- and residence-adjusted
AUC was also assessed to eliminate the effect of age and
residence. Higher AUC indicates higher discriminating
ability, where random classification results in an AUC of
0.5 and perfect discrimination results in 1. To further as-
sess the discriminating accuracy, we estimated the RRs
comparing different quintiles of predicted risk. We also
estimated a range of performance indices corresponding
to a series of cut-offs ranging from 0.4% to 2% in both
the CKB and the SWHS. The indices included percent
of high-risk population, sensitivity, specificity, positive/
negative predictive value (PPV/NPV), and numbers
needed to be screened to confirm one case in the next
10 years (NNS, one divided by the PPV).
The calculation of absolute risk was performed using

SAS (version 9.4, SAS Institute Inc.), and all other statis-
tical analyses were performed using Stata (version 14,
StataCorp).

Results
Of the 300,824 women in the CKB cohort included in
the RR model development, the mean age at recruitment
was 51.4 years. Compared with those in rural areas,
women in urban areas were older, more educated, more

overweight or obese, taller, and were more likely to have
positive overall cancer family history, early age at menar-
che, and less likely to have multiple children (Table 1).
Compared with women in urban areas of the CKB,
women in the SWHS had similar ages, BMI, and number
of live births, but tended to be more educated, taller, to
have more relatives diagnosed with cancer, and to have
an earlier age at menarche.
During a median of 10.2 years of follow-up in the

CKB, 2287 women developed invasive breast cancer.
The final age- and study site-stratified model included
education, BMI, height, family history of cancer, par-
ity, and age at menarche (Table 2). The association
between BMI and breast cancer risk was non-
significant in women younger than 50 years and was
positive associated in women above this age (test-for-
interaction was significant). No other significant inter-
action between predictors was found. Based on the
relative risk model and distribution of risk factors, the
PARs estimated in urban areas were 0.74 for women
younger than 50 years and 0.76 for women 50 years
and older. The corresponding PAR estimates in rural
areas were 0.63 and 0.65, reflecting fewer cases were
attributed to the six predictors in the relative risk
model in the rural areas.
Of the 73,203 women in the SWHS, 1409 were di-

agnosed with breast cancer during a median of 16.1
years of follow-up. The CKB model predicted 1320
cases in the SWHS, yielding an E/O of 0.94 (95% CI,
0.89 to 0.99). The number of cases was statistically
significantly underestimated among women aged 60
years and older, women with lower education, women
shorter than 150.2 cm, women without family history
of overall cancer, women with multiple live births,
and women with age at menarche at 15–16 years. The
model statistically significantly overestimated risk for
women with 2 or more affected first-degree relatives.
For all other categories, there was good agreement
between the observed and predicted number of breast
cancers (Table 3). The calibration plot showed agree-
ment across deciles of predicted risk, except for the
second-lowest decile (Fig. 1b). We further recalculated
the absolute risk using Shanghai local rates and found
a better calibration, with an E/O (95% CI) overall of
1.01 (0.96–1.06) (see Additional file 4).
As a reference, we also present calibration results for

the test subcohort of the CKB study (Table 3 and Fig.
1a). Overall, the CKB model predicted 760 cases in the
CKB test subcohort, yielding an E/O (95% CI) of 1.01
(0.94–1.09). The model statistically significantly overesti-
mated the risk of women in rural areas but underesti-
mated the risk in urban areas. In the sensitivity analysis,
we recalculated the absolute risk using CKB rates (see
Additional file 4), and found the calibrated E/Os were
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Table 1 Baseline characteristics of women by residence and dataset in China Kadoorie Biobank (CKB) and Shanghai Women’s Health
Study (SWHS)

CKB SWHS

Rural Urban Urban

Derivation Validation Derivation Validation

No. of participants, n 111,346 55,612 89,204 44,662 73,203

Cases, n 529 267 1007 484 1409

Age in years, mean (SD) and %

Continuous, years 50.5 (10.2) 50.5 (10.2) 52.6 (10.7) 52.6 (10.7) 52.5 (9.1)

30- 2.4 2.4 1.7 1.5 --

35- 15.8 15.7 11.6 11.4 --

40- 18.3 18.4 15.9 16.1 28.3

45- 13.2 13.2 14.2 14.6 20.8

50- 17.6 17.5 17.1 17.4 14.1

55- 13.6 13.6 13.5 13.4 11.1

60- 8.9 9.0 9.7 9.3 12.8

65- 6.1 5.9 9.1 9.2 13.3

70- 3.7 3.8 6.4 6.4 0.6

75- 0.4 0.4 0.8 0.8 --

Highest education, %

No formal school 31.9 31.5 17.3 17.1 10.6

Primary school 40.3 40.5 20.4 20.0 10.8

Middle school 21.6 21.6 29.9 30.4 37.2

High school 5.6 5.8 23.2 23.3 28.0

College/university 0.6 0.6 9.2 9.1 13.5

Ever smoker, % 5.6 5.5 4.4 4.6 2.8

Ever weekly drinker, % 3.2 3.2 2.6 2.6 2.3

BMI, mean (SD) and %

Continuous, kg/m2 23.5 (3.4) 23.5 (3.4) 24.2 (3.5) 24.3 (3.5) 24.0 (3.4)

< 18.5 5.2 5.1 3.2 3.0 3.4

18.5–23.9 53.8 53.4 46.6 46.5 49.9

24.0–27.9 31.2 31.6 36.1 36.3 34.6

≥ 28 9.9 9.9 14.0 14.2 12.2

Height, mean (SD) and %

Continuous, cm 153.2 (5.9) 153.2 (5.9) 155.3 (5.9) 155.3 (5.9) 157.5 (5.5)

< 150.2 29.4 29.4 19.3 19.1 10.3

150.2–154.1 26.3 26.1 23.6 23.5 17.6

154.2–158.1 24.1 24.3 26.1 26.1 27.9

≥ 158.2 20.2 20.1 31.0 31.3 44.2

No. of affected first-degree relatives, %

0 85.2 85.5 80.6 80.4 74.7

1 13.0 12.7 16.8 16.9 21.5

≥2 1.8 1.9 2.6 2.7 3.8

Postmenopausal, % 50.2 50.2 55.0 55.3 49.2

No. of live birth, mean (SD) and %

Continuous 2.5 (1.4) 2.5 (1.4) 1.9 (1.2) 1.9 (1.2) 1.8 (1.2)
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1.03 (0.95–1.13) and 0.99 (0.88–1.12) for participants in
the urban and rural areas, respectively.
Discriminating accuracy of the 10-year risk model is

presented in Table 4 and Fig. 1c, d. The overall AUC
was 0.658 (95% CI, 0.631–0.684) in the CKB test subco-
hort and attenuated to 0.634 (95% CI, 0.608–0.661) after
adjusting for age and residence. External validation re-
sulted in an overall unadjusted AUC of 0.573 (95% CI,
0.553–0.593) and an age-adjusted AUC of 0.585 (95%
CI, 0.564–0.605).
And compared with women in the lowest quintile of

10-year predicted risk, the adjusted RR for women in the
highest quintile was 6.74 in the CKB (95% CI, 4.57–9.92)
and 2.55 in the SWHS (95% CI, 2.06–3.16) (Table 5).
Larger RRs were observed in women aged 50 years and
older and women in urban areas. The stratifying effi-
ciency of our model at different 10-year predicted risk
cut-offs in the CKB and SWHS is shown in Additional
files 5 and 6.

Discussion
We developed a prediction model for invasive breast
cancer among Chinese women aged 30 years and older

using data from a large nationwide prospective cohort
and validated its performance in an independent cohort
in Shanghai. The model includes six factors in the rela-
tive risk prediction (education, BMI, height, family his-
tory of overall cancer, parity, and age at menarche) and
two additional factors in the absolute risk prediction
(age and residence area). The model was well-calibrated
in both the CKB and SWHS cohorts, though there were
under- or overestimation of risk in some risk factor
strata. After eliminating the effect of age and residence,
we found the adjusted AUC was 0.634 and 0.585 in the
CKB and SWHS, respectively, which are comparable
with those of some previous externally validated models
[9, 25].
Overall, our model fits well in the CKB and underesti-

mated (6%) the risk of women in the urban area in the
SWHS. To have a good model generalization, we have
applied China’s national age and residence (urban/rural)
rates in the absolute risk calculation, instead of regional
rates like previous studies in China [9–15]. Therefore,
the agreement of the national rates with rates in valid-
ation datasets may play a major role in the calibration.
CKB’s cancer incidence and mortality rates were

Table 1 Baseline characteristics of women by residence and dataset in China Kadoorie Biobank (CKB) and Shanghai Women’s Health
Study (SWHS) (Continued)

CKB SWHS

Rural Urban Urban

Derivation Validation Derivation Validation

Nulliparous 0.8 0.9 1.9 1.9 3.3

1 21.1 21.3 50.8 51.2 54.9

2 38.6 38.2 23.6 23.2 21.1

≥ 3 39.4 39.6 23.7 23.7 20.8

Age at menarche, mean (SD) and %

Continuous, years 15.6 (1.9) 15.5 (1.9) 15.3 (2.0) 15.3 (2.0) 14.9 (1.7)

< 12 4.7 4.7 6.4 6.4 6.3

13–14 26.3 26.4 30.3 30.3 36.5

15–16 38.3 38.4 36.1 36.1 39.5

≥ 17 30.6 30.5 27.2 27.3 17.8

Total months of breastfeeding, mean (SD) and %

Continuous, months 42.4 (32.2) 42.5 (32.4) 24.0 (22.8) 23.9 (22.5) 15.5 (18.3)

0 2.2 2.4 6.3 6.3 20.2

1–23.9 36.5 36.5 64.1 64.1 56.6

24–35.9 17.4 17.2 12.1 12.1 9.9

36–47.9 14.2 14.0 7.0 7.1 5.9

≥ 48 29.6 29.9 10.4 10.3 7.4

Pill use, %

Never 91.2 91.4 88.7 88.8 78.6

Ever 8.8 8.6 11.3 11.2 20.4

Abbreviations: SD standard deviation, MET metabolic equivalent of task, BMI body mass index
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consistent with national rates during 2008–2013 [26],
resulting in the excellent calibration in the CKB. Despite
the overall concordance, the model overestimated the
risk of women in rural areas but underestimated the risk
in urban areas, reflecting that higher incidence rates in
urban areas and lower rates in rural areas in the CKB
cohort than the corresponding national rates (see

Additional file 2). Interestingly, although SWHS cohort
women were recruited around 10 years before the CKB
in Shanghai, one of the most developed cities in China,
the CKB model can still provide acceptable calibration
in the SWHS cohort. The slight underestimation was
caused by higher incidence rates of breast cancer in
Shanghai. In our sensitivity analyses of recalculating the

Table 2 Age- and study site-stratified RR (95% CI) for breast cancer in China Kadoorie Biobank

Cases Cases/PYs RR (95% CI)

(/100,000)

Highest education

No formal school 339 44.64 1.00 (reference)

Primary school 570 60.18 1.17 (1.11 to 1.23)

Middle school 653 84.82 1.37 (1.24 to 1.51)

High school 505 124.5 1.60 (1.39 to 1.85)

College/university 220 165.2 1.87 (1.54 to 2.27)

BMI at age < 50 years, kg/m2

< 18.5 21 98.83 1.00 (reference)

18.5–23.9 357 126.42 0.95 (0.84 to 1.07)

24.0–27.9 187 160.42 0.90 (0.71 to 1.14)

≥28 43 135.81 0.85 (0.60 to 1.21)

BMI at age ≥ 50 years, kg/m2

< 18.5 36 41.07 1.00 (reference)

18.5–23.9 642 66.66 1.25 (1.17 to 1.33)

24.0–27.9 683 94.59 1.57 (1.38 to 1.78)

≥28 318 118.27 1.96 (1.62 to 2.38)

Height, cm

< 150.2 382 51.58 1.00 (reference)

150.2–154.1 504 66.66 1.13 (1.09 to 1.18)

154.2–158.1 596 78.54 1.28 (1.18 to 1.39)

≥ 158.2 805 105.96 1.45 (1.28 to 1.65)

No. of first-degree relatives diagnosed with overall cancer

0 1795 71.63 1.00 (reference)

1 402 90.71 1.10 (0.99 to 1.23)

≥ 2 90 136.09 1.57 (1.27 to 1.95)

No. of live birth

Nulliparous 45 112.79 1.78 (1.29 to 2.45)

1 1067 101.84 1.66 (1.40 to 1.96)

2 719 74.19 1.41 (1.22 to 1.62)

≥ 3 456 47.58 1.00 (reference)

Age at menarche, years

< 12 187 114.7 1.52 (1.31 to 1.76)

13–14 748 88.12 1.32 (1.20 to 1.46)

15–16 837 74.27 1.15 (1.09 to 1.21)

≥ 17 515 58.77 1.00 (reference)

Abbreviations: BMI body mass index, PY person-year, RRs relative risk, CI confidence interval
Cox model was stratified by age at enrollment in 5-year interval (10 groups) and 10 study sites. All predictors above were included in the final model
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absolute risk using local rates, the above-mentioned cali-
bration errors diminished, confirming that our relative
risk model was robust and the errors were solely caused
by the mismatch between national rates and local rates
(see Additional file 4). A previous meta-analysis showed
that the Asian American Breast Cancer Study model

(AABCS), or Gail model for Asian Americans, overesti-
mated breast cancer risk for Asian women (pooled E/O
= 1.82, 95% CI 1.31–2.51) [7, 8]. This overestimation
was also observed in a recent cohort study in China (E/
O = 2.39, 95% CI 1.71–3.46) [9]. Similarly, we applied
the AABCS model to the CKB and SWHS data and

Table 3 Expected and observed number of breast cancer in test subcohort of China Kadoorie Biobank (CKB) and Shanghai Women’s
Health Study (SWHS)

Test subcohort of CKB SWHS

E O E/O (95% CI) E O E/O (95% CI)

Overall 760 751 1.01 (0.94–1.09) 1320 1409 0.94 (0.89–0.99)

Age at enrollment, years

< 50 372 357 1.04 (0.94–1.16) 735 688 1.07 (0.99–1.15)

50–59 277 256 1.08 (0.96–1.23) 377 394 0.96 (0.87–1.06)

≥ 60 111 138 0.81 (0.68–0.96) 208 327 0.64 (0.57–0.71)

Residence

Rural 351 267 1.31 (1.17–1.49) -- -- --

Urban 409 484 0.85 (0.77–0.93) 1320 1409 0.94 (0.89–0.99)

Highest education

Primary school or lower 333 299 1.11 (0.99–1.25) 143 195 0.73 (0.64–0.85)

Middle school 218 212 1.03 (0.90–1.18) 487 503 0.97 (0.89–1.06)

High school or higher 209 240 0.87 (0.77–0.99) 690 711 0.97 (0.90–1.05)

BMI, kg/m2

< 18.5 21 17 1.21 (0.76–2.08) 34 38 0.90 (0.66–1.27)

18.5–23.9 340 326 1.04 (0.94–1.17) 627 660 0.95 (0.88–1.03)

24.0–27.9 282 282 1.00 (0.89–1.13) 477 512 0.93 (0.85–1.02)

≥ 28 117 126 0.93 (0.78–1.12) 181 199 0.91 (0.79–1.05)

Height, cm

< 150.2 139 122 1.14 (0.96–1.38) 85 119 0.71 (0.59–0.86)

150.2–154.1 172 151 1.14 (0.97–1.35) 185 199 0.93 (0.81–1.07)

154.2–158.1 204 217 0.94 (0.82–1.08) 360 387 0.93 (0.84–1.03)

≥ 158.2 245 261 0.94 (0.83–1.06) 690 704 0.98 (0.91–1.06)

No. of first-degree relatives diagnosed with overall cancer

0 607 573 1.06 (0.98–1.15) 926 1023 0.91 (0.85–0.96)

1 126 144 0.87 (0.74–1.04) 316 329 0.96 (0.86–1.07)

≥ 2 27 34 0.80 (0.57–1.16) 77 57 1.35 (1.04–1.78)

No. of live birth

Nulliparous 14 12 1.17 (0.67–2.26) 52 58 0.89 (0.69–1.18)

1 340 353 0.96 (0.87–1.07) 852 822 1.04 (0.97–1.11)

≥2 406 386 1.05 (0.95–1.17) 416 529 0.79 (0.72–0.86)

Age at menarche, years

< 12 54 60 0.90 (0.70–1.19) 118 105 1.12 (0.93–1.37)

13–14 244 266 0.92 (0.81–1.04) 556 567 0.98 (0.90–1.07)

15–16 279 275 1.01 (0.90–1.15) 481 553 0.87 (0.80–0.95)

≥ 17 183 150 1.22 (1.04–1.45) 164 184 0.89 (0.77–1.04)

Abbreviations: BMI body mass index, PY person-year, RR relative risk, CI confidence interval, E expected number of cases, O observed number of cases, --
not applicable
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found an E/O of 1.89 (95% CI, 1.82–1.97) and 1.16
(1.10–1.23) for the CKB and SWHS, respectively. We
further recalibrated the AABSC model using rates from
China and still found an overall miscalibration (CKB: E/
O [95% CI], 0.94 [0.90–0.98]; SWHS: 0.67 [0.63–0.71])
and for most subgroups defined by the predicted risk
deciles (see Additional file 7).
In the external validation, we found a moderate AUC

of 0.585, which was better than or equivalent to those of
the AABCS model [8, 9, 25]. Matsuno et al. reported the
AUC of the AABCS model (including age at menarche,
age at first live birth, number of affected mothers, sisters,
and daughters with breast cancer, and number of previ-
ous benign biopsies) was 0.614 (95% CI 0.587–0.640) in
the validation among Asian-Americans [7], but AUC de-
creased to 0.54 in two independent validations con-
ducted in China [9] and Korean [25]. We found that the
age- and residence-adjusted AUCs of both the original
AABCS model and calibrated AABCS model in the CKB
and the SWHS data were all around 0.54 (see Additional

file 7). To our knowledge, only one model developed in
China was externally validated, with higher AUC (0.64,
95% CI 0.55–0.72), but few cases in their validation set
and same location of derivation and validation sets lim-
ited the robustness of the results [9]. Although several
models in China had statistically significantly higher
AUC by additionally including genetic information, the
lack of external validation precludes direct comparison
with our models [11, 14, 15].
The development of the CKB risk prediction model

has several public health implications. First, our model,
with the moderate discriminating ability and good cali-
bration, can facilitate allocation of preventive resources
under monetary and medical constraints and aid risk-
based screening strategies [27]. China’s breast cancer
2019 screening guidelines recommended an opportunity
for screening for women with average risk aged 40–44
years and biennial screening for women aged 45–69
years, which is mainly done by mammograph and sup-
plemented with breast ultrasonography and magnetic

Fig. 1 Area under the receiver-operating characteristic curve (AUC) and calibration plot for 10-year breast cancer risk model. Test subcohort of
China Kadoorie Biobank (a, c). Shanghai Women’s Health study (b, d)
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resonance imaging [28]. However, such an age-based
screening strategy ignores the large variation in breast
cancer risk in the population [29]. Given the limited
medical and economic resources in China, it is more
cost-effective to adopt a risk-based screening strategy
that can allocate resources to do intensive screening for
women at high risk, while less frequent screening for
women with low risk. Second, at the individual level, our
model can be used for individual risk counseling and
promote a healthy lifestyle. Knowing their own cancer
risk may motivate obese women to lose weight. Third, as
described by Gail et al., our model can also aid designing
preventive trials and estimating the absolute burden of a
specific population [27].
Our study has several strengths. We used data from

the largest nationwide prospective cohort study in China
to develop the relative risk model, augmented with
China national incidence and mortality rates, and vali-
dated in another large prospective cohort study. These

methods ensure our model to be robust and potentially
generalizable to both rural and urban areas in China.
Also, all predictors in the model are non-invasive, easy
to measure at low cost, which makes the model easily
applicable to the general population. We plan to develop
an online risk calculator to promote its use.
However, one must be aware of limitations of our study.

First, several established risk factors were not included in
the model. Although several studies included alcohol [29–
31], the low prevalence of alcohol intake in the CKB (see
Table 1) precluded the inclusion. Additionally, we did not
have data on family history of breast cancer, so we used a
family history of all cancers as a surrogate to capture the
inherited susceptibility of breast cancer as much as possible.
This surrogation may not be accurate such that the risk
was overestimated in women with two or more family
members having cancers. The history of benign breast dis-
eases was not collected in the CKB and we think it might
not be reliably collected in the general Chinese population.

Table 4 Discrimination of the CKB 10-year prediction model in the test subcohort of China Kadoorie Biobank (CKB) and Shanghai
Women’s Health Study (SWHS)

Test subcohort of CKB SWHS

AUCs (95% CIs) AUCs (95% CIs)

Basic modela

Overall 0.609 (0.581 to 0.637) 0.505 (0.487 to 0.524)

Residence-adjusted 0.533 (0.506 to 0.561) --

Full model

Overallb 0.658 (0.631 to 0.684) 0.573 (0.553 to 0.593)

Age-specific, year

< 50

30–34 0.542 (0.346 to 0.738) --

35–39 0.602 (0.520 to 0.684) --

40–44 0.661 (0.600 to 0.723) 0.562 (0.522 to 0.601)

45–49 0.579 (0.502 to 0.657) 0.545 (0.500 to 0.589)

≥ 50

50–54 0.638 (0.578 to 0.698) 0.566 (0.511 to 0.621)

55–59 0.594 (0.515 to 0.673) 0.611 (0.558 to 0.665)

60–64 0.682 (0.595 to 0.770) 0.604 (0.545 to 0.662)

65–69 0.740 (0.636 to 0.844) 0.673 (0.622 to 0.723)

70–74 0.777 (0.693 to 0.862) --

75–79 0.960 (0.927 to 0.994) --

Residence-specific

Urban 0.646 (0.614 to 0.679) --

Rural 0.615 (0.568 to 0.661) --

Age- and residence-adjustedc 0.634 (0.608 to 0.661) 0.585 (0.564 to 0.605)

Abbreviations: AUC area under the receiver characteristic operating curve, CI confidence interval, -- not applicable
aBasic model included age and residence in the CKB and included age only in the SWHS
bOverall AUC indicated the discriminating ability of the absolute risk predicted by our full model
cAge- and residence-adjusted AUC was estimated by testing the full model while adjusting for residence (urban/rural) and age at entry in a 5-year interval, i.e., the
prediction effect of age and residence was removed
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Second, cumulative evidence showed heterogeneous associ-
ations of epidemiological factors with estrogen receptor
(ER)-specific breast cancer though some factors are com-
mon for both ER-positive and ER-negative breast cancers
[32, 33]. We did not build ER-specific models due to the
lack of information on subtypes of breast cancer in the
current database of the CKB cohort. Since the majority of
breast cancer in Chinese women was estrogen ER-positive
(80.3% in women < 50 years and 76.8% in women 50 or
older) [34], our model might primarily apply to ER-positive
breast cancer. Finally, we only externally validated our
model in urban Shanghai, which has one of the highest in-
cidence rates in China. Therefore, further validation of our
model in other regions, especially in rural regions, is still
needed.

Conclusions
In summary, we have developed and validated a breast
cancer risk prediction model that only relies on non-
laboratory predictors. The model has a good calibration
and a moderate discriminating capacity. The model may
serve as a useful tool to raise individuals’ awareness and
to identify women who may benefit from breast cancer
screening in China. To improve the model discriminat-
ing accuracy, further studies can add genetic and epi-
genetic predictors for breast cancer, as well as
mammographic density. Validation of our model in
other regions of China, especially rural areas, is also
desirable to evaluate the robustness of the CKB model.
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Table 5 Age- and residence-adjusted RR (95% CI) by quantiles of predicted risk in the test subcohort of China Kadoorie Biobank
(CKB) and Shanghai Women’s Health Study (SWHS)

Overall Urban Rural Age < 50 years Age ≥ 50 years

Cases RR (95% CI) Cases RR (95% CI) Cases RR (95% CI) Cases RR (95% CI) Cases RR (95% CI)

Test subcohort of CKB (n = 100,274)

1a 46 1.00 (reference) 16 1.00 (reference) 30 1.00 (reference) 18 1.00 (reference) 28 1.00 (reference)

2 96 2.23 (1.53 to 3.24) 38 2.07 (1.15 to 3.76) 58 2.03 (1.21 to 3.39) 46 1.32 (0.76 to 2.32) 50 2.76 (1.64 to 4.64)

3 105 2.60 (1.77 to 3.82) 52 2.44 (1.34 to 4.44) 53 2.11 (1.22 to 3.65) 52 1.30 (0.72 to 2.32) 53 3.38 (1.97 to 5.82)

4 172 4.15 (2.84 to 6.08) 104 3.79 (2.11 to 6.83) 68 3.26 (1.87 to 5.71) 94 2.24 (1.25 to 4.01) 78 4.61 (2.67 to 7.95)

5 277 6.74 (4.57 to 9.92) 237 5.72 (3.16 to 10.33) 40 5.21 (2.85 to 9.50) 121 2.87 (1.55 to 5.30) 156 8.30 (4.81 to 14.31)

SWHS (n = 73,203)

1 185 1.00 (reference) -- -- -- -- 29 1.00 (reference) 156 1.00 (reference)
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Abbreviations: RR relative risk, CI confidence interval, -- not applicable
Cox model was stratified by age in a 5-year interval in SWHS and additionally stratified by 10 study sites in CKB
a1 refers to the lowest risk group, and 5 refers to the highest risk group
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