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PRKCQ inhibition enhances ")
chemosensitivity of triple-negative breast
cancer by regulating Bim
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Abstract

Background: Protein kinase C theta, (PRKCQ/PKCO) is a serine/threonine kinase that is highly expressed in a subset
of triple-negative breast cancers (TNBC) and promotes their growth, anoikis resistance, epithelial-mesenchymal
transition (EMT), and invasion. Here, we show that PRKCQ regulates the sensitivity of TNBC cells to apoptosis
triggered by standard-of-care chemotherapy by regulating levels of pro-apoptotic Bim.

Methods: To determine the effects of PRKCQ expression on chemotherapy-induced apoptosis, ShRNA and cDNA
vectors were used to modulate the PRKCQ expression in MCF-10A breast epithelial cells or triple-negative breast
cancer cells (MDA-MB231Luc, HCC1806). A novel PRKCQ small-molecule inhibitor, 17k, was used to inhibit kinase
activity. Viability and apoptosis of cells treated with PRKCQ cDNA/shRNA/inhibitor +/-chemotherapy were
measured. Expression levels of Bcl2 family members were assessed.

Results: Enhanced expression of PRKCQ is sufficient to suppress apoptosis triggered by paclitaxel or doxorubicin
treatment. Downregulation of PRKCQ also enhanced the apoptosis of chemotherapy-treated TNBC cells. Regulation
of chemotherapy sensitivity by PRKCQ mechanistically occurs via regulation of levels of Bim, a pro-apoptotic Bcl2
family member; suppression of Bim prevents the enhanced apoptosis observed with combined PRKCQ
downregulation and chemotherapy treatment. Regulation of Bim and chemotherapy sensitivity is significantly
dependent on PRKCQ kinase activity; overexpression of a catalytically inactive PRKCQ does not suppress Bim or
chemotherapy-associated apoptosis. Furthermore, PRKCQ kinase inhibitor treatment suppressed growth, increased
anoikis and Bim expression, and enhanced apoptosis of chemotherapy-treated TNBC cells, phenocopying the
effects of PRKCQ downregulation.

Conclusions: These studies support PRKCQ inhibition as an attractive therapeutic strategy and complement to
chemotherapy to inhibit the growth and survival of TNBC cells.
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Background

Triple-negative breast cancer (TNBC) represents ap-
proximately 15% of all diagnosed breast cancer cases.
Chemotherapy remains the main systemic treatment for
these cancers, with few biologic or targeted therapy op-
tions, and sensitivity of a patient’s TNBC to chemother-
apy is a strong predictor of long-term outcomes [1, 2].
Although many patients do well with standard-of-care
chemotherapy, some TNBCs have incomplete responses
leading to metastatic recurrences that are associated
with significant morbidity and mortality. Therefore, new
therapeutic strategies that suppress the growth and
spread of TNBC cells could improve outcomes and qual-
ity of life for patients.

PRKCQ/PKCB is a serine/threonine kinase that is a
member of the novel PKC family (reviewed in [3, 4]).
We first identified PRKCQ as a candidate regulator of
anchorage-independent survival of breast cancer cells in
a functional kinome screen [5]. PRKCQ is characterized
by a unique protein domain structure consisting of diac-
ylglycerol binding sites, but lacking Ca+ binding sites
typical of classical PKCs. PRKCQ maps to chromosome
10p15, a region frequently mutated in T cell leukemia,
lymphomas, and T cell immunodeficiencies [3].

PRKCQ is widely expressed throughout the
hematopoietic system, primarily in T cells, mast cells, NK
cells, and platelets, as well as in the skeletal muscle, liver,
thymus, and the nervous system [3]. Much of the known
isoform-specific functions of PRKCQ are in the context of
immune function; mice deficient in PRKCQ expression ex-
hibit defects in T cell activation due to impaired Ca* > sig-
naling, NFAT, and NFkB activation [6-8]. PRKCQ also
regulates the survival of T cells by regulating the expression
of pro- and anti-apoptotic Bcl2 family members [9]. Evi-
dence supports a relatively specific role for PRKCQ in im-
mune responses; it is dispensable for much of immunity
against viral and bacterial pathogens [10]. In contrast,
PRKCQ appears to be required for immune responses asso-
ciated with autoimmune diseases and allograft rejection,
perhaps due to a specific requirement for PRKCQ in the
maturation of Th17 cells, a subset of CD4" T cells [11, 12].

In contrast, the function of PRKCQ in non-
hematopoietic tissues and cancers remains to be fully
elucidated. PRKCQ is expressed in a subset of GIST can-
cers and regulates their proliferation [13]. We previously
reported that PRKCQ is sufficient to drive growth
factor-independent proliferation, migration, and survival
of breast epithelial cells by activating Erk/MAPK activity
in a kinase activity-dependent manner [14]. PRKCQ pro-
tein is not only sufficient to drive these phenotypes but
is required for growth in vitro and in vivo of triple-
negative breast cancer cells in which it is expressed.
PRKCQ expression directly suppresses the expression of
ERa in breast cancer cells and is required for c-rel-
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induced mammary tumorigenesis [15]. PRKCQ also
stimulates breast cancer cell migration by stabilizing the
expression of Fra-1 in TNBC cells [16]. Finally, PRKCQ
also promotes epithelial-mesenchymal transition of
breast cancer cells by direct phosphorylation and activa-
tion of LSDI1, which provides another mechanism by
which PRKCQ promotes growth and spread of breast
cancer [17].

Here, we have identified a critical role for PRKCQ in
the regulation of chemotherapy sensitivity by a novel
mechanism; PRKCQ regulates basal levels of Bim, a pro-
apoptotic Bcl2 family member that serves as a set point
molecule for sensitivity to chemotherapy and targeted
therapies. Our studies with a novel PRKCQ kinase in-
hibitor also highlight the importance of kinase activity in
the regulation of Bim and chemotherapy sensitivity.
These results support PRKCQ as an attractive thera-

peutic target for TNBC with clinical translation
potential.

Methods

Reagents, cells, and cell culture

Cells

MDA-MB-231-luc-D3H2LN (referred to as MDA-231-
luc) cells were originally obtained from PerkinElmer.
Cells were cultured in MEM with Earle’s Salts supple-
mented with non-essential amino acids, GlutaMAX™, so-
dium pyruvate, penicillin/streptomycin (Life
Technologies), and 10% heat-inactivated fetal bovine
serum (Life Technologies) at 37 °C in 5% CO,. MCF10A
cells were obtained from ATCC and cultured in 1:1
DMEM/F12 supplemented with 5% horse serum, 20 ng/
mL EGF (PeproTech), 500ug/mL hydrocortisone
(Sigma-Aldrich), 100 ng/mL cholera toxin (Sigma-Al-
drich), 10pg/mL insulin (Sigma-Aldrich), and penicillin/
streptomycin (Life Technologies). HCC1806 cells were
purchased from ATCC and cultured in RPMI supple-
mented with 10% heat-inactivated fetal bovine serum
(Life Technologies) and 1% penicillin/streptomycin (Life
Technologies). MDA-MB157 cells were obtained from
ATCC and cultured according to ATCC instructions.

Inhibitors and chemotherapy agents

Paclitaxel from Taxus yannanensis and doxorubicin
hydrochloride were purchased from Sigma. Z-VAD-
FMK was purchased from APExBIO. 17k was obtained
from Abbvie, and its structure is described in [18].

Antibodies

Antibodies directed against the following proteins were
obtained from the indicated suppliers: AbCam—rabbit
monoclonal protein kinase C (PKC-0) [EPR1487(2)]; BD
Biosciences—Vimentin (RV202); Invitrogen—phospho-
PKCO (Thr538) antibody (F4H4L1), ABfinity™; Cell
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Signaling Technologies—PKC8 (D10E2), PKCa, PKD/
PKCp (D4J1IN) phospho-PKC6 (T538), BIM (C34C5),
Vimentin (D21H3) XP, MCL-1 (D35A5), BCL-2 (124),
cleaved PARP (Asp214), Survivin (71G4B7), BCL-XL
(54H6), B-tubulin (9F3), integrin p5; Santa Cruz biotech-
nology—GAPDH (G9) mouse monoclonal secondary
antibodies conjugated with HRP and directed against ei-
ther rabbit or mouse were purchased from Cell
Signaling.

Western blot analysis

Cells were lysed in NP40 lysis buffer (Invitrogen™) con-
taining 1% Halt Protease Inhibitor Cocktail (Thermo
Scientific) and 10% PhosSTOP (Sigma-Aldrich). Lysates
were cleared and stored at — 80 °C. Protein was quanti-
fied using the Pierce™ BCA Protein Assay Kit (Thermo
Scientific™). Samples were prepared using Laemmlli buf-
fer (SDS—Sample Buffer, Reducing, 4x; Boston Biopro-
ducts). At least 15 pg of protein per sample was resolved
on NuPAGE™ Bis-Tris 4-12% gels (Invitrogen) in
NuPage™ MOPS SDS Running Buffer (Invitrogen™). Pro-
tein was transferred to the PVDF membrane and
blocked in either 3-5% bovine serum albumin (BSA),
protease-free (Roche), or non-fat dry milk (NFDM; Cell
Signaling). Blots were developed using Pierce ECL West-
ern Blotting Substrate (Thermo Scientific™, Immobilon
Crescendo Western HRP substrate (EMD Millipore), or
Immobilon Forte Western HRP substrate (EMD
Millipore).

Constructs, viral production, and stable cell line
generation

Constructs encoding short hairpin RNA sequences target-
ing PRKCQ (TRCN0000001791, TRCN0000199654, and
TRCNO0000197216 referred to as 91, 54, and 16, respect-
ively) were purchased from Open Biosystems/Thermo Sci-
entificc. Bim shRNAs (TRCNO0000001054 (54) and
TRCNO0000356026 (26)) were purchased from Sigma Al-
drich (St. Louis, MO, USA). Viral packaging 293T cells
were transfected according to standard protocols to pro-
duce lentiviral particles. Viral supernatant was collected
24, 48, 72, and 96h post-transfection and pooled.
HCC1806 and MDA-231-luc cells were infected in the
presence of 2ug/mL polybrene (Sigma -Aldrich). Cells
were exposed to viral supernatant overnight before chan-
ging to complete media. PRKCQ mutants (A148E and
K409R) were generated as previously described [14, 19].

siRNA reagents and transfection

Reagents

Invitrogen™: Oligofectamine™ transfection reagent; Hori-
zon Discovery: siGENOME Human BCL2L11 (Bim),
SmartPool; siGENOME Non-Targeting siRNA #5. Cells
were transfected according to the manufacturer’s
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protocol for Oligofectamine™ transfection reagent in a 6-
well culture plate. Briefly, siRNAs directed against Bim
or a non-targeted control were diluted in serum-free
medium. In separate tubes, Oligofectamine™, 3 pL/sam-
ple, was diluted in serum-free medium. The siRNA-
containing medium and the Oligofectamine™-containing
medium were mixed and incubated at room temperature
for 15 min for complexes to form. Following incubation,
200 pL of the siRNA/Oligofectamine™ mixture was care-
fully pipetted into each well of cells, already containing
800 pL of serum-free medium. This resulted in a final
siRNA concentration of 50 nM. Cells were incubated for
3-4h before the addition of complete cell culture
medium containing 30% serum.

Anoikis and cell death assays

Anoikis (anchorage-independent viability) assay was per-
formed by culturing cells in suspension on polyhema-
coated (Sigma-Aldrich) plates, harvested after 24 or 48 h,
and cell death assessed using the Cell Death ELISA Kit
(Roche) according to the manufacturer’s instructions.

Cell viability/ apoptosis assays

Cell viability was assessed using either alamarBlue™
(Invitrogen™), CellTiter-Glo® Luminescence Cell Viability
Assay (Promega), or CellTiter-Glo® 3D Luminescence
Cell Viability Assay (Promega), according to the manu-
facturer’s protocols. Caspase activation was measured
using the Caspase Glo® 3/7 Assay System (Promega).

3D culture
Three-dimensional (3D) Matrigel™ (BD Biosciences) cul-
tures were performed as described previously [20].

Matrigel Transwell invasion assays

Twenty-four-well inserts with 8-um pores and pre-
coated with Matrigel were purchased from Corning.
MDA-MB231Luc cells were plated in triplicate (1 x 10*
cells/well) in serum-free media with DMSO or 1 pM
17k (inner chamber). Media containing serum was
placed in the outer chamber. Cells were allowed to in-
vade for 12 h. Inserts were fixed, washed, and stained
with crystal violet. Invaded cells/Transwell were
counted.

Quantitative PCR

RNA was isolated using Qiagen RNEasy. Synthesis of
c¢DNA was carried out using the TagMan™ Reverse Tran-
scription Reagents Kit (Invitrogen™). Assays for BIM
(Hs00708019_s1, Invitrogen™), GAPDH (Hs02758991_gl1,
Invitrogen™), and (-2 microglobulin (Hs00984230_m1,
Invitrogen™) were performed according to the manufac-
turer’s instructions. Alternatively, qRT-PCR was per-
formed using the following primers as previously
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described [21]: BIM-EL, forward 5'-GTG GGT ATT TCT
CTT TTG ACA CAG AC-3’; BIM-L, forward, 5'-TAC
AGA CAG AGC CAC AAG ACA G-3'; and common re-
verse primer, 5'-GTT CAG CCT GCC TCA TGG AAG-
3’; and RPS17 Quantitect primers (QIAGEN). In this case,
2x-All-in-One™ qPCR mix (Genecopoeia) was used ac-
cording to the manufacturer’s instructions. All qPCR was
performed using a Biorad CFx96 thermal cycler.

Cell cycle analysis/flow cytometry

Annexin V staining

Cells were plated at a density of 1 x 10> cells per well in
a 6-well plate. Twenty-four hours later, cells were
treated with DMSO or paclitaxel (Sigma) at final con-
centrations of 25nM and 100 nM. Cells were incubated
for 15h, harvested with 0.05% Trypsin/EDTA (Life
Technologies), and washed 1 time with 1x PBS. Samples
were brought up in 250 pL of 1x staining buffer contain-
ing 5 uL of FITC and 5 pL of PI (FITC/Annexin V
Apoptosis Detection Kit I BD Biosciences). Samples
were protected from the light and incubated at room
temperature for 15min. An additional 250 pL of 1x
staining buffer was added to each sample prior to filter-
ing the sample through 35-uM filter capped tubes
(Corning™ Falcon™). Annexin-positive cells were assessed
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using BD Fortessa and analyzed using the FACS DIVA
or FCS express 6 software.

Statistical calculations

Significance was calculated using standard Student’s
t test unless indicated otherwise in the figure
legends.

Results

Kinase-active PRKCQ suppresses chemotherapy-induced
apoptosis

Enhanced PRKCQ expression is sufficient to promote
growth factor-independent growth, anoikis resistance,
and migration of breast epithelial cells (MCF-10A)
(Byerly et al. [14]). PRKCQ overexpression is also suf-
ficient to enhance the viability of these cells in the
presence of chemotherapeutic agents commonly used
in the treatment of patient triple-negative breast can-
cers, such as doxorubicin and paclitaxel (Fig. 1la, b).
The increased viability is due to the suppression of
chemotherapy-induced apoptosis, as assessed by de-
creased levels of caspase activity (as detected by Cas-
pase Glo® 3/7 Assay) (Fig. 1c, d) and decreased levels
of cleaved PARP (Fig. le, f). The suppression of
chemotherapy-induced apoptosis by PRKCQ is
dependent on the catalytic activity of PRKCQ, as
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Fig. 1 PRKCQ is sufficient to promote resistance to chemotherapy. Overexpression of kinase-active PRKCQ enhances cell viability in the presence
of doxorubicin (a) or paclitaxel (b). Percent viability relative to vehicle control was determined using alamarBlue™. Kinase-active
PRKCQ overexpression decreases apoptosis in response to doxorubicin or paclitaxel as determined by Caspase Glo® 3/7 Assay (c, d) and levels of
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overexpression of kinase-inactive PRKCQ failed to
suppress apoptosis in paclitaxel or doxorubicin-
treated cells (Fig. 1c—f).

PRKCQ downregulation enhances chemotherapy-induced
apoptosis of TNBC cells

As PRKCQ is sufficient to promote resistance to chemo-
therapy treatment, we sought to determine whether
PRKCQ inhibition enhances the sensitivity of TNBC
cells to chemotherapy treatment. Downregulation of
PRKCQ expression using two independent shRNA vec-
tors increased basal and paclitaxel-associated apoptosis
of MDA-MB231Luc and HCC1806 cells, with increased
detection of cleaved PARP and increased levels of
Annexin V+ cells (Fig. 2a—d). These results support ben-
efits for combined PRKCQ inhibition and chemotherapy
in suppressing TNBC viability.

PRKCQ regulates chemotherapy sensitivity by modulating
Bim expression

Given our findings that PRKCQ levels impact the sensi-
tivity of TNBC cells to the apoptotic effects of paclitaxel
chemotherapy, we sought to determine the mechanism
responsible for this regulation. The balance between
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pro- and anti-apoptotic Bcl2 family members often de-
termines whether apoptosis is triggered by chemother-
apy or targeted therapies [22]. For example, lower basal
expression levels of Bim, a pro-apoptotic member of the
Bcl2 family, have been associated with relative resistance
to chemotherapy and targeted therapies for several
tumor types [23-25].

We evaluated the effect of PRKCQ overexpression or
downregulation on the basal expression of pro- and anti-
apoptotic Bcl2 proteins. Overexpression of a catalytically
active but not kinase-dead PRKCQ suppressed basal ex-
pression of pro-apoptotic Bim without significantly alter-
ing the expression of other Bcl2 proteins like Mcll and
Bcl2 (Fig. 3a). This suppression of Bim protein is at least
partially due to the suppression of Bim transcript levels
(Fig. 3b). Downregulation of PRKCQ in MDA-MB231-
Luc and HCC1806 TNBC cells increased basal expression
of Bim protein and transcript levels (Fig. 3c—f).

To determine whether modulation of Bim expression
is sufficient to impact chemotherapy sensitivity, we eval-
uated apoptosis in cells expressing control or two differ-
ent Bim shRNA vectors. Bim downregulation in
immortalized, non-transformed MCF-10A cells was suf-
ficient to suppress apoptosis of paclitaxel-treated cells,
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Fig. 2 PRKCQ downregulation enhances chemotherapy-induced apoptosis of TNBC cells. MDA-MB231Luc cells (a, ) or HCC1806 cells (b, d)
infected with control or PRKCQ shRNA-expressing lentivirus were treated with vehicle or paclitaxel chemotherapy for 24 h. Apoptosis was
assessed by Western (levels of cleaved PARP) (a, b) or flow cytometry analysis for Annexin V+ cells (¢, d). Western blots are representative of at
least 3 independent experiments. Annexin V+ experiments are averages of at least 3 independent experiments. Significance was determined
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with decreased levels of cleaved PARP and Annexin V+
cells (Fig. 4a, b).

The increase in Bim caused by PRKCQ downregula-
tion is also required for the synergism between PRKCQ
shRNA and paclitaxel chemotherapy in inducing apop-
tosis. Co-expression of Bim shRNA suppressed apoptosis
of paclitaxel-treated, PRKCQ shRNA-expressing TNBC
cells, as determined by levels of cleaved PARP and cas-
pase activity (Fig. 4c, d). These data support Bim regula-
tion in PRKCQ-dependent regulation of sensitivity to
paclitaxel treatment.

A novel PRKCQ small-molecule kinase inhibitor
suppresses viability and enhances chemosensitivity of
TNBC cells

A novel small-molecule kinase inhibitor of PRKCQ,
17k, was obtained and assessed for its ability to

inhibit PRKCQ kinase activity in TNBC cells. 17k is a
highly selective inhibitor of PRKCQ, as described in
[18], with potent in vitro activity. To determine the
effect of 17k inhibitor treatment on endogenous
PRKCQ kinase activity in TNBC, we assessed the
levels of phosphorylation of Threonine 538 (T538).
This is an established autophosphorylation site and is
critical for the full activity of PRKCQ [26]. 17k treat-
ment of TNBC cells (MDA-MB231 Luc, HCC 1806)
inhibited Thr538 phosphorylation dose-dependently
within 4 h of treatment initiation (Fig. 5a). Over lon-
ger time periods, 17k treatment also decreased total
PRKCQ levels, although levels of other PKC isoforms
were not affected (Supplement Figure 1).

After establishing that 17k treatment inhibited en-
dogenous PRKCQ activity in TNBC cells, we determined
the effects of inhibitor treatment on oncogenic
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Fig. 5 A novel PRKCQ small-molecule kinase inhibitor (17k) suppresses growth and enhances apoptosis of chemotherapy-treated TNBC cells. a
Treatment of MDA-MB 231-luc or HCC1806 cells with 17k suppresses autophosphorylation of PRKCQ at Threonine 538. Cells were treated at the
indicated concentrations for 4 h. 17k treatment suppresses growth in 3D Matrigel culture (b), suppresses invasion in Transwell Matrigel assays (c),
increases anoikis (24 h in suspension cultures) (d), and induces Bim expression in suspension cultures (e). 17k pre-treatment (48 h) enhances
paclitaxel-induced death as measured by the CellTiter-Glo® 3D Luminescence Cell Viability Assay in MDA-MB 231-luc cells (f) and by Annexin V+
staining in HCC1806 cells (g). For CellTiter-Glo assays, percent viability is plotted relative to DMSO control (set at 100%). All experiments were
repeated a minimum of 3 times each. Significance was determined using Student's t test

properties promoted by PRKCQ. 17k treatment inhibited
growth and invasive branching of MDA-MB231 cells in
3D Matrigel cultures, suppressed invasion in Matrigel™
Transwell invasion assays, increased anoikis, and in-
duced expression of pro-apoptotic Bim, thus largely phe-
nocopying effects of PRKCQ shRNA (Fig. 5b—e). 17k
treatment also suppressed the expression of mesenchy-
mal markers like Vimentin and 5 integrin, suggesting a
partial EMT reversal (Supplemental Figure 2). 17k treat-
ment did not suppress the growth of TNBC cells that do
not express PRKCQ, supporting the specificity of 17k’s
effects (Supplemental Figure 3).

Combined 17k and paclitaxel treatment also sup-
pressed the viability of TNBC cells in 3D culture (as
assessed by 3D CellTiter-Glo°) and increased apoptosis
(as assessed by levels of Annexin V+ cells) to a greater
extent than treatment with either 17k or paclitaxel alone
(Fig. 5f, g). These results collectively support the syner-
gistic effects of PRKCQ kinase activity inhibition and
chemotherapy in suppressing growth and viability of
TNBC cells, and the potential of PRKCQ kinase inhibi-
tors to complement chemotherapy in the treatment of
TNBC.

Discussion

The lack of systemic therapy options for triple-
negative breast cancer highlights the need for novel
therapeutic strategies. Chemotherapy sensitivity is a
consistently strong predictor of outcomes for patients
diagnosed with TNBC [1, 2]. However, there is het-
erogeneity in sensitivity to chemotherapy among
TNBC, and it is critical to identify targetable drivers
of chemotherapy resistance. PRKCQ is a novel PKC
family member, preferentially expressed in the TNBC
subtype and drives growth factor-independent growth,
anoikis resistance, migration, and EMT, all properties
associated with tumorigenesis and metastatic spread
of cancer cells [14, 16, 17, 27]. EMT specifically is as-
sociated with chemotherapy resistance via multiple
mechanisms in several tumor types (reviewed in [28]).
Expression of LSD1, a downstream substrate of
PRKCQ and driver of EMT, was reported to be
enriched among  chemotherapy-resistant  triple-
negative xenograft tumors and patient circulating
tumor cells [17]. LSD1, a histone demethylase, is acti-
vated during EMT and in turn activates multiple
EMT programs to promote chemotherapy resistance.
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Here, we have identified a novel mechanism by which
PRKCQ critically regulates the apoptotic response to
chemotherapy treatment, specifically by regulating
levels of pro-apoptotic Bim. Our data further support
the promising potential of PRKCQ inhibition as a
therapeutic strategy to suppress TNBC tumor growth
and survival in combination with standard-of-care
chemotherapy.

Expression levels and activation of Bcl2 family mem-
bers critically determine the sensitivity of cancer cells to
chemotherapy and targeted therapies (reviewed in [22]).
Several PKC isoforms have been shown to promote re-
sistance to chemotherapy by upregulating expression of
anti-apoptotic Bcl2 or XIAP. However, our results are
the first to show suppression of pro-apoptotic Bim as a
mechanism for chemotherapy resistance downstream of
PRKCQ, the only PKC isoform preferentially expressed
in TNBC [14]. Expression of Bim is required for apop-
tosis induction by cytotoxic agents, as well as targeted
therapies like imatinib, dasatinib, and erlotinib [23]. Bim
promotes apoptosis by activating Bax/Bak, and it is regu-
lated by both transcriptional and post-translational
mechanisms. Our results support PRKCQ-dependent
regulation of Bim is at least partially due to the regula-
tion of its transcript levels.

Small-molecule PRKCQ inhibitors could be a promis-
ing therapeutic approach given the kinase dependency of
PRKCQ’s oncogenic activities and promotion of chemo-
therapy resistance. Kinase activity dependency is sup-
ported by (1) the failure of catalytically inactive PRKCQ
to promote chemotherapy resistance or suppress Bim,
and (2) the ability of PRKCQ kinase inhibitor to signifi-
cantly phenocopy the effects of PRKCQ shRNA with re-
spect to growth inhibition and apoptosis induction.
However, kinase-independent functions of PRKCQ are
still possible, given the more significant increase in
apoptosis observed with TNBC cells co-treated with
chemotherapy and PRKCQ shRNA compared to PRKCQ
kinase inhibitor.

Several PRKCQ kinase inhibitors, including the one
used in our studies, have been developed mostly for the
purposes of immunomodulation in the setting of auto-
immune diseases or transplant rejection [29]. Our results
support an oncogenic role for PRKCQ and support tar-
geting this novel PKC isoform in TNBC. Concerns about
the immunological consequences of targeting PRKCQ in
non-autoimmune settings may be alleviated by the find-
ings from studies of PRKCQ-null mice that suggest that
PRKCQ is largely dispensable for anti-microbial and
anti-viral immunity [10]. Moreover, the consequences of
PRKCQ inhibition on the tumor immune microenviron-
ment may be favorable, as suggested by the results with
an inhibitor of LSD1, a downstream target of PRKCQ
[17]; LSD1 inhibition enhanced recruitment of M1 type
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macrophages that could favorably contribute to anti-
tumor immunity.

While the in vitro kinase profiling of the PRKCQ kin-
ase inhibitor used in this study supports its specificity,
there were some toxicities observed with related inhibi-
tors in the context of in vivo studies of autoimmunity
and inflammation that were not observed in the
PRKCQ-null mice [18]. Whether these represent toxic-
ities specific to the models used (non-tumor bearing) or
generalizable off-target effects at the indicated doses re-
mains to be determined.

Although the detection of loss-of-function mutations
in specific PKC isoforms has raised the possibility that
some PKC family members may have tumor-suppressive
functions (reviewed in [30]), it is likely that specific iso-
forms have pro- or anti-tumorigenic roles depending on
the tumor tissue of origin and relative expression levels
of these isoforms. The growing body of studies demon-
strating oncogenic functions of PRKCQ support further
genetic and functional analysis of this isoform in the
context of TNBC to identify optimal strategies for clin-
ical translation.

Conclusions

The PRKCQ expression regulates the sensitivity of
TNBC cells to the apoptotic effects of chemotherapy
treatment by regulating the expression of Bim, a pro-
apoptotic Bcl2 molecule. Regulation of Bim and apop-
tosis in chemotherapy-treated cells is dependent on
PRKCQ kinase activity, raising the possibility that
PRKCQ kinase inhibitors can be used to complement
standard chemotherapy to inhibit TNBC.
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