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Abstract

Background: Mammographic breast density, adjusted for age and body mass index, and a polygenic risk score (PRS),
comprised of common genetic variation, are both strong risk factors for breast cancer and increase discrimination of
risk models. Understanding their joint contribution will be important to more accurately predict risk.

Methods: Using 3628 breast cancer cases and 5126 controls of European ancestry from eight case-control studies, we
evaluated joint associations of a 77-single nucleotide polymorphism (SNP) PRS and quantitative mammographic density
measures with breast cancer. Mammographic percent density and absolute dense area were evaluated using
thresholding software and examined as residuals after adjusting for age, 1/BMI, and study. PRS and adjusted density
phenotypes were modeled both continuously (per 1 standard deviation, SD) and categorically. We fit logistic regression
models and tested the null hypothesis of multiplicative joint associations for PRS and adjusted density measures using
likelihood ratio and global and tail-based goodness of fit tests within the subset of six cohort or population-based studies.

Results: Adjusted percent density (odds ratio (OR) = 1.45 per SD, 95% CI 1.38–1.52), adjusted absolute dense area (OR = 1.34
per SD, 95% CI 1.28–1.41), and the 77-SNP PRS (OR = 1.52 per SD, 95% CI 1.45–1.59) were associated with breast cancer risk.
There was no evidence of interaction of the PRS with adjusted percent density or dense area on risk of breast cancer by
either the likelihood ratio (P> 0.21) or goodness of fit tests (P> 0.09), whether assessed continuously or categorically. The
joint association (OR) was 2.60 in the highest categories of adjusted PD and PRS and 0.34 in the lowest categories, relative to
women in the second density quartile and middle PRS quintile.

Conclusions: The combined associations of the 77-SNP PRS and adjusted density measures are generally well described by
multiplicative models, and both risk factors provide independent information on breast cancer risk.
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Introduction
Large consortia have identified multiple common gen-
etic susceptibility markers associated with risk of breast
cancer [1–4]. Although each single nucleotide poly-
morphism (SNP) is associated with a small increase in
risk, their combined effects are more substantial [5, 6].
Effects of multiple SNPs have been shown to combine
multiplicatively, such that the combined effects can be
efficiently summarized as polygenic risk scores (PRS) [2,
6]. Based on a 77-SNP PRS, women in the top 10% of
the risk distribution have been estimated to have a
two-fold risk of breast cancer, relative to those of me-
dian PRS, and this risk increases to three-fold for
women in the top 1% [6]. In addition, several studies
have shown that the PRS is a strong risk factor for young
women [7], those with family history [8], BRCA1 and
BRCA2 mutation carriers [7, 9–11], and for women with
contralateral breast cancer [12]. Use of the PRS has also
been shown to increase the discrimination of risk
models [4, 13–16]. The PRS therefore has the potential
to add information to the established risk factors for
breast cancer and improve individualized risk prediction
[17].
Understanding joint associations of the PRS with other

risk factors is important for accurate risk prediction [6,
17–19]. In the most comprehensive study to examine
the joint association of a breast cancer PRS and environ-
mental factors (defined as reproductive, anthropometric,
lifestyle factors and exogenous hormones) on risk, based
on up to 28,241 and 30,445 controls, most associations
were consistent with independent (i.e., multiplicative) as-
sociations [17]. This implies that the higher a woman’s
genetic risk, the greater the absolute risk associated with
environmental risk factors [17, 20].
Mammographic density adjusted for age and BMI is

one of the strongest breast cancer risk factors [21, 22]
but few studies have examined the joint relationship of
mammographic density measures and PRS on breast
cancer risk. We previously estimated the contribution of
the American College of Radiology (ACR) Breast Im-
aging Reporting and Data System (BI-RADS) four cat-
egory density measure and a 76-SNP PRS with breast
cancer risk using three studies [19]. We found the PRS
and BI-RADS density were independent breast cancer
risk factors (with no evidence that their joint association
deviated from multiplicative) and that the PRS improved
discrimination of the Breast Cancer Surveillance Consor-
tium (BCSC) risk model [11, 19]. However, these prior
studies lacked the precision of a quantitative mammo-
graphic density measure, did not examine absolute dense
area, and had limited power for evaluating interactions.
A continuous measure could provide better risk discrim-
ination than a categorical measure such as BI-RADS
(which has only four categories) [22] and particularly in

the tails of the distributions, where clinical implications
will be the greatest; the highest risk women could be of-
fered more intensive screening or interventions while
women with lowest risk could have reduced or less fre-
quent screening [18].
Here, we evaluate the joint associations on breast can-

cer risk of a 77-SNP PRS for breast cancer and quantita-
tive mammographic density measures, including percent
density and absolute dense area, adjusted for age and
BMI, using data from eight studies in the Breast Cancer
Association Consortium (BCAC) [1, 23–27].

Methods
Subjects
The study sample consisted of 3628 cases and 5126 con-
trols of European ancestry from eight studies in BCAC;
of these, six studies were population-based, contributing
2439 cases and 3895 controls, and the others were clinic
based. Each study had available genotyping information
on the 77 SNPs included in the PRS, mammographic
density and other breast cancer risk factors. Each study
obtained informed consent and had relevant ethics and
institutional approvals. A summary of study design, sam-
ple sizes, and mammographic and genotyping character-
istics is given in Additional file 1: Table S1.

Mammographic density measures
All mammographic density measurements were per-
formed on digitized analogue films using either the Cu-
mulus [28] or Madena [29] programs (Additional file 1:
Table S1) which apply a thresholding technique to meas-
ure total area of the breast and absolute dense area, from
which percent dense area and absolute non-dense area
are derived. Absolute dense area values were converted
to square centimeters according to the pixel size used in
the digitization. Measurements were conducted by ob-
servers blind to genotype, case status, and breast cancer
risk factor data. For cases, mammograms prior to diag-
nosis or, when this was not possible, those from the
contralateral breast taken at the time of diagnosis were
used (Additional file 1: Table S1). The mammographic
density measurements were made for both craniocaudal
(CC) and mediolateral oblique (MLO) views, which have
consistently been shown to be highly correlated (range
0.87–0.90) [30]. All studies have previously contributed
to genetic analyses of mammographic density, and simi-
lar associations were found across studies [31–34].

Genotyping
The 77 SNPs used to compute the PRS [6] were geno-
typed for the eight studies either as part of a GWAS (Illu-
mina, Human Hap550) [34] or on a custom Illumina
iSelect genotyping array comprising 211,155 SNPs
(iCOGS, described in [1]). Quality control was conducted
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at the study level, as previously described [1, 35]; call rates
were > 95% for all SNPs. Thus, 77 SNPs associated with
breast cancer and their published odds ratios were used to
form the PRS.

Statistical methods
Mammographic density measures were first square root
transformed and adjusted for age, 1/BMI and study, as
described previously [36, 37], and residuals were used
for analyses.
The 77 SNP PRS was calculated as previously de-

scribed [6, 19]. Briefly, the PRS was derived for each
study subject using the formula:

PRS ¼ β1x1 þ β2x2 þ…βκxκ:…þ βnxn

where xk is the number of minor alleles (0, 1 or 2) for
SNP k, βk are weights, and n = 77 was the total number
of SNPs. Under the assumption of no non-multiplicative
interactions, the optimum weights βk are the estimated
per-allele log-odds ratios, and we used these weights to
derive the 77 SNP PRS as previously described [6]. For
missing genotypes or those excluded based on Hardy–
Weinberg equilibrium P values < 0.001 (1.1% of the 77
genotypes), we used simple MCMC imputation to assign
a probable dosage value based on the other available ge-
notypes and risk factors [38, 39].
Pearson correlation coefficients between the continu-

ously distributed PRS and adjusted mammographic
density measures were estimated for controls separately.
ORs and 95% confidence intervals (CIs) for breast can-
cer risk were estimated using logistic regression models
and presented as the change in odds per each standard
deviation of the adjusted measures (based on using con-
trols [37]). Likelihood ratio statistics were computed to
measure the strength of association of density measures,
PRS, and their combinations with breast cancer risk; the
baseline model for comparison was comprised of age, 1/
BMI, and study. Parity, menopausal status, family his-
tory, and HT (in postmenopausal women) were also
evaluated as confounders of the associations of PRS and
adjusted density measures with breast cancer risk.
We estimated interactions between the adjusted mam-

mographic density measures and the PRS and tested their
significance using the likelihood ratio test (LRT). To assess
the goodness of fit of a model that assumes PRS and
mammographic density act multiplicatively on breast can-
cer risk, we performed a global Hosmer-Lemeshow good-
ness of fit test using deciles [40] as well as a tail-based
goodness of fit test [41] to assess deviations, especially at
the extremes of the risk distribution. Although primary
analyses used continuous measures of density and PRS
(per 1 SD), we also evaluated quintiles of PRS and quar-
tiles of adjusted density measures to be consistent with

prior studies [6, 29, 42] as well as allow for ease of inter-
pretation, in particular for those in the lowest quartile of
density. Tests of interaction and goodness of fit were per-
formed on the subset of six population-based studies, as
done in [17], given the potential for biased estimates of
main effects when analyzing non-population-based studies.
Heterogeneity of association across studies was tested

by including an interaction term between density mea-
sures or PRS and study, using the LRT. Statistical ana-
lyses were conducted using SAS 9.4 and R (version
3.3.1). All tests were two-sided and P ≤ 0.05 was consid-
ered statistically significant.

Results
The characteristics of the 3628 cases and 5126 controls
are described in Table 1 (Additional file 1: Table S2).
Cases were more likely to be postmenopausal and to
have a family history of breast cancer. Among postmen-
opausal women, cases were also more likely to have used
hormone therapy (HT) (Table 1).
Adjusted percent density (PD) and dense area (DA)

measures were positively associated with breast cancer
across all studies (Additional file 1: Table S3). For ad-
justed PD, there was a 1.45-fold increased risk (95% CI,
1.38–1.52) per SD of the adjusted PD (Table 2; χ2 = 156,
P < 0.001 compared to baseline model). Further, com-
pared to women with density in the second quartile PD,
women in the top quartile had a 64% greater risk and
women in the lowest quartile had a 40% lower risk of
breast cancer. The associations for adjusted DA were
slightly weaker than for PD, but still significant (e.g., OR
1.34 (1.28–1.41) per SD adjusted DA) (Table 2)
(Additional file 1: Table S3). Associations were similar
but attenuated when using population-based studies
alone (Table 2) and did not materially change after ad-
justment for parity, menopausal status, family history,
and HT (in postmenopausal women) [data not shown].
Among the population-based studies, there was some
evidence for study heterogeneity (PD phet = 0.08; DA
phet = 0.04), largely due to MMHS which had stronger
associations compared to the other studies. Removal of
MMHS resulted in similar associations of adjusted dens-
ity measures with breast cancer (data not shown) but re-
duced heterogeneity (PD phet = 0.42; DA phet = 0.25).
PRS was associated with breast cancer risk both when

modeled continuously (OR = 1.52 (1.45–1.59) per SD,
Table 3; χ2 = 255, P < 0.001 compared to baseline model),
or in quintiles (Table 3). Estimates were similar when
adjusted for parity, menopausal status, family history,
and HT [data not shown] but slightly stronger when
only including population-based studies (Table 3). There
was no evidence for heterogeneity by study.
PRS and adjusted density measures were only weakly

correlated (Pearson correlation 0.06, P < 0.001 for adjusted
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Table 1 Summary characteristics at time of mammogram and by breast case status for the eight participating studies

Characteristic Category Cases
N = 3628

Controls
N = 5126

N % N %

Study type Population-based or cohort 2439 67.2 3895 76.0

Hospital-based 1189 32.8 1231 24.0

Age (years) < 50 432 11.9 553 10.8

50–59 1150 31.7 1462 28.5

≥ 60 2046 56.4 3111 60.7

Parity Nulliparous 431 12.1 582 11.5

Parous 3141 87.9 4459 88.5

Unknown 56 85

Menopausal status Pre-menopausal 540 15.0 878 17.4

Post-menopausal 3058 85.0 4194 82.6

Unknown 30 54

Postmenopausal HT use in post-menopausal women Ever 1737 59.6 2116 57.4

Never 1179 40.4 1568 42.6

Unknown 142 510

BMI (kg/m2) < 25 1542 42.9 2095 41.3

≥ 25 2049 57.1 2982 58.7

Unknown 37 49

Family history breast cancer in first degree relatives No 2808 81.5 3944 85.1

Yes 637 18.5 688 14.9

Unknown 183 494

HT hormone therapy

Table 2 Associations (odds ratios, OR) for adjusted percent density (PD) and dense area (DA) measures with breast cancer risk, with
or without polygenic risk score (PRS). All eight studies and restricted to cohort/population-based studies only

Adjusted density
measure*

Full sample Cohort/population-based studies only

N case/N control OR (95% CI) Adj for PRS
OR (95% CI)

N case/N control OR (95% CI) Adj for PRS
OR (95% CI)

PD (per 1 SD) 3628/5126 1.45 (1.38, 1.52) 1.42 (1.36, 1.50) 2439/3895 1.42 (1.34, 1.50) 1.40 (1.32, 1.48)

PD quartiles

1 531/1282 0.60 (0.52, 0.70) 0.61 (0.52, 0.70) 450/1064 0.61 (0.51, 0.72) 0.62 (0.52, 0.73)

2 (Ref) 723/1281 Ref Ref 519/984 Ref Ref

3 946/1282 1.25 (1.09, 1.42) 1.22 (1.06, 1.39) 615/939 1.20 (1.03, 1.41) 1.18 (1.00, 1.38)

4 1428/1281 1.64 (1.44, 1.87) 1.60 (1.40, 1.82) 855/908 1.51 (1.29, 1.76) 1.48 (1.27, 1.74)

DA (per 1 SD) 3628/5126 1.34 (1.28, 1.41) 1.32 (1.26, 1.39) 2439/3895 1.36 (1.29, 1.44) 1.35 (1.28, 1.44)

DA quartiles

1 530/1283 0.56 (0.49, 0.65) 0.57 (0.50, 0.66) 427/1040 0.58 (0.40, 0.69) 0.59 (0.50, 0.70)

2 (Ref) 764/1281 Ref Ref 535/1003 Ref Ref

3 964/1281 1.15 (1.01, 1.31) 1.15 (1.00, 1.31) 644/969 1.14 (0.98, 1.33) 1.13 (0.97, 1.33)

4 1370/1281 1.41 (1.23, 1.61) 1.38 (1.21, 1.59) 833/883 1.45 (1.24, 1.69) 1.44 (1.22, 1.69)

*Residuals from models adjusted for age, 1/BMI, and study
Heterogeneity of density association across population-based studies: PD phet = 0.08; DA phet = 0.04 (Exclusion of MMHS results in PD phet = 0.42; DA phet = 0.25)
SD standard deviation, CI confidence interval, Ref reference group, Adj adjusted
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PD and 0.05, P < 0.001 for adjusted DA using controls).
Adjusting for PRS made little change to the association
between adjusted density measures and breast cancer risk
(e.g., OR per 1 SD for adjusted PD, 1.42, 95% CI 1.36–
1.50; Table 2). Similarly, adjustment for density measures
had very little impact on the association between PRS and
risk (Table 3).

Interactions between adjusted density measures and PRS
on breast cancer risk
Among the population-based studies, there was no evi-
dence of an interaction between PRS and adjusted PD,
whether assessed as continuous (per 1 SD) or categorical
(quartiles PD/quintiles PRS) variables; this included evalu-
ation by likelihood ratio tests [[ORint (95% CI) = 0.96
(0.91,1.02), χ2LRT = 1.6, PLRT = 0.21 for continuous and P =
0.42 for categorical] (Fig. 1) and global (P > 0.09) or
tail-based (P > 0.23) goodness of fit tests (Fig. 2;
Additional file 1: Table S4). Findings were generally similar
for adjusted DA and PRS on breast cancer (Additional file 1:
Table S4) (Figs. 1 and 2). Results were unchanged when ex-
cluding MMHS.
The multiplicative association can be seen in the simi-

larities of the risk estimates from the joint association of
PRS and density measures to the risk expected from the
individual main effect models (Tables 2 and 3; Fig. 1).
The joint association (OR) was 2.60 in the highest

categories of adjusted PD and PRS and 0.34 in the low-
est categories relative to the reference category (Fig. 1).
These estimates are very similar to the predicted relative
risk estimates resulting from multiplying the individual
OR associated with each category of PRS and adjusted
PD from the main effect models [i.e., OR(fourth quartile
PD) × OR(fifth quintile PRS) = 2.70; OR(first quartile
PD) × OR(first quintile PRS) = 0.31].

Discussion
This is the first study to have examined the joint associ-
ation of a 77-SNP PRS and continuous mammographic
density measures on breast cancer risk. We found that
the combined associations of the PRS and adjusted dens-
ity measures on breast cancer are well described by a
multiplicative model. These results imply that either ad-
justed percent density or absolute dense area measures
can be incorporated as continuous measures into risk
models with PRS in a straightforward manner, without
interaction terms. Moreover, the two measures are close
to uncorrelated; as a result, the risk discrimination
afforded by using both measures is much greater than
using either alone.
Our findings are consistent with those from the few

prior studies evaluating PRS and density measures. Two
studies evaluated the contribution of the PRS to the
Breast Cancer Surveillance Consortium or BCSC model,

Table 3 Association of polygenic risk score (PRS) with breast cancer risk and evaluation of confounding due to family history and
density measures (adjusted PD and adjusted DA). All eight studies combined and subset to cohort/population-based studies. All
models adjusted for age, 1/BMI, and study

Model N case/N control PRS
OR (95% CI)

+Family history
OR (95% CI)

+adjusted PD
OR (95% CI)

+adjusted DA
OR (95% CI)

Overall sample

Overall PRS (per 1 SD) 3628/5126 1.52 (1.45, 1.59) 1.52 (1.44, 1.59) 1.50 (1.42, 1.57) 1.50 (1.43, 1.58)

PRS quintile

1 349/1033 0.51 (0.44, 0.60) 0.51 (0.44, 0.61) 0.53 (0.45, 0.63) 0.53 (0.45, 0.63)

2 535/1008 0.80 (0.69, 0.93) 0.78 (0.67, 0.92) 0.80 (0.69, 0.94) 0.80 (0.69, 0.94)

3 (Ref) 687/1024 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

4 887/1032 1.31 (1.14, 1.50) 1.31 (1.14, 1.51) 1.32 (1.14, 1.53) 1.33 (1.15, 1.53)

5 1170/1029 1.66 (1.45, 1.90) 1.65 (1.44, 1.90) 1.64 (1.43, 1.89) 1.65 (1.44, 1.91)

Cohort/population-based studies only

Overall PRS (per 1 SD) 2439/3895 1.56 (1.48, 1.66) 1.55 (1.47, 1.65) 1.54 (1.45, 1.63) 1.55 (1.46, 1.64)

PRS quintile

1 232/786 0.51 (0.42, 0.62) 0.51 (0.42, 0.62) 0.53 (0.43, 0.65) 0.53 (0.43, 0.64)

2 361/776 0.80 (0.66, 0.95) 0.79 (0.66, 0.94) 0.80 (0.67, 0.96) 0.80 (0.67, 0.96)

3 (Ref) 464/789 1.00 (Ref) 1.00 (Ref) 1.00 (Ref) 1.00 (Ref)

4 589/793 1.30 (1.10, 1.53) 1.28 (1.08, 1.52) 1.29 (1.09, 1.54) 1.30 (1.10, 1.54)

5 793/751 1.79 (1.52, 2.11) 1.76 (1.50, 2.08) 1.76 (1.49, 2.08) 1.77 (1.50, 2.09)

Heterogeneity of PRS association by study: P = 0.84 for population based studies
PRS quintiles: quintile 1, − 1.411 to − 0.014; quintile 2, − 0.015 to 0.280; quintile 3, 0.281 to 0.542; quintile 4, 0.543 to 0.885; quintile 5, 0.886 to 2.583
SD standard deviation, CI confidence interval, Ref reference group, Adj adjusted
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which includes the BI-RADS four category density meas-
ure [11, 19]. Both studies found significant improvement
in the discrimination with the PRS. One of these [19]
evaluated an interaction between the BI-RADS density
measure and the PRS, finding no departure from a
multiplicative model and little correlation between the
BI-RADS density and PRS measures. van Veen et al. [43]
recently examined an 18-SNP PRS, IBIS 10-year risk,
and a visual measure of mammographic density (ad-
justed for BMI, age) with breast cancer risk among
women in a mammography screening practice. Assum-
ing independence between the PRS, IBIS model, and
mammographic density, they found that the PRS added
substantial information to a model with IBIS risk and
mammographic density. They also found only a weak
correlation between the PRS, adjusted density, and the
IBIS risk model estimate, consistent with our results and
those of Vachon et al. [19] Similarly, using data from the

Nurses’ Health Studies, Zhang et al. [16] found signifi-
cant improvement in discrimination when a 67-SNP
PRS was added to either the BCRAT model or the
Rosner-Colditz model. Addition of a continuous meas-
ure of mammographic density also significantly im-
proved the discrimination of both models. However, this
paper did not specifically evaluate any interaction be-
tween mammographic density and the PRS. Our paper is
the first to examine the joint association of continuous
density measures with a PRS.
Our findings are consistent with joint effects of PRS

with other breast cancer risk factors. Two studies have
examined the joint association of a PRS with reproduct-
ive variables (age at menarche, parity, age at first birth),
alcohol intake, postmenopausal hormone therapy, and
BMI on breast cancer. The first involved a 77-SNP PRS
examined in up to 28,241 cases and 30,445 controls in
BCAC, finding that most associations were consistent

a

b

Fig. 1 Joint association of quartiles of adjusted density phenotypes and quintiles PRS with breast cancer risk, adjusted for age, 1/BMI, and study.
Quartiles adjusted percent density and PRS quintile with breast cancer risk (a). Quartiles of adjusted dense area and PRS quintile with breast cancer risk
(b). PRS quintiles: quintile 1, − 1.411 to − 0.014; quintile 2, − 0.015 to 0.280; quintile 3, 0.281 to 0.542; quintile 4, 0.543 to 0.885; quintile 5, 0.886 to 2.583.
Reference category is PRS quintile 3 and density quartile 2
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with a multiplicative association [17]. An earlier study
examined a 24-SNP PRS with the same risk factors,
using 17,171 cases and 19,862 controls from the Breast
and Prostate Cancer Cohort Consortium (BPC3) and also
did not find deviation from the multiplicative model [18].
Our study used quantitative density measures assessed

from digitized film mammograms, primarily using the
Cumulus software. Although this measure allowed us to
evaluate a more precise density measure than the four
BI-RADS categories evaluated previously, it is not used
in clinical practice as it is not fully automated. Some
centers now use commercially available automated

density measures such as Volpara which provide a con-
tinuous volumetric density in addition to a
BI-RADS-like categorical estimate. We and others have
shown that these automated measures have a similar abil-
ity to predict risk as the BI-RADS clinical density measure
and the area-based measures used in the current report
[42, 44]. It is likely that our results on the combined effect
of the SNP and thresholding density measures presented
here will translate to the automated volumetric measures,
but this still needs to be evaluated directly.
Since the 77-SNP PRS was established and validated,

additional common genetic variants have been identified

Fig. 2 Tail-based test results from models with continuous adjusted density measures and PRS on breast cancer risk. Population-based studies.
Models of adjusted percent density and PRS without interaction (a) and with multiplicative interaction included (b). Models with adjusted dense
area and PRS without interaction (c) and with multiplicative interaction included (d)
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for breast cancer risk, and these will allow a more in-
formative PRS to be developed [2–4, 35]. The 77 SNPs
contributing to the PRS used in this report are estimated
to explain 14% of the familial risk, and additional SNPs
identified are estimated to explain another 4% [2]. Of
the 77 SNPs, nine have been shown to be associated
with mammographic density phenotypes but together
they explain less than 1.5% of the between-woman vari-
ation in these adjusted density traits [31]. Despite this
overlap, the PRS is almost uncorrelated with the density
measures, and adjustment for PRS resulted in minimal
changes in the association between adjusted density
measures and breast cancer and vice versa.
Some SNPs have been identified to be more strongly asso-

ciated with ER-positive or ER-negative disease [2, 4, 45, 46].
The majority of the 77 SNPs in the current PRS are associ-
ated with ER-positive breast cancer, with only 27 associated
at P < 10− 4 with ER-negative breast cancer [1, 2, 6]. Mam-
mographic density has been shown to be a risk factor for
both ER-positive and ER-negative breast cancer and all 9 of
the SNPs associated with density are associated with both
subtypes [1, 2, 47–49]. Future analyses which consider the
joint associations of the subtype-specific PRS and mammo-
graphic density with breast cancer risk will be worthwhile.
Important strengths of this analysis include the largest

dataset to date to examine the combined associations of
PRS and mammographic density on breast cancer risk,
the use of quantitative density measures that were stan-
dardized across studies, and a common genotyping plat-
form with standard quality control procedures for the
majority of studies. We recognize, however, that our re-
sults are strictly generalizable to women of European an-
cestry only. We also note some overlap between our
studies with those used to identify the associated SNPs
and develop the PRS. However, while this could have led
to some overfitting and hence overestimation of the risk
gradient for the PRS, this would not have affected the
primary conclusion that associations of the PRS and
density are almost completely independent and not con-
founded. Also, two of the largest cohort studies in our
sample (MMHS, NHS) consisting of over 1300 cases
were not included in the studies used for development
of the 77-SNP PRS and estimation of the PRS risk gradi-
ents (1.7 and 1.4 per unit SD for PD) were similar to
those estimated from the remaining studies. Finally, as
noted above, additional work will be necessary to confirm
our findings with an updated PRS and novel mammo-
graphic density measures [50, 51] as they become
available.

Conclusion
In summary, we confirm continuous mammographic
density measures and PRS are two of the strongest risk
factors for breast cancer and can be included in risk

models without interaction terms. Absolute risk associ-
ated with higher density will be larger for women at high
SNP-based inherited risk.
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