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Abstract

Background: Mammographic breast density is one of the strongest risk factors for breast cancer, but molecular
understanding of how breast density relates to cancer risk is less complete. Studies of proteins in blood plasma,
possibly associated with mammographic density, are well-suited as these allow large-scale analyses and might shed
light on the association between breast cancer and breast density.

Methods: Plasma samples from 1329 women in the Swedish KARMA project, without prior history of breast cancer,
were profiled with antibody suspension bead array (SBA) assays. Two sample sets comprising 729 and 600 women
were screened by two different SBAs targeting a total number of 357 proteins. Protein targets were selected
through searching the literature, for either being related to breast cancer or for being linked to the extracellular
matrix. Association between proteins and absolute area-based breast density (AD) was assessed by quantile
regression, adjusting for age and body mass index (BMI).

Results: Plasma profiling revealed linear association between 20 proteins and AD, concordant in the two sets of
samples (p < 0.05). Plasma levels of seven proteins were positively associated and 13 proteins negatively associated
with AD. For eleven of these proteins evidence for gene expression in breast tissue existed. Among these, ABCC11,
TNFRSF10D, F11R and ERRF were positively associated with AD, and SHC1, CFLAR, ACOX2, ITGB6, RASSF1, FANCD2
and IRX5 were negatively associated with AD.

Conclusions: Screening proteins in plasma indicates associations between breast density and processes of tissue
homeostasis, DNA repair, cancer development and/or progression in breast cancer. Further validation and follow-up
studies of the shortlisted protein candidates in independent cohorts will be needed to infer their role in breast
density and its progression in premenopausal and postmenopausal women.

Keywords: Mammographic breast density, Plasma, Protein profiling, Suspension bead array, Affinity proteomics,
KARMA cohort

Background
Mammographic breast density is one of the strongest
risk factors for breast cancer. Women with high breast
density have 4–6-fold increased risk of breast cancer as
compared to women with low breast density [1–4].
Reflecting the composition of fibroglandular and fat
tissue in the breast, mammographic breast density is

inversely related to age and higher body mass index
(BMI). Radiologically dense tissue, such as stromal and
epithelial tissue, appears white on a mammogram,
whereas the radiologically lucent fat tissue appears dark
[5]. Several breast cancer risk factors are known to influ-
ence breast density [6]. It has been shown that body
weight and reproductive and lifestyle factors explain an
estimated 20–30% of the difference in density between
women [7]. Through twin studies, we and others have
estimated the heritability of percent density to be around
65% [7–9].
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Despite the strong and independent association be-
tween mammographic breast density and breast cancer
risk, little is known about the biological mechanisms be-
hind this risk factor. Identifying determinants of density
may provide insights into the aetiology of breast cancer.
It may also be useful for better identifying women at
increased risk of developing breast cancer.
Considerable effort has been made to identify bio-

markers for early detection and/or monitoring of breast
cancer. Although a few potential plasma protein targets
have been identified [10], validation and reproducibility
have thus far not been satisfactory for clinical implemen-
tation. Prior investigations of plasma markers associated
with breast density have mainly focused on endogenous
hormones and inflammatory markers with inconsistent
or negative results [6]. No putative independent markers
of mammographic density have so far been identified
after adjustment for BMI and other confounding factors.
Blood plasma is well-suited for expanded affinity

proteomic analysis as it enables a direct but less invasive
view into the health status compared to biopsy sampling.
Affinity proteomics assays using antibodies with suspen-
sion bead arrays (SBA) have been utilised for plasma
protein profiling within the context of various diseases
including cancer [11]. The approach allows for many
proteins to be screened in small plasma volumes of a
large number of samples [12], thus enabling large-scale
proteomic investigations of body fluids like plasma.
In this study, we used a multiplexed affinity proteo-

mics assay with antibodies from the Human Protein
Atlas (HPA) [13] to screen proteins in plasma of women
without any prior history of breast cancer, and who were
enrolled in a unique prospective population-based co-
hort in Sweden, the Karolinska mammography project
for risk prediction for breast cancer (KARMA) cohort
[14, 15]. The aim of this exploratory approach was to
identify density-associated proteins, to improve our still
limited understanding of mammographic breast density
as a risk factor for breast cancer.

Methods
Study populations and data collection
This study included samples collected from participants
of the KARMA cohort [14]. KARMA is a population-
based cohort initiated in January 2011, which comprises
70,877 women attending routine mammography screen-
ing or clinical mammography at four hospitals in
Sweden [14, 15]. The overarching goal of KARMA is to
reduce the incidence and mortality of breast cancer by
focusing on individualised prevention and screening.
Raw (unprocessed) digital mammograms for each

study participant were collected at KARMA study enrol-
ment [14, 15]. Mammograms were taken from cranial-
caudal and mediolateral oblique views by full-field digital

mammography. Mammographic density was measured
two-dimensionally as an absolute dense area (AD) (cm2)
using the newly developed in-house STRATUS program
as previously described [15, 16] and three-dimensionally
as an absolute dense volume (VD) (cm3) using the auto-
mated Volpara system. STRATUS analyses both raw and
processed mammograms and estimates the breast and
dense area based on mammographic textures. Each
pattern segment is analysed for several statistical features
including pattern area, circumference, intensity, posi-
tioning, relation to other areas and shape. This quanti-
fied texture structure of the breast is compared to a
reference library of matching breast texture-density-level
pairs. The reference library was created using the pena-
lised lasso regression machine-learning method.
The total mammographic dense area and percent

mammographic density did not differ significantly
between the two sample sets (p = 0.80 and p = 0.90,
respectively). AD and VD measures from the right breast
were considered for statistical analysis.
KARMA participants were included in the study based

on measured VD and selected from the total KARMA
study population (N = 70,773). For practical reasons, the
study was conducted in two phases resulting in two
sample sets; sample set 1 included 729 women from
three sample groups and sample set 2 included 600
women from two sample groups (Table 1 and Fig. 1). No
participant had a prior history of breast cancer or other
malignant cancer at the time of sampling. One individual
developed breast cancer 2 years after blood draw.
For each sample set, women were allocated into two

subsets of VD (high and low). The high-density sample
groups (sample set 1, median VD = 104.9 cm3; sample
set 2, VD = 100.2 cm3) were women from the highest
quintile of absolute volumetric density in the KARMA
cohort. The low-density sample groups (sample set 1,
median VD = 33.5 cm3; sample set 2, median VD = 33.5
cm3) were women from the lowest quintile of absolute
volumetric density in KARMA. The sample groups (high
and low VD) were matched on age and BMI (Fig. 2). An
additional 139 samples from another KARMA study
(denoted “Karma Normal”) were selected in the same
way based on the highest and lowest quintiles of abso-
lute volumetric density (median VD = 68.3 cm3) and
included in sample set 1 (Fig. 2). Karma Normal is a
nested study within KARMA with the objective to study
normal breast physiology and only includes samples
from healthy participants in KARMA, without any
history of breast cancer or other cancers. Karma Normal
has been described in detail elsewhere [17]. Participants
in both sample sets were matched to the Information
Network for Cancer treatment (INCA) to ensure
disease-free status at the time of sample collection. BMI
was calculated at the time of the mammogram and was
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based on self-reported height and weight. Distributions
of sample characteristics and breast cancer risk factors
were similar between the two study sample sets (Table
1) and between each study sample set and the total
KARMA cohort. Each study participant signed an in-
formed consent form before joining the KARMA pro-
ject. The Stockholm ethical review board approved the
study (2010/958-31/1).

Sample collection
Non-fasting EDTA plasma samples of peripheral
blood were collected from the KARMA study partici-
pants at enrolment [14, 15]. All blood samples were
handled in accordance to a strict 30-h cold-chain
protocol and were processed in the Karolinska Insti-
tutet high-throughput biobank. The majority (97.5%)
of blood samples were taken on the same day as the
mammogram. Mean time between the mammogram
and blood sample collection was 4.8 h (SD 57.6 h).
The time interval from the mammogram to blood
collection did not differ significantly between sample
set 1 and sample set 2 (p = 0.80).

Target and antibody selection
For multiplexed protein profiling, sets of 382 and 393
antibodies derived from the Human Protein Atlas [13]
were used. These targeted a total 445 unique protein-
encoding genes, and a complete list of all antibodies
included in the study is provided in Additional file 1:
Tables S1-S2. The 382 antibodies included in the first
suspension bead array (SBA1) were selected based on a
possible relationship with mammographic breast density,
cancer development and/or progression or tissue
composition and/or remodelling. The 393 antibodies
included in the second bead array (SBA2) targeted
proteins annotated to extracellular matrix (Uniprot.org;
N = 156) [18] and proteins enriched in breast tissue
according to RNA sequencing (RNAseq) data [13]. The
list also included antibodies selected from immunohisto-
chemistry (IHC) primary data [13]. Further details about
antibody generation and selection can be found in
Additional file 2.

Antibody bead array assays
Antibody bead arrays were generated using carboxylated
magnetic beads of up to 393 unique bead identities

Table 1 Sample demographics

Sample set 1 Sample set 2

Characteristics All samples
N = 729

Low mammographic
density
N = 295

High mammographic
density
N = 295

Karma
normal
N = 139

All samples

N = 600

Low mammographic
density
N = 300

High mammographic
density
N = 300

Mean (SD)

Age, years 53.6 (9.5) 52.9 (9.5) 52.9 (9.5) 56.5 (9.1) 54.2 (9.6) 54.2 (9.6) 54.2 (9.6)

BMI, kg/m2 24.4 (3.1) 24.4 (2.6) 24.2 (2.6) 25.2 (4.5) 24.1 (2.7) 24.2 (2.7) 24.1 (2.7)

Absolute breast
dense area, cm2

35.4 (29.3) 17.0 (13.9) 56.6 (30.0) 29.4 (22.1) 37.3 (31.2) 15.7 (12.5) 58.9 (29.4)

Absolute
volumetric breast
density, cm3

72.0 (43.6) 33.9 (10.0) 108.5 (36.2) 75.3 (32.4) 73.0 (49.5) 33.4 (10.8) 112.5 (40.7)

Age at menarche,
years

13.1 (1.5) 13.0 (1.5) 13.2 (1.5) 13.1 (1.4) 13.1 (1.4) 13.1 (1.4) 13.1 (1.3)

Age at first birth,
years

27.5 (5.4) 27.5 (5.3) 28.2 (5.7) 26.2 (4.8) 27.8 (5.2) 27.4 (5.1) 28.3 (5.3)

Age at menopause,
years

50.2 (5.5) 50.3 (5.8) 50.0 (5.1) 50.3 (5.6) 49.6 (5.3) 49.2 (5.4) 50.1 (5.2)

Number (percent)

Nulliparous 86 (11.9) 18 (6.1) 51 (17.3) 17 (12.7) 103 (17.2) 37 (12.3) 66 (22.0)

Menopausal status

Premenopausal 337 (46.4) 140 (47.5) 157 (53.2) 40 (29.4) 268 (44.7) 129 (43.0) 139 (46.3)

Postmenopausal 389 (53.6) 155 (52.5) 138 (46.8) 96 (70.6) 332 (55.3) 171 (57.0) 161 (53.7)

HRT use ever

No 527 (79.0) 233 (79.0) 243 (82.4) 96 (71.6) 488 (81.3) 241 (80.3) 247 (82.39

Yes 152 (21.0) 62 (21.0) 52 (17.6) 38 (28.4) 112 (18.7) 59 (19.7) 53 (17.7)

Number of individuals with missing data for the following variables: body mass index (BMI) (N = 1), mammographic density (N = 1), age at menarche (N = 31),
age at first birth (N = 198), age at menopause (N = 420), parity (N = 5), postmenopausal status (N = 3), and hormone replacement therapy (HRT) use ever (N = 5)
SD standard deviation
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(MagPlex-C, Luminex Corp.) as previously described
[12]. All plasma samples within each study set were re-
trieved from the biobank and analysed at the same time
points. Plasma samples stored at − 80 °C were thawed at
4 °C and transferred to 96-well microtitre plates in a
semi-randomised plate layout, where samples from
different sampling locations were balanced across the
different plates and each matched pair of the two sample
groups (high and low VD) were placed within the same
plate. The randomised plate layouts resulted in an even
distribution of AD across all 96-well plates (Kruskal-
Wallis p values 0.94 and 0.57 for sample sets 1 and 2, re-
spectively). All plates included four aliquot replicates
from a crude plasma pool from all individuals included
in that study set. Samples were biotinylated, diluted,
heat-treated at 56 °C and combined with the bead array
on two separate 384-well assay plates in accordance with
previously described protocols [19]. Further details can
be found in Additional file 2.

Methods for antibody validation
Different types of assays were used to validate the anti-
bodies. Detailed descriptions about epitope mapping by
high-density peptide arrays, western blot and immuno-

capture mass spectrometry analysis of plasma samples
can be found in Additional files 1 and 2.

Data processing and quality control
Data from SBA assays were processed separately accord-
ing to the following procedure: blank (sample-free with
buffer) wells were excluded from analysis. In sample set
2, the replicated data from one 96-well plate was used
only for quality control; meaning only one of each
sample in a duplicated pair was included for statistical
analysis. Outlying samples, detected by robust principal
component analysis (PCA) [20], were replaced by miss-
ing values (N/A) using the “rrcov” R package. Probabilis-
tic quotient normalisation [21] was then applied for all
data points originating from each 96-well plate, followed
by between-plate normalisation using a multidimen-
sional normalisation method [22]. Prior to statistical
analyses, antibody profiles were annotated based on
assay performance. The annotations were based on four
different criteria, including median signal intensities
above that of the negative control bead identity (rIgG).
A more detailed description is provided in Additional
file 2. Filtering of antibody profiles based on such tech-
nical quality assessment resulted in a refined list of 245
(SBA1) and 244 (SBA2) antibodies against a total

Sample Set 1 

Assay 1 
(SBA1) 

Assay 2 
(SBA2) 

Assay 3 
(SBA1) 

Assay 4 
(SBA2) 

Experimental assays

Plasma protein profiles 

Antibody annotation
Assessment of performance

Antibody selection 

b

AD associated proteins

Association analysis
Quantile regression analysis (per Assay)

Adjustment for age and BMI

Meta analysis
Combine associations

Correct for multiple testing

Y

Y

SBA1
382 antibodies 
249 proteins 

SBA2
393 antibodies 
196 proteins 

Targeted bead arrays 

a

Y

Y

Sample Set 1 (N=729) 

295 High VD 
295 Low VD 
139 Karma Normal 

Sample Set 2 (N=600) 

300 High VD 
300 Low VD 

Sample selection

Sample Set 2 

Fig. 1 Study overview. a Samples comprised plasma from women with high and low absolute volumetric breast density (High VD and Low VD)
matched on age and body mass index (BMI) from the population-based KARMA cohort (Sample Set 1, N = 729; Sample Set 2, N = 600). In Sample
Set 1, an additional set of 139 individuals (Karma Normal) was included. For the experimental procedure, two antibody suspension bead arrays
(SBA1 and SBA2) were created with antibodies available from the Human Protein Atlas: 249 and 196 proteins were targeted. These proteins were
selected from breast-cancer-related literature and proteins annotated to extracellular matrix. Both bead arrays were used for the screening of each
plasma sample set (Assay 1–4). b The plasma protein profiles that were generated in the four assays were annotated and filtered based on technical
quality assessments. Association with absolute area-based breast density (AD) was then assessed by quantile regression analysis, adjusting for age and
BMI. Combining the results from regression analyses performed within each sample set by meta-analysis resulted in candidate protein profiles with
linear associations to AD
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number of 357 proteins that were targeted within each
study set. PCA was applied for quality control and to
detect potential sampling location effects. Prior to PCA,
data were log-transformed, centred and subjected to unit
variance scaling, and missing data points were replaced
by the median of the complete data set.

Experimental study design
The initial aim of the study was to contrast plasma pro-
tein profiles of women with high and low VD. However,
during the proceeding time, a study by Nguyen et al.
showed that breast cancer risk is more strongly associ-
ated with the denser part of the breast [23]. AD is thus
likely a better representation of the true dense tissue in
the breast. We therefore updated our strategy and per-
formed our density-protein association analyses using
absolute area-based density measures, which targets the

most radio-dense tissue in the breast. Identification of
protein profiles in relation to AD while controlling for
age and BMI is thus relevant for providing new bio-
logical insights into the mechanisms of mammographic
breast density. Accordingly, and prior to data analyses,
we decided to use AD as our primary endpoint. We also
report results according to our original design, using VD
as endpoints and samples matched for age and BMI (Fig.
4 and Additional file 2).

Statistical analysis
For contrasting high and low VD, the paired Wilcoxon
signed-rank test of normalised and log transformed data
was used. In order to keep the matching of age and BMI
between paired sample IDs, sample IDs matched to
those classified as outliers, based on signal intensities in
robust PCA in the experimental data, were removed

b

a

Fig. 2 Mammographic breast density within sample groups. a Density plots show the distribution of absolute area-based breast density (AD)
(cm2) and absolute volumetric breast density (VD) (cm3) within the sample groups representing the original sample selection (Sample Set 1, High
VD, Low VD and KarmaNormal; Sample Set 2, High VD and Low VD). Mean values of AD and VD in all sample groups from both sample sets can
be found in Table 1. b Correlation between AD and VD measurements within Sample Set 1 (rho = 0.71) and Sample Set 2 (rho = 0.75)
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prior to analysis. This resulted in 5 matched pairs (10
samples) within sample set 1 and 6 matched pairs (12
samples) within sample set 2 being excluded from two-
group comparisons.
To assess the association between antibody profiles

and AD, normalised, log-transformed data scaled to unit
variance were used for statistical analysis. Eleven sample
outliers, as identified by robust PCA, were excluded
from the statistical analysis. Quantile regression models
were computed using the “quantreg” package in R. In
both sample sets, the correlation between AD and BMI
differed between the matched groups of high and low
VD; there was stronger negative correlation between AD
and BMI in the low VD group (rho = −0.51 and −0.53,
respectively) than in the high VD group (rho = −0.19
and −0.12, respectively) (see Additional file 2: Figure S1).
Consequently, the effect of AD was adjusted for age, BMI,
sample group (high or low VD) and the interaction
between BMI and VD. When stated, p values from each
study set (set 1 and set 2) were combined by Fisher’s
method and adjusted for multiple testing using the
Benjamini-Hochberg method (referred to as “adj. p”). Data
analysis and statistical analysis were performed in R.

Results
Plasma profiles in relation to age and BMI
First, we investigated the associations between the
plasma profiles and age and BMI. Both variables influ-
ence AD but were not associated with one another in
the studied sample sets (p > 0.1). Age was associated
with 11 plasma profiles at p < 10−10, with concordant
trends in both sample sets (Additional file 2: Table S3).
Among these, the profiles for AMBN, TMEM86A,
MLH1, PTGR1 and SPNS1 were less strongly associated
with BMI (p > 0.001), and all but SPNS1 decreased with
age. For association with BMI, the overall significance
levels were lower compared to those for age, and there
were concordant trends for 10 profiles in both sample
sets (p < 10−5; Additional file 2: Table S4). Among the
profiles associated with BMI, only TPP1 and ENG pro-
files were less strongly associated with age (p > 0.001).
Interestingly, the trends of the slopes for BMI and age
only differed for TPP1.

Plasma profiles associated with AD
We subsequently analysed the linear relation between
protein profiles and AD. The data were adjusted for age,
BMI and the interaction between BMI and VD group.
The distributions of AD and VD within the three sample
groups are illustrated in Fig. 2. Using quantile regression
models, we identified 20 candidate profiles that were sig-
nificantly associated with AD (p < 0.05) in both sample
sets. All proteins remained significant (adj. p < 0.05)
after combining the p values from both sample sets and

adjusting for multiple testing. In total, 11 of the 20 pro-
teins (55%) were negatively associated with AD (Tables 2
and 3). Among these were ACOX2, ITGB6 and SHC1,
which had been observed as proteins strongly associated
with age and BMI. Next, we investigated the candidates
for expression in breast tissue. Annotations of gene
expressions were obtained from publically available
RNAseq or immunohistochemistry data (Additional file
2: Table S5) [13, 24]. Table 2 lists those 11 candidates
for which gene or protein expression has been detected
in human breast tissue. Figure 3 demonstrates linear
associations with the eleven candidates and shows that
plasma levels of ABCC11, TNFRSF10D, F11R and ERRF
were positively associated with AD, while SHC1, CFLAR,
ACOX2, ITGB6, RASSF1, FANCD2 and IRX5 were
negatively associated with AD. The additional nine
candidates lacking RNA expression in breast tissue are
shown in Table 3.

Plasma profiles associated with VD
The aforementioned analysis revealed 20 proteins with
concordant associations with AD in the two study sets.
We also analysed the data in relation to VD in accordance
with the initial study design. When comparing women
with different VD, we identified significantly elevated
levels of forkhead box P3 (FOXP3) using HPA045943 in
the high VD group compared to the low VD group (sam-
ple set 1, p = 0.004; sample set 2, p = 0.01; Fig. 4). The
anti-FOXP3 antibody, however, was not among the 20
antibodies that were the linearly associated with AD.

Validation of antibodies
We conducted several experiments to support the indi-
cations obtained for the high throughput immunoassays.
Acknowledging the challenge to validate antibodies due
to their context-dependent and assay-dependent func-
tionality and methods of different sensitivity, we first
investigated if paired antibodies raised towards a com-
mon protein target would reveal concordant information
in the high throughout assay. The data for HPA054101,
raised against an internal region of FANCD2 were
indeed supported by a second anti-FANCD2 antibody
(HPA063742), which was generated against the N-ter-
minal part of the protein. HPA063742 was associated
with AD within sample set 1 (p = 0.0005) but was not
statistically significant in sample set 2 (p = 0.09). The
two antibodies were correlated, with rho = 0.46 (in sam-
ple set 1) and rho = 0.62 (in sample set 2). Similarly, the
association between increasing AD and higher levels of
ABCC11 that was observed for HPA031981 was
supported by two additional anti- ABCC11 antibodies in
sample set 2 (HPA031979; p = 0.0004 and HPA031982;
p = 0.02, respectively). The three anti-ABCC11
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antibodies were generated against separate regions of
ABCC11.
Next, epitope mapping was conducted on high-density

peptide arrays (Additional file 2: Figure S2), which
revealed overlapping epitope regions for HPA054101
and four distinct epitope regions for HPA063742. None
of these epitopes was found to be homologous with
abundant plasma proteins, hence supporting on-target
recognition of FANCD2 (Additional file 2: Table S6). For
HPA064845, raised against ACOX2, four distinct epitope
regions were identified. Furthermore, western blot ana-
lysis (Additional file 2: Figure S3) revealed a single band
within +/− 20% of the expected weight range of ACOX2
(75 kDa). Also, for HPA065387 (TNFRSF10D), which
was positively associated with AD in our data, a single
band at the expected molecular weight ± 42 kDa was

identified. Last, immuno-capture mass spectrometry
(IC-MS) was used to assess the selectivity of the
highlighted proteins in plasma (Additional file 2: Figure
S4). On-target binding was confirmed for six targets,
namely ERRF (HPA026676; z score = 8.4), RASSF1
(HPA040735; z score = 9.1), IL4 (HPA042270; z score =
7.5), and ITGB6 (HPA023626; z score = 8.1), F11R
(HPA061700; z score = 3.3) and ABCC11 (HPA031981; z
score = 11.4). For the latter three, additional proteins
were co-enriched, suggesting either multiple off-targets
or a complex formation. We suggest a complex has been
formed between ITGB6 and LDHA, because of minimal
overlap between the HPA023626 antigen region and
LDHA (residues CxIxxL). In IC-MS, off-target enrich-
ment was observed for HPA001577 (anti-SHC1; off-tar-
get THBS4: z score = 4.1) and HPA049377 (anti-

Fig. 3 Associations between proteins and area-based mammographic breast density. The 11 candidate proteins expressed in breast tissue (see Tables
2 and 3) and their relationships with absolute area-based mammographic density (AD) are shown. Data from the analysis of both sample sets are
shown. The red lines represent the linear relationship between the measured protein levels after adjusting for body mass index, absolute volumetric
breast density (VD) and the interaction between AD and VD, stated as “norm. MFI”. The x-axis depicts the log-scaled distribution of AD values. The
density of data points is shown on a coloured heatmap, where data points are binned into rectangles. Darker and lighter blue colours indicate lower
and higher density of data points, respectively
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PSMA8; off-target LGALS3BP: z score = 8.4). Antibodies
for FANCD2 (HPA063742) and LIN28B (HPA061745)
did not reveal a specific enrichment over the population
of commonly identified peptides (z score <3). Results
from validation experiments are summarised and anno-
tated in Additional file 1: Table S7.

Discussion
We used antibodies to profile proteins in plasma from
healthy women with high and low breast density. Pro-
teins were selected based on their possible linkage to
mammographic breast density, cancer development and/
or progression or tissue composition and remodelling
based on literature review. We identified 20 protein pro-
files in plasma that were linearly associated with AD in
both of the studied sample sets. To our knowledge, this
is the first study in which plasma proteins were corre-
lated to AD.
Our study provided indications for eleven candidate

proteins for which expression was identified in breast tis-
sue (see Table 2) by analyses of omics data through HPA
expression [13] and transcriptome data [25]. Four of these
candidates were positively and seven negatively associated
with AD. We present a refined description of these pro-
teins and their relation to AD and breast cancer in
Additional file 2. There we also explain our perspective on
plasma protein associations with age and BMI.
Mammographic density is predominantly associated

with higher extracellular matrix (ECM)-rich stromal
tissues and epithelial composition, and lower proportion
of adipose tissue [17, 26, 27]. High collagen levels in the
mouse mammary gland increase tumour formation and

invasive behaviour [28], suggesting that dense tissue
areas may be tumour promoting. In fact, carcinomas
largely arise in the dense region of the breast, supporting
the link between tumour formation and mammographic
density [6]. Genetic profiles of extra-tumoural stromal
microenvironments have identified a so-called “inactive
signature”, comprising higher levels of cell adhesion and
cell-cell contact genes, associated with higher mammo-
graphic density [29, 30]. Collagen-rich stromal tissues
are also mechanically stiffer [31, 32], and stiffening of
the existing stromal collagen microarchitecture pro-
motes high mammographic density within the breast
[33]. Cells sense force and stiffening through mechano-
receptors such as cell-cell junctions and cell-matrix ad-
hesions mediated by integrins, and respond by activating
downstream signalling pathways to maintain tissue
homeostasis [34, 35]. Consistently, we identified positive
association between AD and the epithelial cell-cell adhe-
sion molecule F11R. We also identified negative associ-
ation with AD and the integrin ITGB6. Elevation of
F11R and decrease of ITGB6 in plasma from women
with high AD emphasise the complexity of maintaining
tissue homeostasis to prevent malignant transformation.
Genetic damage to proliferating cells has been postu-

lated to partake in the increased risk of breast cancer
associated with extensive mammographic density [6]. It
was recently shown that epithelial cells from high mam-
mographic density tissue have elevated activity in DNA
damage signalling, shorter telomeres, and altered DNA
damage response compared with epithelial cells from
low-density tissues [36]. The authors hypothesise that
elevated basal DNA damage in high-density epithelial
cells can result in subsequent induction of the
desmoplastic-like phenotypes observed in high-density
tissues. Therefore, a breast with more DNA-damaged
epithelial cells would exhibit more mammographically
dense areas, leading to overall high mammographic
density. Supporting this hypothesis, we identified two
other proteins expressed in breast tissue, namely
FANCD2 and RASSF1, which are both related to DNA
integrity and were inversely associated with AD. The
p53 target gene TNFRSF10D inhibits apoptosis induc-
tion and was positively associated with AD in our sam-
ple sets. We also observed a negative association with
AD and the CASP8 and FADD-like apoptosis regulator
CFLAR. Hence, the association of TNFRSF10D and
CFLAR plasma levels with high-density tissues could be
indicative of mechanisms by which high-density cells
avoid apoptosis induced by DNA damage.
The association between endogenous sex hormones

and breast cancer risk is widely described; nonetheless,
the mechanisms through which sex hormones contribute
to mammographic density are complex and incompletely
understood. We identified a positive association between

High VD Low VD

20
0

50
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20
00

Sample Set 1

M
F

I

p= 0.0046

High VD Low VD

50
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00

20
00
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Fig. 4 Associations between proteins and volume-based mammographic
breast density. Anti-FOXP3 (HPA045943) revealed significantly elevated
signal intensities (p < 0.05) in women with high absolute volumetric breast
density (High VD) compared to women with low absolute volumetric
breast density (Low VD). The two samples groups (High VD/Low VD)
represent the selection made for the original study design, where the two
groups were carefully matched on age and body mass index. Normalised
mean fluorescence intensity (MFI) values for women in Sample Set 1 (left)
and Sample Set 2 (right) are shown. P values were generated using the
Wilcoxon signed-rank test
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the oestrogen receptor (ER)-related nuclear factor ERRF
and AD, emphasising the link between oestrogen-
mediated signalling and mammographic density.
Both the RAS pathway related protein SHC1, which

transmits signalling of cell surface receptors to activate
downstream pathways, and the homeobox protein IRX5,
involved in cell differentiation and cell cycle regulation,
were negatively associated with AD, ss was the acyl-
coenzyme A oxidase ACOX2, part of the degradation of
long branched fatty acids. AD was also positively associ-
ated with the membrane transport-protein ABCC11.
Association between AD and proteins involved in cellu-
lar proliferation and control of metabolic functions is
indicative of the complex dynamic control to maintain
an internal steady state in high-density tissue.
Our study has also some limitations. Although we

initially selected participants based on volumetric mam-
mographic density, we performed the statistical analyses
using the absolute area-based measurement of mammo-
graphic density. Current research has led us to believe
that area is a better representation of the true dense tis-
sue in the breast and thus the best measurement of
mammographic density for analyses of plasma markers
of density [23, 37–41]. We also analysed the data in rela-
tion to VD in accordance with the initial strategy. When
comparing women with different VD, we identified
significantly elevated levels of forkhead box P3 (FOXP3)
in the high VD compared to the low VD group (Fig. 4).
AD and VD are differently associated with age and BMI,
which may partly explain this discrepancy (Additional
file 2: Table S8). Other limitations are that all exposure
data, such as BMI, are self-reported, which may result in
some misreporting. However, both exposure data and
mammograms were collected at the same time at
KARMA study entry. Noticeable is that we used plasma
to identify proteins associated with mammographic
density. It remains to be ascertained how well blood
plasma protein concentrations reflect the protein expres-
sion in the breast tissue. Nonetheless, the identified epi-
thelial and stromal cell-specific proteins support protein
leakage, shedding or elevated turnaround in breast tissue
leading to the detection of these proteins in the circula-
tion. The strengths of our study reside in the large num-
ber of samples and the use of two independent sample
sets from the KARMA study. This included the centra-
lised collection of mammograms and blood samples, the
quantitative assessment of mammographic density by
STRATUS, and collection of background information on
all participants [15].
The affinity-based assay used in this study provides

opportunities for high-throughput screening for novel
proteins associated with disease or selected phenotypes.
The design allows the combination of different protein
assays in one multiplexed approach and it is attractive

due to consumption of only minimal volumes of sam-
ples. We have taken great care in generating and asses-
sing the data prior to statistical analysis (see Fig. 1) and
the candidates presented provide leads for further stud-
ies. The method identifies relative protein quantities in
plasma and would require the development of assays
such as sandwich ELISA for the determination of actual
protein concentrations. We have used four different
assays to validate the antibodies (see Additional file 2:
Figures S4-S6 and Additional file 1: Table S7). This dem-
onstrates the challenge when working with antibodies in
exploratory analyses: Depending on the assay sensitivity,
sample preparation and target concentration, the per-
formance of the antibody may differ between assays and
cannot yet be predicted. Further investigations that pref-
erentially use multiplexed sandwich ELISAs with the
shortlisted targets will then allow us to quantify the pro-
teins in abundance to monitor and compare alterations
in these in relation to mammographic density in differ-
ent study sets.

Conclusion
This study utilised an affinity proteomics approach to
explore proteins in plasma associated with mammo-
graphic density, aiming at providing molecular insights
into mammographic density as a risk factor for breast
cancer. We identified a panel of 11 proteins in blood
plasma that were associated with mammographic density
and also expressed in breast tissue. The candidate pro-
teins have previously been linked to tissue homeostasis,
DNA repair and cancer development and/or progres-
sion. None, however, have yet been investigated in rela-
tion to mammographic density. Our data are indicative
of mechanistic processes underlying mammographic
breast density and provide insights into the aetiology of
breast density as a prominent risk factor for breast can-
cer. This study further suggests that epithelial-specific
and stroma-specific proteins can be found in blood as a
consequence of tissue leakage, which would make them
key candidates for future individual risk stratification.
Each highlighted candidate should be considered during
follow-up studies.

Additional files

Additional file 1: Tables S1-S2 Complete list of antibodies included in
serum bead array (SBA) 1 and 2 (sheet 1 and 2). Table S7 Summary of
antibody validation (sheet 3). (XLSX 71 kb)

Additional file 2: Tables S3-S6, S8, S9 and Figures S1-S7 Additional
material and methods description, results and detailed discussion.
(PDF 2026 kb)

Abbreviations
ABCC11: ATP-binding cassette, sub-family C (CFTR/MRP), member 11;
ACOX2: Acyl-CoA oxidase 2, branched chain; AD: Absolute area-based breast
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