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Abstract

Background: Endocrine therapy resistance is a hallmark of advanced estrogen receptor (ER)-positive breast cancer.
In this study, we aimed to determine acquired genomic changes in endocrine-resistant disease.

Methods: We performed DNA/RNA hybrid-capture sequencing on 12 locoregional recurrences after long-term
estrogen deprivation and identified acquired genomic changes versus each tumor’s matched primary.

Results: Despite being up to 7 years removed from the primary lesion, most recurrences harbored similar intrinsic
transcriptional and copy number profiles. Only two genes, AKAP9 and KMT2C, were found to have single nucleotide
variant (SNV) enrichments in more than one recurrence. Enriched mutations in single cases included SNVs within
transcriptional regulators such as ARID1A, TP53, FOXO1, BRD1, NCOA1, and NCOR2 with one local recurrence gaining
three PIK3CA mutations. In contrast to DNA-level changes, we discovered recurrent outlier mRNA expression
alterations were common—including outlier gains in TP63 (n = 5 cases [42%]), NTRK3 (n = 5 [42%]), NTRK2 (n = 4
[33%]), PAX3 (n = 4 [33%]), FGFR4 (n = 3 [25%]), and TERT (n = 3 [25%]). Recurrent losses involved ESR1 (n = 5 [42%]),
RELN (n = 5 [42%]), SFRP4 (n = 4 [33%]), and FOSB (n = 4 [33%]). ESR1-depleted recurrences harbored shared
transcriptional remodeling events including upregulation of PROM1 and other basal cancer markers.

Conclusions: Taken together, this study defines acquired genomic changes in long-term, estrogen-deprived
disease; highlights the importance of longitudinal RNA profiling; and identifies a common ESR1-depleted endocrine-
resistant breast cancer subtype with basal-like transcriptional reprogramming.
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Background
Hormone receptor-positive breast cancer has served
as a prototype for targeted therapy due to the well-
established efficacy of estrogen deprivation. Largely
because of these approaches, breast cancers are some-
what unique in that recurrences can occur years,
sometimes decades following the primary diagnosis
[1–4]. Given that the majority of patients receive
long-term maintenance regimens of either a selective
estrogen receptor modulator (SERM) or aromatase in-
hibitor (AI), recurrent breast cancers are often classi-
fied as estrogen-independent given their ability to
thrive in an estrogen-deprived environment. Identify-
ing the biological mediators that allow breast cancer
cells to bypass their dependence on estrogen is a cru-
cial step in understanding advanced breast cancer
biology and defining novel therapeutic targets.
Defining these molecular processes in patient samples,

however, has been challenging because of the logistics in
obtaining well-characterized, longitudinally collected
biospecimens. Nevertheless, shared features of more
advanced breast cancers have emerged, such as relapsed
tumors losing expression of ER and over 20% of meta-
static ER-positive breast cancers acquiring mutations in
ESR1 that confer ligand-independent signaling [5–7].
Other largely accepted mechanisms of estrogen-
independence are bypass activations of mitogenic path-
ways such as MAPK and PI3K through initiating FGFR,
EGFR, and IGF signaling and exploitation of the Rb-
CDK-E2F axis [8–12]. Less well validated, more recently
discovered mechanisms include ESR1 fusions and ampli-
fications [13, 14].
Recent studies analyzing multiple, longitudinally col-

lected, pre- and post-treatment samples have shown
clonal evolution and selection in the context of targeted
therapies [15–18]. Similar work analyzing hormone
receptor-positive breast cancers have largely been
restricted to short-term pre-/post-neoadjuvant therapy
analyses [19–22]. One of the most comprehensive gen-
omic studies of this type was a multi-platform effort that
characterized the clonal architecture of tumors after
4 months of AI therapy [23]. Although drastic clonal
remodeling was observed at the DNA level, few recur-
rent resistance mechanisms were appreciated. A more
recent, large-scale study showed activating ERBB2 muta-
tions, MAPK activation, and NF1 loss as mechanisms
possibly driving endocrine resistance—with some of
these alterations being confirmed in subsequent studies
[24–27]. The majority of this work has notably been per-
formed on metastatic tissues—whether or not some of
these changes occur locally as a result of estrogen inde-
pendence before distant spread is unknown.
Thus, to better define both DNA and transcriptional

changes that occur in long-term estrogen-independent

tumors, we undertook a targeted analysis of DNA/RNA
alterations in ~ 1400 cancer genes in 12 paired primary
and locoregional recurrences from patients with ER-
positive breast cancers that were documented as being
treated with estrogen-depleting therapy. The median
time to recurrence was 3.7 years, with the longest time
to recurrence being over 7 years.

Methods
Patient samples, tissue processing, and nucleic acid
extraction
Institutional Review Board approval from both partici-
pating institutions (University of Pittsburgh IRB#
PRO15050502, The Charité IRB Office) was obtained
prior to initiating the study. Inclusion criteria for this
study were (1) patients harbored patient-matched
formalin-fixed paraffin-embedded (FFPE) tissue from
primary breast cancers and local recurrences, (2) biospe-
cimens contained macrodissectable regions with suffi-
cient tumor cellularity, and (3) disease was treated
continuously with a form of estrogen-depleting therapy
prior to the recurrence. Biospecimens were reviewed by
a trained molecular pathologist to confirm pathology, to
quantify tumor cellularity, and to highlight regions of
relatively high tumor cellularity for macrodissection. If a
slide region harbored sufficient, microscopically verifi-
able adjacent normal cells, this region was also dissected
and processed for downstream analyses. Between four to
ten (depending on tumor size) 10-μm FFPE sections
immediately adjacent to the H&E-analyzed section were
pooled and underwent dual DNA/RNA extraction using
Qiagen’s AllPrep kit. Nucleic acids were quantified
fluorometrically with a Qubit 2.0 Fluorometer and qual-
ity assessed with an Agilent 4200 TapeStation Instru-
ment prior to sequencing.

RNA and DNA sequencing
RNA-seq library preparation was performed for all 12
cases using approximately 100 ng of RNA and Illumina’s
TruSight RNA Pan-Cancer (1385 targets) protocol.
DNA-seq library preparation was performed for 10 (6
with associated normal tissue, 2 cases were excluded
based on limiting DNA content) cases using no less than
30 ng of DNA and Illumina’s TruSeq Exome protocol
with TruSight RNA Pan-Cancer probes for
hybridization-based capture. Indexed, pooled libraries
were then sequenced on Medium Output flow cells
using an Illumina NextSeq 500 system (paired-end reads,
2 × 75 bp). A target of 5–10 million reads per sample
was used to plan indexing and sequencing runs for RNA
sequencing, and a target of 10–15 million reads was
used for DNA sequencing. Additional RNA-seq data
derived from luminal metastatic breast cancers were
obtained from the MET500 cohort (n = 47) [28] and our
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own University of Pittsburgh’s Women’s Cancer
Research Institute (WCRC) cohort (n = 89) [29–31]. All
RNA-sequencing FASTQ files were quantified with k-
mer-based lightweight-alignment (Salmon, quasi-
mapping mode, 31-kmer index using GRCh38 Ensembl
v82 transcript annotations, seqBias and gcBias correc-
tions) [32]. tumorMatch was used to validate sequencing
pairs were patient-matched as done previously [30].

RNA-sequencing quantification and DNA-sequencing
alignment
RNA-seq read counts and mapping percentages were
calculated (Data Supplement S1) and transcript abun-
dance estimates were collapsed to gene level with txim-
port [33]. Log2-transformed TMM-normalized CPM
(log2normCPM) values were implemented for subse-
quent analyses [34, 35]. DNA-seq reads were aligned
with bwa –mem (v.0.7.13) to an hg19 reference, sorted
with samtools (v1.3), duplicates marked and removed
with picardtools (v1.140), and local realignment per-
formed with GATK (v3.4-46) [36–38]. Average coverage
depth for the processed bam file was calculated using
GATK’s DiagnoseTargets and the Illumina Pan-Can bed
file (Data Supplement S2). Metrics for average coverage
values across all target intervals were plotted with
ggplot2. Publicly available RNA sequencing or micro-
array data of ER-positive breast cancer cell lines in the
absence or presence of E2 were collected from GEO, in-
cluding MCF7_1 (GSE89888), MCF7_2 (GSE51403),
MCF7_3 (GSE78286), MCF7_4 (GSE94493), T47D_1
(GSE89888), T47D_2 (GSE3834), T47D_3 (GSE3834),
T47D_4 (GSE108304), ZR75-1 (GSE61368), BT474
(GSE3834), MM134 (GSE50695), and SUM44
(GSE50695). Cells were deprived in E2-free media, stim-
ulated with vehicle (Veh) or 1 nM/10 nM E2 for 16 or
24 h, then processed from gene expression profiling.
KLK7 and PROM1 Log2 (TPM+1) expression value were
compared between Veh and E2-treated group of each
cell line.

DNA-seq recurrence-enriched variant determination
To determine enriched variants in recurrences versus
patient-matched primary tumors, VarScan2 was imple-
mented [39]. More specifically, primary and recurrent
samtools mpileup files derived from processed bam files
were input into VarScan2 using somatic mode, with
somatic p values representing the significance of a par-
ticular variant being acquired or enriched in the recur-
rence [SS = 1 or SS = 2]. Tumor purity estimates, as
assessed by a molecular pathologist, were included in
VarScan2 to correct contaminating normal cell influence
on allele frequencies. The minimum coverage for a vari-
ant to be considered was 40X, with a minimum allele
frequency (AF) of 0.05 in either the primary or

recurrence and a minimum of 5 reads supporting the
variant. Germline variants were determined for cases
containing a matched normal (ERLR_01, ERLR_02,
ERLR_07, ERLR_08, ERLR_12, and ERLR_15) using
VarScan2’s germline mode with the same parameters.
VCF output files were then imported into R using the
VariantAnnotation package [40]. If a normal sample was
available for the case, all germline variants (AF > 0.30)
were excluded from subsequent analyses. Additionally,
to limit technical artifacts especially considering speci-
mens were formalin-fixed paraffin-embedded [41], a
“blacklist” of variants was created including those called
in at least 3 of the normal samples. Germline and
blacklist-removed variants were then annotated with
Annovar [42]. Lastly, to call recurrence-enriched, poten-
tially pathogenic variants, the following inclusion criteria
were enacted: (1) VarScan2 somatic p value < 0.05, (2) >
2-fold gain in allele frequency in the recurrence versus
the primary, (3) minimum AF of 0.10 in the recurrence,
(4) non-silent, and (5) an ExAC AF < 0.01 considering
some samples were without a paired normal [43]. These
non-silent, enriched, potentially pathogenic variants
were then plotted using the OncoPrint function in
ComplexHeatmaps [44]. A Pearson R correlation was
calculated between the frequency of enriched variants
and disease-free survival. PIK3CA mutations were visual-
ized with IGV (2.3.60) [45] and variant allele frequencies
were derived from VarScan2.

RNA-seq variant determination
RNA-seq reads covering mutation sites called from
DNA-seq of the corresponding sample were extracted
from bam file and counted. Variants with at least 2 sup-
porting reads containing the altered allele and with AF
greater than 0.05 in either primary or recurrence were
considered.

Copy number alterations
To estimate copy number ratios, CNVkit was imple-
mented on processed bam files using default settings
and the -drop-low-coverage option [46]. A pool of bam
files from adjacent normal tissue, sequenced in the same
manner, was used as a reference. Probe- and segment-
level copy number estimates were finalized with
CNVkit’s call function, which utilizes circular binary seg-
mentation [47]. To adjust for tumor purity and normal
contamination, the –m clonal option was used with
tumor purities from pathologic evaluations. Copy num-
ber ratios were then plotted with the heatmap function,
and copy number values were assessed and plotted with
ggplot2. Gene-level copy number estimates represent the
mean copy number call across all probe targets.
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Differential gene expression, clustering, and outlier gains
and losses
Hierarchical clustering was performed using the heat-
map.3 function (https://raw.githubusercontent.com/obi-
griffith/biostar-tutorials/master/Heatmaps/heatmap.3.R)
in R on log2normCPM values of the top 10% most vari-
able genes (defined by IQR) with 1 minus Pearson corre-
lations as distance measurements and the “average”
agglomeration method. Differential expression between
primary and recurrent tumors was analyzed with limma.
Raw counts were input into the voom function and
quantile normalized prior to fitting the linear model and
performing the empirical Bayes method for differential
expression [48, 49]. The linear model was fitted with a
design that accounts for the paired nature of the cohort
(model = ~Patient+Tissue [primary or recurrence]). Out-
lier expression gains and losses were determined for
each patient by discretely categorizing genes into one of
5 categories. If log2FC values (i.e., recurrence log2-
normCPM – primary log2normCPM) for a given gene
were less than Q1 – (1.5 × IQR) or Q1 – (3 × IQR), using
case-specific log2FC values for all genes as the distribu-
tion, that gene was deemed an “Outlier Loss” or “Ex-
treme Loss” respectively. If log2FC values calculated
were greater than Q3 + (1.5 × IQR) or Q3 + (3 × IQR), it
was deemed an “Outlier Gain” or “Extreme Gain” re-
spectively. All other genes with intermediate fold
changes were classified as “Stable.” To determine sub-
type expression of KLK7, PROM1, and NDRG1, normal-
ized microarray expression data along with PAM50 calls
was obtained from the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) through
Synapse (https://www.synapse.org/, Synapse ID:
syn1688369), following IRB approval for data access
from the University of Pittsburgh [50]. Overlap with
genes in long-term estrogen-deprived, ER-positive breast
cancer lines (HCC1428, MCF7, T47D, ZR75.1) was per-
formed by running a separate differential expression
analysis (LTED vs. parental lines) on microarray data
with limma [49, 51]. Dysregulated gene overlap was des-
ignated if the nominal p value and FDR-adjusted p value
were both < 0.05 in the local recurrence and LTED dif-
ferential expression analysis, respectively. Binary dichot-
omization of METABRIC samples using NDRG1
expression (> 50th percentile, < 50th percentile) and log-
rank testing were used to assess significant differences in
disease-specific survival (DSS) and then Kaplan-Meier
curves were plotted with survminer [52, 53].

Results
Expression and copy number changes in local recurrences
Dual hybrid-capture DNA/RNA sequencing was per-
formed for 1385 cancer genes on 12 paired primary
tumors and local recurrences from patients with ER-

positive breast cancers that underwent continuous endo-
crine therapy (Table 1). RNA-seq data (Supplementary
Table 1) underwent unsupervised hierarchical clustering
of normalized RNA expression values which showed
most patient-matched pairs clustered transcriptionally
with their matched primary—regardless of the length of
disease-free survival (Fig. 1a). Unlike a previous
transcriptome-wide analysis of primary breast cancers
and matched bone metastases [30], there was no signifi-
cant correlation in pair transcriptional similarity and
time to recurrence—although a trend towards negative
correlation was observed (Pearson R = − 0.37, p value =
0.236). Only a single recurrence showed marked tran-
scriptional deviation from its matched primary (ERLR_
03_R1); whereby it lost ER positivity and gained HER2
positivity clinically. Copy number alterations (CNAs) be-
tween primary and recurrences were analyzed in the tar-
geted capture regions for 10 cases (Supplementary
Figure 1 and Supplementary Figure 2). Similar to expres-
sion, CNAs were largely consistent among the recur-
rences when compared to their matched primary
(Fig. 1b). Two exceptions were recurrences from cases
ERLR_01 and ERLR_03, which showed distinct copy
number profiles from the matched primary tumors with
poor correlation between primary and recurrence CNA
values versus all other cases (Supplementary Figure 3).
Notably, unlike case ERLR_03, ERLR_01 interestingly
retained a similar expression profile despite a distinct
CNA profile. An analysis of shared variants validated
both DNA and RNA extracts originated from the same
patient (Supplementary Figure 4), excluding the possibil-
ity of sample mixup. ERBB2 copy number values corre-
lated well with RNA expression (Pearson R 0.92), as did
other amplified genes including CDK12 and CCND1
(Fig. 1c, Data Supplement S3).

SNV enrichments and differentially expressed genes
A total of 406 distinct, presumed-somatic nonsynon-
ymous mutations were detected in either a primary
or recurrence at an AF > 5% among the 10 DNA-
sequenced cases (Data Supplement S4). To assess if
there are shared DNA mutations acquired in recur-
rences, an analysis of enriched single nucleotide var-
iants (SNVs) was performed which showed 56
statistically enriched SNVs in local recurrences ver-
sus matched primary tumors (Fig. 2a, Data Supple-
ment S5). SNVs in two genes were found to be
enriched in more than one case (n = 2 [20%]),
AKAP9 (R3320W, S319*) and KMT2C (T1969I,
Y366N, R894Q). The recurrent mutations did not
exhibit features suggesting functional selection, such
as being within a conserved functional domain or
within a COSMIC [54] hotspot region, making it
difficult to assess if these are pathogenic. Other
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case-specific, n-of-one enriched mutations included
nonsense mutations in ARID1A (Q1424*, case
ERLR_20, primary AF 0.5%, recurrence AF 16.5%)
and BRD1 (Q467*, case ERLR_01, primary AF 0.93,
recurrence AF 57.88%), an acquired TP53 mutation
(S241C, case ERLR_03, primary AF 0.0%, recurrence
AF 53.4%), and an enriched NCOR2 mutation
(A4942C, case ERLR_08, primary AF 4.4%, recur-
rence AF 19.4%). In case ERLR_01, an enrichment
of a suite of three somatic mutations in PIK3CA
was observed (E542K, Q546K, E726K) in the recur-
rence (Fig. 2b). Notably, the number of enriched,
non-silent SNVs ranged from 0 to 13 and was posi-
tively correlated with clinical time to recurrence
(Fig. 2c). No acquired ESR1 mutations were ob-
served. These mutations were examined in the cor-
responding RNA-seq data to determine if they are
expressed. Out of 633 total mutations—considering
some of the 406 distinct mutations were present in
both matched tumors—315 were detected in RNA
with at least 2 supporting reads of the altered allele
and an AF ≥ 5%. Allele frequencies called from
DNA-seq and RNA-seq data correlated well (Supple-
mentary Figure 5, Pearson R = 0.609, p value = 2.57e
−33). Noteworthy, out of the 56 enriched SNVs in

recurrence at the DNA level, 31 distinct mutations
can be detected with confidence at the RNA level
(Data Supplement S6)—including AKAP9, KMT2C,
ARID1A, BRD1, and TP53 as discussed above.
A differential expression analysis, comparing all pri-

mary tumors versus all local recurrences, yielded no
genes passing an FDR-corrected p value of less than
0.05—which is perhaps expected given the heterogeneity
of clinical specimens and the limited number of cases
(Data Supplement S7). Nonetheless, 71 genes with an
average, voom normalized expression value of 2 or
greater, a nominal p value of less than 0.05, and a log2
fold-change greater than ± 0.5 were identified (Table 2).
Some of these genes, including the upregulation of
EPOR, NDRG1, IDH2, CEBPA, and PTPA and downreg-
ulation of ESR1, IGF1R, NFKB1, and RUNX2, are also
differentially expressed in long-term estrogen-deprived
ER-positive cell lines (Supplementary Figure 6) [55].

Outlier expression gains and losses
To further explore major expression changes that may
be driving recurrence and therapy resistance, an outlier
expression analysis was performed using gene-level fold-
change values of each patient-matched case (Data
Supplement S8). Unlike non-silent SNVs, recurrent

Table 1 Abridged clinicopathological features of patient-matched primary and local recurrence tumor cohort

Case Age
Dx

Hist Stage ER
Prim

PR
Prim

HER2
Prim

Endo
Tx

HER2
Tx

Radio
Tx

Chemo
Tx

DFS SPLR Vital
status

OS

ERLR_
01

36 IDC/ILC Mixed I Pos Pos Neg Yes No Yes Yes 86 132 Alive 218

ERLR_
02

54 IDC IIA Pos Neg Pos Yes No Yes Yes 61 141 Alive 203

ERLR_
03

74 IDC I Pos Pos NA Yes No Yes No 76 128 Dead 204

ERLR_
05

54 IDC IIA Pos Pos Neg Yes No Yes Yes 69 85 Dead 155

ERLR_
07

58 IDC I Pos Pos Pos Yes No Yes No 19 179 Alive 199

ERLR_
08

52 IDC IA Pos Pos Pos Yes Yes Yes Yes 37 38 Alive 75

ERLR_
09

51 IDC IA Pos Pos Neg Yes No Yes No 25 46 Alive 71

ERLR_
12

47 IMC IIA Pos Pos Neg Yes No No No 26 34 Alive 61

ERLR_
14

50 IDC IA Pos Pos Neg Yes No NA No 3 26 Alive 29

ERLR_
15

65 IDC IIIC Pos Pos Neg Yes No Yes No 10 27 Alive 38

ERLR_
19

49 IDC w/ lobular
features

IIA Pos Pos Neg Yes No No No 52 8 Alive 61

ERLR_
20

42 IDC IIIA Pos Pos Pos Yes Yes Yes Yes 59 44 Dead 104

Abbreviations: Dx diagnosis, Hist histology, ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth factor 2, Endo endocrine, Tx therapy,
DFS disease-free survival, SPLR survival post-local recurrence, OS overall survival, IDC invasive ductal carcinoma, ILC invasive lobular carcinoma, IMC invasive
mucinous carcinoma
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transcriptional gains and losses were common (Fig. 3a).
These included gains and losses in shared pathway mem-
bers, notably NTRKs and SFRPs, respectively; targetable
upregulation of growth factor pathway mediators such as
FGFR4 and EGF; and outlier gains in the CDK regulator
CCNE1. Three of 12 cases also shared outlier expression
gains in TERT, with case ERLR_14 harboring a particu-
larly extreme enrichment from near undetectable levels in
the primary tumor (Fig. 3b). Case ERLR_03’s recurrence,
which was most dissimilar to its patient-matched pair
transcriptionally, showed extreme loss and gain of ESR1
and ERBB2, respectively. CNA analysis confirmed
recurrence-specific ERBB2 amplification and is consistent
with previous studies of endocrine therapy-treated breast
cancers selecting for HER2 signaling in more advanced tu-
mors. The most recurrent outlier loss involved ESR1.

ESR1 depleted recurrences
Five cases showed outlier expression losses of ESR1
(Fig. 4a). Despite estrogen receptor being the driver of
ER-positive breast cancer and a major regulator of tran-
scription, counterintuitively, 4 of 5 of the recurrences
which lost ESR1 expression generally retained the
expression profile of their patient-matched primary
(Fig. 1a). Importantly, many of these cases also harbored
very similar CNA profiles (Fig. 1b), implying the recur-
rences were derived from a continuous clonal lineage as
opposed to being completely distinct breast cancers.
Thus, to explore the transcriptional consequences of
acquired ESR1 loss in ER-positive disease and identify
potential bypass mechanisms driving ER− independ-
ence, a differential expression analysis was performed
on the subset of pairs with outlier ESR1 expression

Fig. 1 Transcriptional and CNA profiles of ER-positive local recurrences. a Unsupervised hierarchical clustering and heatmap (red = high relative
expression, blue = low relative expression) on normalized gene expression values from patient-matched pairs (P1 = primary, R1 = recurrence).
Clinical ER and HER2 status (black = negative, green = positive, gray = unknown), tissue source site (purple = Pitt, yellow = Charite), and tumor type
(blue = primary, red = recurrence) are indicated. Delta symbol shows distinct clustering of ERLR_03_R1 away from its matched primary,
ERLR_03_P1. b Heatmap of copy number ratios from patient-matched pairs. Redder regions indicate regions of copy number gain and bluer
regions indicate regions of loss. c Correlation between ERBB2 DNA copy number calls and normalized expression values
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losses. This analysis revealed several recurrently dys-
regulated genes in ESR1-depleted recurrences (Fig. 4b,
Data Supplement S9). Two standout genes, KLK7 and
PROM1, showed the highest degree of fold change
with a log2 fold-change increase of 5.4 and 3.9 re-
spectively—with some tumors exhibiting changes from
near undetectable levels to high expression (Fig. 4c).
These two genes are more commonly expressed in
basal cancers, with PROM1 being a cancer lineage
stem cell marker and perhaps negatively regulated by
E2 stimulation (Supplementary Figure 7) [56]. Other
genes with significant log2 fold changes > 1 included

drug targets such as FGFR4, KIT, IGF1R, and BCL-2
(Table 2). NDRG1, a particularly compelling candidate
since it also showed upregulation in LTED breast
cancer models, was further interrogated using
METABRIC data. Like PROM1 and KLK7, NDRG1 is
most highly expressed in basal breast cancers; yet,
when expressed in ER-positive primary tumors,
NDRG1 confers significantly worse disease-specific
survival outcomes (Supplementary Figure 8). Notably,
none of the top differentially regulated genes in
ESR1-depleted recurrences showed statistically signifi-
cant changes in expression in non-ESR1-depleted

Fig. 2 SNV enrichments in ER-positive local recurrences. a OncoPrint of non-silent, enriched single nucleotide variants in patient-matched cases.
Missense variants are indicated with a green box and nonsense variants with black. b Triplet mutation enrichment of PIK3CA mutations in case
ERLR_01. Collapsed IGV alignments are shown, along with allele frequencies, for the normal, primary, and recurrence. c Frequency of enriched,
non-silent single nucleotide variants versus time to recurrence along with Pearson R and calculated p value
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recurrences (Supplementary Figure 9). To determine
the prevalence of ESR1-depleted in other endocrine-
resistant cohorts, we analyzed RNA-seq expression
data from the MET500 and our own WCRC cohorts.
Although we found most metastatic tumors with

PAM50 luminal classifications had high expression of
ESR1 as expected, there was a subset of metastatic
luminal tumors which harbored very low levels of
ESR1 expression (Fig. 4d)—suggesting ESR1 depletion
in endocrine-resistant luminal tumors is not restricted

Table 2 Differentially expressed genes in ESR1-depleted recurrences

Gene Log2FC voom average expression Nominal p value FDR-adjusted p value

PAPPA 1.395 6.416 0.001 0.293

KLK7 5.422 1.158 0.001 0.293

PROM1 3.931 5.005 0.002 0.588

RASGRF1 2.307 4.106 0.002 0.588

DKK1 2.732 0.473 0.004 0.614

EPHB6 1.641 3.819 0.005 0.614

ABCC3 1.637 8.010 0.006 0.614

FGFR4 1.515 5.267 0.010 0.695

FBN2 1.010 5.326 0.010 0.695

TENM1 1.326 4.709 0.012 0.705

COL9A3 2.034 2.249 0.014 0.705

NDRG1 1.218 8.945 0.014 0.705

TP63 2.135 4.441 0.018 0.768

SCN8A 1.290 5.881 0.019 0.768

KIT 1.289 6.020 0.020 0.768

TCL6 2.228 −0.254 0.022 0.790

WNT11 1.585 1.256 0.024 0.823

SOCS1 1.534 0.387 0.033 0.911

HOXD11 2.755 −1.369 0.034 0.911

PLAG1 1.275 4.576 0.036 0.911

DTX4 1.185 5.711 0.036 0.911

FLNC 1.588 6.787 0.037 0.911

ALDOC 1.494 5.224 0.039 0.911

ACSBG1 1.843 0.601 0.042 0.915

SYP 1.348 0.862 0.045 0.915

ESR1 − 3.952 9.492 0.000 0.146

ATP8A2 − 2.599 4.510 0.003 0.588

ELOVL2 − 2.090 2.413 0.006 0.614

RABEP1 − 1.009 10.352 0.012 0.705

EYA1 − 1.494 2.203 0.013 0.705

IGF1R − 1.149 9.083 0.016 0.747

CAMK2A − 1.391 2.742 0.016 0.747

RERG − 1.413 6.562 0.018 0.768

BCL2 − 1.055 6.619 0.020 0.768

FGF14 − 1.393 2.430 0.023 0.790

RASGRP1 − 1.044 6.799 0.027 0.857

BHLHE22 − 1.822 0.822 0.035 0.911

ZNF703 − 1.811 4.865 0.038 0.911

MYB − 1.179 8.857 0.045 0.915
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to local recurrences and may also be a feature of
more advanced disease.

Discussion
In this study, a targeted RNA/DNA analysis of approxi-
mately 1400 cancer genes in ER-positive primary breast
cancers and matched long-term, endocrine therapy-
treated local recurrences was performed. We found gen-
eral conservation of transcriptional and copy number
profiles among the majority of samples—suggesting that
even after 7 years of dormancy and the selective pres-
sures of therapies, locally recurrent breast cancers

generally retain their intrinsic molecular features. An
analysis of recurrence-enriched SNVs revealed limited
recurrent mutation events, yet notable “n-of-one” muta-
tion selection was observed—such as case ERLR_01
which showed three distinct, recurrence-enriched
PIK3CA mutations. The most striking changes in long-
term estrogen-deprived tumors, however, were highly re-
current (up to 42%), outlier expression changes. An ana-
lysis of tumors with the most recurrent outlier loss,
ESR1, revealed concurrent upregulation of genes typic-
ally expressed in basal breast cancers, such as PROM1,
KLK7, and NDRG1, suggesting a selection of a more

Fig. 3 Outlier expression gains and losses in ER-positive local recurrences. a OncoPrint of outlier expression gains (red) and outlier expression
losses (blue) in ER-positive local recurrences. Genes are sorted by frequency of outlier changes across pairs. b Extreme expression gain of TERT in
case ERLR_14; 2 other cases showed similar TERT enrichments in recurrent tumors. c Extreme expression gain and loss of ERBB2 and ESR1,
respectively. TMM-normalized CPM values of primary (blue) and recurrent (red) tumor. ERBB2 expression gain is driven by recurrence-specific
DNA-level amplification of ERBB2 locus
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Fig. 4 ESR1-depleted recurrences. a TMM-normalized expression of patient-matched local recurrences; primary tumor expression in blue,
recurrent tumor expression in red. b Heatmap of differentially expressed genes (nominal p value < 0.05, red = high relative expression, blue = low
relative expression) in ESR1-depleted recurrences versus matched primary tumors. Genes are sorted by p value and segregated by log2 fold-
change values; log2 fold change > 0 on top, log2 fold change < 0 on bottom. c Ladder plots showing log2normCPM expression values for both
KLK7 and PROM1, two of the most significantly upregulated genes in local recurrences with the largest average log2 fold changes. d ESR1
expression in metastatic, endocrine-resistant luminal tumors—MET500 (n = 47) and WCRC (n = 89) cohorts
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basal-like phenotype in endocrine-resistant disease. Our
data showing similar CNA profiles argue against the out-
growth of a distinct ER-negative subclone but instead
suggest possible epigenetic, transcriptionally driven re-
modeling under antiestrogen pressures.
Nearly all recurrences are more similar transcription-

ally to their matched primaries than to other, long-term
estrogen-deprived tumors—reinforcing the notion that
advanced cancers generally retain their core transcrip-
tional programming, even after nearly a decade of dor-
mancy [26–29]. Furthermore, amplifications and
deletions of recurrences are markedly similar to primar-
ies, supporting recent evidence from breast cancer
single-cell sequencing that structural variation is likely
an early event and many CNAs, even in metachronous
therapy-resistant tumors, may be shared by the majority
of subclones [57]. An important exception to this con-
servation was ERLR_03_R1, a recurrence with a com-
pletely unique transcriptional and copy number profile
than its matched primary. Evidence has emerged of so-
called collision tumors, whereby two synchronous, dis-
tinct cancers can merge anatomically and only under the
selective pressures of therapy or through deep sequen-
cing, their individuality can be unmasked [23, 58]. In-
deed, this “recurrence” switched to ER-negative/HER2-
positive from ER-positive/HER2-negative clinically and
thus could represent a different cancer than the pri-
mary—although the level of shared SNVs suggests some
degree of clonal relatedness.
Limited shared, non-silent SNVs were discovered in

these specimens, with AKAP9 and KMT2C being the
only two genes that harbored recurrence-enriched
mutations in greater than one case. These mutations
are not in a conserved functional domain nor in a
hotspot location, making it difficult to assess their
pathogenic roles. AKAP9 and KMT2C also encode
relatively large gene products (3911 and 4911 amino
acids, respectively) which may increase the likelihood
of obtaining a passenger mutation by chance. Never-
theless, KMT2C and other lysine methyltransferases
have been implicated in breast cancer pathology, ar-
gued as potential drivers in large-scale sequencing
studies of primary tumors and KMT2C mutations
specifically may confer hormone therapy resistance in
breast cancer models [59–61]. Case ERLR_20 har-
bored an enriched nonsense mutation in ARID1A.
ARID1A alterations are associated with more unfavor-
able tumor features in breast cancer and have re-
cently been shown to determine luminal identity and
therapy response in ER-positive tumors—consistent
with the more basal-like transcriptional features we
observe with ESR1-depleted recurrences [62–65]. A
single recurrent cancer (ERLR_01_R1) showed enrich-
ment of three somatic hotspot PIK3CA mutations

(E542K, Q546K, E726K), suggesting strong MAPK sig-
naling selection within that particular tumor and co-
incident with recent reports of multiple mutations
occurring in individual cancer genes in advanced can-
cers [66]. SNVs within genes that act as corepressors
and coactivators, some with direct influences on es-
trogen receptor-mediated transcription, were found to
be enriched in recurrences—such as NCOA1, NCOR2,
FRYL, and CREBBP—along with transcription factors
including PAX5, FOXO1, and TP53. Notably, we did
not observe any ESR1 mutations unlike other studies
on locoregional recurrences [67]—likely due to our
small sample size. Interestingly, this study reported
lower frequency of ESR1 mutations in locoregional re-
currences versus advanced metastases at an AF > 1%
and recent data has emerged regarding a pro-
metastatic phenotype of ESR1 variants [68]—suggest-
ing locoregional recurrences may have a lower fre-
quency of ESR1 variants versus distant disease. We
also observed a positive correlation between the fre-
quency of acquired, non-silent SNVs and disease-free
survival—validating the concept that surviving cancer
cells after initial therapy acquire potentially patho-
genic mutations as they lay dormant and undetectable
over time.
Given the heterogeneity of clinical specimens makes

it difficult to rely on typically used differential expres-
sion workflows—since resistant mechanisms of indi-
vidual tumors may be distinct—we undertook an
analysis of patient-specific outlier expression gains
and losses to identify more extreme transcriptional
reprogramming events within individual cases that
may be driving estrogen independence. Surprisingly,
unlike SNVs, recurrent outlier transcriptional gains
and losses were quite common. Particularly compel-
ling outlier events included recurrent gains within
shared pathway members, such as near mutually ex-
clusive upregulations of NTRK3 (n = 5 [42%]) and
NTRK2 (n = 4 [33%]). Notably, activation of NTRK’s
mediates downstream signaling pathways typically as-
sociated with breast carcinomas, including PI3K and
MAPK, and small molecule inhibitors of this family
are showing promising results in recent solid tumor
trials [69]. Other notable pathway member changes
included loss of Wnt antagonists SFRP2 (n = 3 [25%])
and SFRP4 (n = 4 [33%]). SFRP2 is hypermethylated
and silenced in a subset of breast cancers [70] and
experiments in model systems have shown cross-talk
between ER and Wnt signaling that may mediate
endocrine therapy resistance [71, 72]. Other recurrent
gains included FGFR4 (n = 4 [33%]), TERT (n = 3
[25%]), and CCNE1 (n = 3 [25%])—particularly rele-
vant given the recent success of CDK inhibitors in
hormone-positive disease and the burgeoning use of

Priedigkeit et al. Breast Cancer Research            (2021) 23:1 Page 11 of 14



FGFR inhibitors against solid malignancies as we and
others have reported [31, 73].
The most recurrent outlier expression loss was ESR1,

which was diminished in 42% of long-term estrogen-
deprived local recurrences. Interestingly, the loss of
ESR1 for the majority of cases was not associated with a
dramatic change in the tumors’ transcriptional profile.
To further explore this counterintuitive result, given
ESR1 is a master regulator of transcription and a driver
of luminal breast cancers, we identified genes that were
consistently altered in ESR1-depleted recurrences. The
most substantial gains in ESR1-depleted tumors are
genes generally expressed in basal breast cancers—such
as NDRG1, DKK1, KIT, KLK7, PROM1, and COL9A3—
and genes significantly lost in the ESR1-depleted subset
are generally downregulated in basal cancers—
EVLOVL2, BCL2, IGF1R, MYB, RABEP, and ATP8A2
(MsigDB: SMID_BREAST_CANCER_BASAL_DN/UP
gene lists) [74]. These results reveal a common, novel,
and distinct ESR1-depleted subtype of advanced breast
cancers that acquire basal-like transcriptional repro-
gramming. Prior studies have hinted that luminal B tu-
mors, which are known to portend worse outcomes,
generally have lower expression of ESR1 and endocrine-
resistant tumors have been shown to have decreased
ESR1 expression relative to matched primary tumors
[75]. The mechanisms driving this loss as well as the
ESR1-independent maintenance of a luminal cell-state
with basal-like characteristics will be essential to unravel.
Interestingly, prior studies have shown that intrinsic mo-
lecular subtypes of breast cancers generally remain con-
sistent in recurrent or metastatic tumors, yet here we
see a more nuanced gain of basal-like features in luminal
tumors [76–78].
The greatest fold-change difference in ESR1-depleted re-

currences was the upregulation of PROM1. PROM1 is a
marker for tumor-initiating cancer stem cells and plays a
key role in determining ER-positive luminal cell fate dur-
ing differentiation from multipotent stem cells [56], sug-
gesting long-term endocrine-deprived breast cancer cells
may enrich themselves with stem-like progenitors to
achieve estrogen independence. Indeed, PROM1 has been
shown to mediate endocrine therapy resistance in breast
cancer models through IL6/Notch3 signaling [79, 80].
Here, we show that a large portion of long-term
endocrine-resistant breast cancers may be exploiting this
transcriptional reprogramming. Finally, NDRG1, also sig-
nificantly upregulated in ESR1-depleted recurrences and
generally expressed in basal cancers, showed differential
expression in three distinct LTED cell lines. NDRG1 is a
suspected metastasis suppressor gene. Counterintuitively,
we see upregulation of this gene in resistant disease and
show increased expression confers worse survival out-
comes in ER-positive primary tumors [81]. Further

functional studies assessing the mechanistic and biological
consequences of these transcriptional reprogramming
events both in locoregional and metastatic disease will be
essential.
A pertinent point these results raise is the benefit of

integrating longitudinal, targeted RNA sequencing to in-
form resistance mechanisms and therapeutic targets in
breast cancers. In this study, we find limited DNA-level
enrichments yet highly recurrent, acquired transcrip-
tional remodeling events from primary to advanced can-
cers, including a few of which that are immediately
targetable such as NTRKs, FGFR4, and CCNE1—al-
though this study was limited by the small number of
patient-matched cases and targeted panel of genes.
Nonetheless, this work challenges our lack of emphasis
on RNA-level changes, particularly those that can be
elucidated from longitudinal biopsies, in clinical profiling
of tumors and future work should be geared towards
deciphering which of these bypass transcriptional pro-
grams may be druggable.

Conclusions
Collectively, these results begin to unravel the complex
adaptations that breast cancer populations undergo
when under the selection of long-term estrogen-
depleting therapies long term. We identify acquired
DNA-level mechanisms of resistance, such as mutations
in ARID1A, other transcriptional regulators, and mul-
tiple mutation selection within PIK3CA—but more im-
portantly, uncover the most recurrent genomic
adaptations taking place appear to be at the transcrip-
tional level. These include targetable outlier gains and
modifications in NTRKs as well as a distinct population
of ESR1-depleted recurrences that enrich themselves
with genes generally expressed in basal breast cancers—
such as PROM1 and NDRG1. Preclinical, mechanistic in-
vestigations into these temporally altered genes are war-
ranted given they may uncover novel and targetable
mechanisms of endocrine therapy resistance in advanced
breast cancers.
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