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Evaluating the breast cancer predisposition
role of rare variants in genes associated
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Abstract

Background: Genome-wide association studies (GWASs) have identified numerous single-nucleotide polymorphisms
(SNPs) associated with small increases in breast cancer risk. Studies to date suggest that some SNPs alter the expression
of the associated genes, which potentially mediates risk modification. On this basis, we hypothesised that some of
these genes may be enriched for rare coding variants associated with a higher breast cancer risk.

Methods: The coding regions and exon-intron boundaries of 56 genes that have either been proposed by GWASs to
be the regulatory targets of the SNPs and/or located < 500 kb from the risk SNPs were sequenced in index cases from
1043 familial breast cancer families that previously had negative test results for BRCA1 and BRCA2 mutations and 944
population-matched cancer-free control participants from an Australian population. Rare (minor allele frequency≤ 0.
001 in the Exome Aggregation Consortium and Exome Variant Server databases) loss-of-function (LoF) and missense
variants were studied.

Results: LoF variants were rare in both the cases and control participants across all the candidate genes, with only 38
different LoF variants observed in a total of 39 carriers. For the majority of genes (n = 36), no LoF variants were
detected in either the case or control cohorts. No individual gene showed a significant excess of LoF or missense
variants in the cases compared with control participants. Among all candidate genes as a group, the total number of
carriers with LoF variants was higher in the cases than in the control participants (26 cases and 13 control participants),
as was the total number of carriers with missense variants (406 versus 353), but neither reached statistical significance
(p = 0.077 and p = 0.512, respectively). The genes contributing most of the excess of LoF variants in the cases included
TET2, NRIP1, RAD51B and SNX32 (12 cases versus 2 control participants), whereas ZNF283 and CASP8 contributed largely
to the excess of missense variants (25 cases versus 8 control participants).

Conclusions: Our data suggest that rare LoF and missense variants in genes associated with low-penetrance breast
cancer risk SNPs may contribute some additional risk, but as a group these genes are unlikely to be major contributors
to breast cancer heritability.

Keywords: Familial breast cancer, Single-nucleotide polymorphism (SNP), Predisposition genes, Breast cancer
susceptibility
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Background
Over the last decade, on the basis of genome-wide associ-
ation studies (GWASs), > 100 common variants (single-
nucleotide polymorphisms [SNPs]) have been reported to
be associated with minor increases in breast cancer risk
[1–3]. Researchers in fine-mapping studies have tried to
identify the causal variants as a first step toward under-
standing how the elevated cancer risk is mediated. Nearly
all of the SNPs are non-coding, and evidence to date sug-
gests that some are in regulatory regions of neighbouring
target genes and mediate subtle alterations in target gene
expression, such as CCND1 [4], or through changes in
post-transcriptional regulation, such as altered splicing in
TERT [5]. However, for most of the risk loci, the mechan-
ism of risk modification has not been explained, although
it is reasonable to expect that for many it will be through
modifying expression or regulation of a target gene in the
vicinity of the SNP. We hypothesised that if subtle expres-
sion changes confer a low susceptibility to breast cancer,
coding variants in some of these genes might confer much
higher levels of risk. This concept is supported by the
finding of low-penetrance SNPs associated with known
moderate- and high-penetrance genes such as BRCA2,
CHEK2 and potentially RAD51B (RAD51L1) [1–3], raising
the possibility that other genes associated with low-
penetrance SNPs might be enriched for coding high-
penetrance predisposition alleles. To address this ques-
tion, we sequenced all exons and exon-intron boundaries
in 56 genes that are plausibly associated with breast cancer
risk SNPs in index cases from 1043 familial breast cancer
families who previously had negative test results for
BRCA1 or BRCA2 pathogenic mutations and 944
population-matched cancer-free control participants from
an Australian population.

Methods
Candidate genes
Because the target genes influenced by most reported
breast cancer predisposition SNPs remain unknown, we
used two strategies to identify genes of interest: (1) those
reported as the plausible target gene in GWASs at the time
of our gene panel design [2, 3, 6–13], and (2) where no
gene had previously been proposed for a particular SNP, we
screened any gene located ± 500 kb of the risk-associated
SNP on the basis that most enhancers are < 500 kb away
from the gene that they regulate and that most linkage dis-
equilibrium (LD) blocks are < 500 kb in size [14]. In total,
56 genes associated with 56 SNPs were sequenced (Table 1,
Additional file 1: Table S1), along with other candidates, as
part of a custom sequencing panel [15–18].

Cohorts
A total of 1043 female breast cancer-affected index cases
from high-risk breast cancer families were identified

from the Variants in Practice Study and ascertained from
familial cancer centres (FCCs) in Victoria and Tasmania,
Australia, as described previously [17]. The personal
and/or family history of all the cases were assessed by a
specialist FCC and determined to be sufficiently strong
to be eligible for clinical genetic testing for hereditary
breast cancer predisposition genes by local criteria. All
cases in this study had a negative test result for patho-
genic mutations in BRCA1 and BRCA2. The average age
of cases in this study was 45 years (range, 22–81).
The control participants comprised 944 female sub-

jects randomly selected from among the > 54,000 female
participants of the Lifepool Study (http://www.lifepoo-
l.org/). The control participants had no self-reported or
cancer registry-confirmed cancers diagnosed as of May
2016. Lifepool has recruited women > 40 years of age
through the population-based mammographic screening
program in Victoria, Australia (BreastScreen Victoria).
The average age of Lifepool control DNA donors in this
study was 59 years (range, 40–92).

Targeted sequencing, variant calling and variant filtering
The coding regions and exon-intron boundaries (plus ≥
10 bp of each intron) of 56 genes were enriched from
germline DNA using a custom-designed HaloPlex Tar-
geted Enrichment Assay panel (Agilent Technologies,
Santa Clara, CA, USA). The libraries were sequenced on
a HiSeq2500 Genome Analyzer (Illumina, San Diego,
CA, USA) as described previously [17].
Sequencing data were processed and analysed using an

in-house bioinformatics pipeline constructed using SEQ-
LINER v0.1a (http://bioinformatics.petermac.org/seqli-
ner). Raw reads (FASTQ files) were first quality-checked
using FastQC (v0.11.2; http://www.bioinformatics.babra-
ham.ac.uk/projects/fastqc/) and trimmed using cutadapt
(1.7.1) [19] to ensure high read quality. Filtered reads
were then aligned to the human reference genome
(GRCh37/hg19) using the Burrows-Wheeler Aligner tool
[20], with base quality score recalibration and indel
realignment performed using the Genome Analysis
Toolkit (GATK v3.2.2) [21]. GATK UnifiedGenotyper
v2.4 (Broad Institute, Cambridge, MA, USA) [22], Hap-
lotypeCaller [23] and PLATYPUS [24] were used for
variant calling. Annotation of variants was performed
using a local copy of the Ensembl [25] version R73 data-
base and a customised version of Ensembl Variant Effect
Predictor. Variants were determined by reference to the
canonical transcripts. The Ensembl definition was as fol-
lows: (1) longest Consensus Coding Sequence Project
translation with no stop codons; (2) if no (1), choose the
longest Ensembl/Havana merged translation with no
stop codons; (3) if no (2), choose the longest translation
with no stop codons; (4) if no translation, choose the
longest non-protein-coding transcript. Only variants that
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were identified by at least two variant callers with a total
read depth of at least ten and an alternate allele read
proportion ≥ 20% were included in the analysis. Loss-of-
function (LoF) mutations were defined as stop-gained,
frame shift or essential splice site mutations. The in
silico assessment tools Condel [26], Polymorphism Phe-
notyping version 2 (PolyPhen-2) [27], SIFT [28], Com-
bined Annotation Dependent Depletion (CADD) [29]
and rare exome variant ensemble learner (REVEL) [30]
were used to examine the likely pathogenicity of mis-
sense variants. Variant were defined as “likely deleteri-
ous” when predicted deleterious or damaging by Condel,
PolyPhen-2 or SIFT, or when they had a CADD score ≥ 15
or a REVEL sore ≥ 0.5. The Exome Aggregation Consor-
tium (ExAC) and Exome Variant Server (EVS) databases
were used as additional references for the frequency of
variants in the general population. Because this study was

focused on the identification of moderate- to high-
penetrance alleles, which will be rare [31, 32], only vari-
ants with a population allele frequency ≤ 0.001 (in both
overall and European Caucasian populations) were
assessed. Variants were visually inspected using Integrative
Genomics Viewer [33, 34] to exclude artifacts.

Statistical analysis
ORs and p values were calculated using a two-tailed
Fisher’s exact test and the chi-square test in R version
3.3.2 [35].

Results
All exons and exon-intron boundaries of 56 genes iden-
tified by either GWAS-proposed or location-based
neighbouring criteria (Table 1; see also selection criteria
described in the Methods section) were sequenced with

Table 1 Candidate genes identified and corresponding breast cancer risk single-nucleotide polymorphisms

SNP GWAS proposed candidates Neighbouring genes ± 500 kb SNP GWAS proposed candidates Neighbouring genes ± 500 kb

rs7726159 TERT – rs2016394 – DLX2

rs10069690 TERT – rs1550623 CDCA7 –

rs2736108 TERT – rs6762644 – SETMAR; ITPR1

rs2588809 RAD51B – rs12493607 TGFBR2 –

rs999737 RAD51B – rs9790517 TET2 –

rs10759243 – RAD23B rs6828523 ADAM29 –

rs2981579 FGFR2 – rs1353747 PDE4D –

rs11199914 – FGFR2 rs1432679 EBF1 –

rs7072776 DNAJC1 – rs204247 RANBP9 –

rs11814448 DNAJC1 – rs720475 – TPK1

rs13387042 – TNP1 rs6472903 – HNF4G

rs11552449 – DCLRE1B rs2943559 HNF4G –

rs1045485 CASP8 – rs7904519 TCF7L2 –

rs4973768 SLC4A7 – rs3903072 – KAT5; SNX32; MUS81

rs889312 MAP3K1 – rs11820646 – NFRKB

rs12662670 ESR1 – rs2236007 PAX9 –

rs2046210 ESR1 – rs941764 CCDC88C –

rs1011970 CDKN2A; CDKN2B – rs17817449 FTO –

rs704010 ZMIZ1 – rs13329835 CDYL2 –

rs3817198 LSP1 – rs527616 – CHST9

rs10771399 PTHLH – rs1436904 CHST9 –

rs3803662 TOX3 – rs4808801 ELL –

rs6504950 COX11 – rs3760982 – XRCC1; KCNN4; ZNF283; ZNF226

rs8170 – USHBP1; BABAM1; UNC13A rs132390 – EMID1; NF2

rs2363956 – USHBP1; BABAM1; UNC13A rs6001930 MKL1 –

rs2823093 NRIP1 – rs4245739 MDM4 –

rs616488 PEX14 – rs6678914 LGR6 –

rs4849887 – EPB41L5 rs11075995 FTO –

GWAS Genome-wide association study, SNP Single-nucleotide polymorphism

Li et al. Breast Cancer Research  (2018) 20:3 Page 3 of 11



consistent high coverage in cases and control partici-
pants (average sequencing depths of 170.4 and 175.6, re-
spectively). Overall, 96.0% of the bases among the cases
and 97.1% of the bases among the control participants
were sequenced to a depth greater than tenfold (Add-
itional file 1: Table S2). As previously described, principal
component analysis using 7574 variants from all genes
in the sequencing panel showed that ~ 98% of study sub-
jects were of European Caucasian ancestry, and no bias
was observed in the population distribution between the
case and control cohorts [18].

Loss-of-function variants
LoF variants (minor allele frequency [MAF] in ExAC and
EVS, ≤ 0.001) were rare in both the cases and control par-
ticipants across all the candidate genes, with only 38
unique variants observed in a total of 39 carriers (Table 2).
For the majority of genes (36 of 56), no LoF variants were
detected in either the case or control cohorts (Table 3).
No gene had a significant excess of LoF mutations in

the cases versus the control participants. TET2 had the
largest number of LoF variants, with five in the cases and
two in the control participants, whereas three LoF muta-
tions were detected in NRIP1 but none in the control
participants. No more than two mutation carriers were
identified in each cohort for the remaining 18 genes har-
bouring LoF variants. Across all 56 genes, there was a total
26 LoF mutations in the cases compared with 13 among
the control participants (OR, 1.83; p = 0.077; 95% CI, 0.9–
3.9). Notably, there were ten genes with LoF variants
detected only in the cases, compared with only three
genes with LoF variants detected only in the control
participants. Restricting this analysis to only the 35 genes
directly proposed by GWASs with a potentially higher
likelihood of being the target gene (as opposed to being
based solely on their location ± 500 kb from the SNP), we
observed a significant excess of LoF mutations in the cases
(17 versus 4; OR, 3.89; 95% CI, 1.26–15.95; p = 0.008). In
contrast, no difference was observed for the 21 location-
only-based candidate genes (9 versus 9).

Missense variants
Similar to the LoF variants, the total number of carriers
with rare missense variants (MAF ≤ 0.001 in ExAC and
EVS) (Table 3, Additional file 1: Table S3) across all 56
genes was greater in the cases than in the control partici-
pants (406 versus 353; OR, 1.07), but this finding was not
statistically significant (p = 0.512). In addition, 34 genes
had a higher frequency of missense variants in the cases
compared with only 16 genes with a higher frequency in
the control participants. ZNF283 showed the strongest en-
richment for missense variants in the cases (17 versus 6);
however, this difference was not statistically significant.
There was no obvious difference in the rare missense

variant frequency based on whether they were GWAS-
proposed genes or location-only-based genes.
The missense variants were further stratified according

to a series of in silico prediction tools (Condel,
PolyPhen-2, SIFT, CADD and REVEL) as a means of
enriching for variants with a higher likelihood of patho-
genicity (Table 4). There was a trend towards a slightly
higher frequency of predicted pathogenic missense vari-
ants observed in the cases than in the control partici-
pants using any single prediction tool (ORs ranging
from 1.11 to 1.37), but none of the comparisons reached
statistical significance. Further restricting the analysis to
only those variants predicted to be pathogenic by all five
in silico tools, we detected no significant difference
between the cases and the control participants (58
versus 39; p = 0.170).

Discussion
The majority of common, low-penetrance breast cancer
SNPs are located in non-coding genomic regions, and al-
though different hypotheses have been proposed, the
biological mechanisms underlying these risk associations
remain inconclusive. Studies to date have demonstrated
mechanisms at least for some risk SNPs involving
altered expression of the target gene as a result of dis-
ruption to enhancer or promoter regions or by affecting
RNA splicing [4, 5]. On this basis, we hypothesised that
if subtle alterations to gene expression result in small in-
creases in breast cancer risk, then coding variants with
more profound effects on gene function might convey
much higher levels of risk. BRCA1 and BRCA2 are the
prime examples of such a scenario where both highly
penetrant coding mutations and low-penetrance non-
coding SNPs exist. GWASs are not designed to identify
such variants, owing to their rarity in the population.
Among the 56 candidate genes sequenced, LoF vari-

ants were rare, with over half of genes having no LoF
variants in either the cases or control participants. How-
ever, there was a small excess of both the total number
of LoF and missense variants in the cases compared with
the control participants (LoF OR, 1.83; missense OR,
1.07), but because the mutation frequency for each
individual gene was very low, it is unclear if this result
reflects a higher penetrance effect of a small number of
genes or if many of the variants contributed to a small
excess in breast cancer risk. The genes with the greatest
contribution to the excess of LoF variants in the cases
included TET2, NRIP1, RAD51B and SNX32 (12 cases
versus 2 control participants), whereas ZNF283 and
CASP8 contributed largely to the excess of missense var-
iants (25 cases versus 8 control participants). However,
on an individual gene level, none showed a significant
difference in the cases compared with the control partic-
ipants. A larger cohort size is needed to confirm this
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Table 3 Number of carriers with loss-of-function and missense variants detected in case and control cohorts

Gene Selection criteria Number of carriers with loss-of-function variants Number of carriers with missense variants

Case Control p Valuea OR 95% CI Case Control p Valuea OR 95% CI

TET2 GWAS proposed 5 2 0.456 2.27 0.37–23.87 20 18 1 1.01 0.50–2.03

NRIP1 GWAS proposed 3 0 0.251 Und 0.37–∞ 21 17 0.632 1.12 0.56–2.28

RAD51B GWAS proposed 2 0 0.501 Und 0.17–∞ 6 4 0.756 1.36 0.32–6.57

SNX32 Neighbouring genes 2 0 0.501 Und 0.17–∞ 3 6 0.323 0.45 0.07–2.12

ZNF226 Neighbouring genes 2 2 1 0.91 0.07–12.5 24 18 0.640 1.21 0.63–2.39

ADAM29 GWAS proposed 1 0 1 Und 0.02–∞ 13 11 1 1.07 0.44–2.65

CASP8 GWAS proposed 1 0 1 Und 0.02–∞ 8 2 0.113 3.64 0.72–35.26

CDKN2A GWAS proposed 1 0 1 Und 0.02–∞ 3 3 1 0.91 0.12–6.77

DCLRE1B Neighbouring genes 1 1 1 0.91 0.01–71.08 7 6 1 1.06 0.30–3.82

FTO GWAS proposed 1 0 1 Und 0.02–∞ 10 11 0.668 0.82 0.31–2.14

LGR6 GWAS proposed 1 0 1 Und 0.02–∞ 16 8 0.217 1.82 0.73–4.94

MUS81 Neighbouring genes 1 1 1 0.91 0.01–71.08 8 9 0.808 0.80 0.27–2.36

NFRKB Neighbouring genes 1 1 1 0.91 0.01–71.08 17 12 0.577 1.29 0.58–2.97

PDE4D GWAS proposed 1 0 1 Und 0.02–∞ 6 3 0.512 1.81 0.39–11.24

SETMAR Neighbouring genes 1 2 0.607 0.45 0.01–8.70 7 3 0.349 2.12 0.48–12.73

SLC4A7 GWAS proposed 1 0 1 Und 0.02–∞ 14 10 0.682 1.27 0.52–3.21

USHBP1 Neighbouring genes 1 1 1 0.91 0.01–71.08 14 11 0.841 1.15 0.48–2.82

CDKN2B GWAS proposed 0 1 0.475 0 0–35.30 1 1 1 0.91 0.01–71.08

TCF7L2 GWAS proposed 0 1 0.475 0 0–35.30 5 8 0.406 0.56 0.14–1.96

TPK1 Neighbouring genes 0 1 0.475 0 0–35.30 2 2 1 0.91 0.07–12.50

ZNF283 Neighbouring genes – – – – – 17 6 0.057 2.59 0.97–8.06

HNF4G GWAS proposed – – – – – 4 1 0.377 3.63 0.36–178.82

TERT GWAS proposed – – – – – 5 6 0.765 0.75 0.18–2.97

UNC13A Neighbouring genes – – – – – 17 8 0.158 1.94 0.79–5.21

LSP1 GWAS proposed – – – – – 11 15 0.327 0.66 0.27–1.55

XRCC1 Neighbouring genes – – – – – 6 12 0.153 0.45 0.14–1.30

ZMIZ1 GWAS proposed – – – – – 15 11 0.694 1.24 0.53–3.00

EMID1 Neighbouring genes – – – – – 11 8 0.654 1.25 0.46–3.59

FGFR2 GWAS proposed – – – – – 4 4 1 0.91 0.17–4.87

CCDC88C GWAS proposed – – – – – 38 45 0.219 0.76 0.47–1.20

ITPR1 Neighbouring genes – – – – – 17 20 0.507 0.77 0.37–1.55

MKL1 GWAS proposed – – – – – 26 19 0.547 1.24 0.66–2.40

CHST9 GWAS proposed – – – – – 7 9 0.617 0.70 0.22–2.13

PEX14 GWAS proposed – – – – – 9 6 0.613 1.36 0.43–4.66

PAX9 GWAS proposed – – – – – 3 7 0.207 0.39 0.06–1.70

PTHLH GWAS proposed – – – – – 3 1 0.626 2.72 0.22–142.85

CDCA7 GWAS proposed – – – – – 5 3 0.729 1.51 0.29–9.76

MAP3K1 GWAS proposed – – – – – 20 11 0.206 1.66 0.75–3.85

RANBP9 GWAS proposed – – – – – 10 5 0.309 1.82 0.56–6.80

DNAJC1 GWAS proposed – – – – – 8 9 0.808 0.80 0.27–2.36

TOX3 GWAS proposed – – – – – 7 7 1 0.90 0.27–3.03

EPB41L5 Neighbouring genes – – – – – 8 8 1 0.90 0.29–2.78

ESR1 GWAS proposed – – – – – 3 6 0.323 0.45 0.07–2.12
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trend and identify the contribution of any single gene.
Of note, there were no LoF variants detected and no
excess of missense variants (four in cases versus four in
control participants) in FGFR2, the “top hit” in many
independent breast cancer GWASs.
The strongest excess of LoF variants in this study was

TET2 (five cases versus two control participants). This
gene was reported to have a genome-wide influence on
gene expression by altering DNA methylation whereby
its dysregulation was associated with aberrant DNA
methylation and involved in the development of acute
myeloid leukaemia [36, 37]. Guo et al. showed that the
association with cancer appeared to be with functional
SNPs that lie in the promoter or enhancer that

consequently affects TET2 expression [38]. Such evi-
dence suggested that it is plausible that rare coding vari-
ants in TET2 could lead to compromised TET2 function
and involvement in breast cancer susceptibility. How-
ever, the data for TET2 need to be interpreted cautiously
because it is a gene known to cumulate age-related som-
atic mutations in blood [39]. It is possible that some of
the variants we identified are somatic mutations rather
than germline variants, particularly in light of the fact
that the alternate allele read proportions of LoF variants
were generally in the low range (≤ 35%).
Researchers have proposed that LoF variants in

RAD51B (RAD51L1) confer a high risk of breast cancer
[40], but it remains inconclusive owing to the extreme

Table 3 Number of carriers with loss-of-function and missense variants detected in case and control cohorts (Continued)

Gene Selection criteria Number of carriers with loss-of-function variants Number of carriers with missense variants

Case Control p Valuea OR 95% CI Case Control p Valuea OR 95% CI

MDM4 GWAS proposed – – – – – 7 3 0.349 2.12 0.48–12.73

CDYL2 GWAS proposed – – – – – 11 5 0.217 2 0.64–7.37

TNP1 Neighbouring genes – – – – – 0 2 0.226 0 0–4.82

BABAM1 Neighbouring genes – – – – – 4 3 1 1.21 0.20–8.27

TGFBR2 GWAS proposed – – – – – 4 3 1 1.21 0.20–8.27

ELL GWAS proposed – – – – – 9 5 0.430 1.63 0.49–6.23

NF2 Neighbouring genes – – – – – 12 5 0.150 2.19 0.71–7.95

KCNN4 Neighbouring genes – – – – – 8 4 0.393 1.82 0.49–8.27

DLX2 Neighbouring genes – – – – – 7 4 0.553 1.59 0.40–7.42

KAT5 Neighbouring genes – – – – – 3 2 1 1.36 0.16–16.29

COX11 GWAS proposed – – – – – 2 1 1 1.81 0.09–106.93

EBF1 GWAS proposed – – – – – 2 3 0.673 0.60 0.05–5.27

RAD23B Neighbouring genes – – – – – 0 1 0.475 0 0–35.30

GWAS proposed genes – 17 4 0.008 3.89 1.26–15.95 287 251 0.679b 1.05 0.86–1.28

Neighbouring genes – 9 9 1 0.90 0.32–2.58 168 138 0.392b 1.12 0.87–1.44

Total – 26 13 0.077 1.83 0.90–3.90 406 353 0.512b 1.07 0.89–1.28

Abbreviations: GWAS Genome-wide association study, Und undefined
aFisher’s exact test, two-sided
bPearson’s chi-square test with the Yates correction

Table 4 Number of carriers with likely deleterious missense variants predicted by in silico tools

Rare missense variants (MAF≤ 0.001) Number of carriers Number of total subjects p Valuea OR 95% CI

Cases Control participants Cases Control participants

All 406 353 1043 944 0.512 1.07 0.89–1.28

Condel deleterious 174 136 1043 944 0.182 1.19 0.93–1.53

PolyPhen-2 Probably/possibly deleterious 198 164 1043 944 0.384 1.11 0.88–1.41

CADD score≥ 15 225 173 1043 944 0.08 1.23 0.98–1.54

SIFT deleterious 171 131 1043 944 0.134 1.22 0.94–1.57

REVEL score≥ 0.5 88 63 1043 944 0.163 1.29 0.91–1.83

Predicted deleterious by all 58 39 1043 944 0.170 1.37 0.89–2.13

Abbreviations: CADD Combined Annotation Dependent Depletion, MAF Minor allele frequency, PolyPhen-2 Polymorphism Phenotyping version 2, REVEL Rare
exome variant ensemble learner
aPearson’s chi-square test with the Yates correction
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rarity of the LoF mutations (only 48 carriers in 60,706
participants in ExAC; carrier frequency, 0.08%). Few
germline LoF mutations have been reported: one splicing
variant in a breast and ovarian cancer family [41], one
splicing and one nonsense variant in two patients with
ovarian cancer [42], and one nonsense variant in a
melanoma family (p.Arg47Ter) [43]. We observed two
carriers of the same nonsense mutation, p.Arg47Ter,
which is the most common LoF variant seen in ExAC
database (21 carriers in total, including 14 South Asian
and 5 non-Finnish European carriers). In addition to
breast cancer family history, each carrier had a relative
with ovarian cancer (mother, grandmother), and one had
both parents diagnosed with melanoma. Together with
the previously cited reports, our data support RAD51B
as a plausible candidate gene in breast cancer families,
especially breast and ovarian cancer families, and it may
also play a role in melanoma predisposition.
With respect to missense variants, CASP8 showed a

strong signal towards an excess of rare variants (eight
cases versus two control participants). Notably, the cor-
responding low-penetrance GWAS SNP rs1045485
(p.Asp344His; MAFExAC, 0.12) is a missense variant in
CASP8; however, it is not included in the missense vari-
ants in this study, because we focused only on the rare
variants (MAF, ≤ 0.001). In a meta-analysis of one pro-
moter polymorphism that decreased CASP8 expression,
Cai et al. concluded that it was associated with a re-
duced risk of a broad range of cancers, including breast
cancer [44]. This evidence and our data would be con-
sistent with a model whereby a subtle reduction in
CASP8 function leads to reduction in cancer risk,
whereas missense mutations conferring an enhanced or
altered function increase cancer risk. Regardless of the
status of these leading candidate genes, our data clearly
show that low-penetrance SNP-associated genes are not
conspicuously enriched for high-penetrance breast can-
cer predisposition alleles and at best could explain only
a small proportion of hereditary breast cancer families
with no known pathogenic variants.
It has been suggested that one possible mechanism con-

tributing to the minor risks detected in GWASs for com-
mon variants that lie close to the coding sequence of a
gene could be an uneven distribution of much rarer, high-
risk coding variants between the different SNP alleles. For
many SNPs this explanation appears unlikely on the basis
of underlying LD structure and the distance between the
tagging SNP and the nearest gene, and for a smaller num-
ber this has been excluded by fine-mapping and functional
studies that have directly demonstrated the effect of the
causative variant. However, our data provide an opportunity
to examine this potential mechanism systematically for all
of the genes sequenced. We compared the frequency with
which LoF and rare missense variants in the 56 genes were

observed in association with either the corresponding risk
SNP or the alternate allele, both in the case group and in
the control group (Additional file 1: Table S4), and we
found no convincing evidence of an interaction between
the common and rare variants. For a few genes, including
PDE4D and TERT, there was a notable trend towards an
excess of rare variants in association with the risk form of
the SNP, but this was not statistically significant when ad-
justed for the effect of multiple testing. Similar trends were
observed for some genes, including UNC13A and DNAJC1,
in the opposite direction, indicating that the trends on each
side of the association were very likely due to random
chance. Of note, the greatest excess of rare variants in
carriers of the risk allele was found for the PDE4D gene,
where pathogenic missense variants have previously been
associated with an unrelated rare high-penetrance domin-
ant disorder, acrodysostosis type 2 [45].
This study has several main limitations. Firstly, as a

consequence of the rarity with which LoF variants
were observed in these candidate genes, our cohort
size could not provide sufficient power to determine
the cancer predisposition role for any individual gene.
Secondly, further breast cancer predisposition SNPs
continue to be identified, and we have not analysed
genes that are located near more recently identified
SNPs, although there is no reason to believe that the
genes we studied are not representative of SNP-
related genes in general. Thirdly, the cases and
control participants in this analysis are well matched
for ethnicity and represent a very similar population
in which the predisposition SNPs were originally
identified. However, we are unable to evaluate if mod-
erate- to higher-penetrance predisposing variants do
exist in other ethnic groups. In addition, in this study,
we were not able to examine whether some candidate
genes were significant in specific molecular subtypes
of breast cancer.

Conclusions
In summary, our study describes, for the first time to
our knowledge, an assessment of the contribution of rare
coding variants in SNP-associated genes to familial
breast cancer risk. Although confirmatory studies are re-
quired, our data suggest that rare LoF and missense vari-
ants in genes associated with low-penetrance SNPs may
contribute some additional risk but that they are unlikely
to be major contributors to breast cancer heritability.

Additional file

Additional file 1: Table S1. Genome coordinates and reported ORs for
the breast cancer risk SNPs used in this study. Table S2. Sequencing
coverage of 56 candidate genes in case and control cohorts. Table S3. Rare
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(MAF, < 0.001) missense variants detected in case and control cohorts.
Table S4. SNP and rare variant association analysis. (XLSX 111 kb)
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