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Abstract

Introduction: Previous studies have identified common germline variants nominally associated with breast cancer
survival. These associations have not been widely replicated in further studies. The purpose of this study was to
evaluate the association of previously reported SNPs with breast cancer-specific survival using data from a pooled
analysis of eight breast cancer survival genome-wide association studies (GWAS) from the Breast Cancer Association
Consortium.

Methods: A literature review was conducted of all previously published associations between common germline
variants and three survival outcomes: breast cancer-specific survival, overall survival and disease-free survival.
All associations that reached the nominal significance level of P value <0.05 were included. Single nucleotide
polymorphisms that had been previously reported as nominally associated with at least one survival outcome
were evaluated in the pooled analysis of over 37,000 breast cancer cases for association with breast cancer-specific
survival. Previous associations were evaluated using a one-sided test based on the reported direction of effect.

Results: Fifty-six variants from 45 previous publications were evaluated in the meta-analysis. Fifty-four of these
were evaluated in the full set of 37,954 breast cancer cases with 2,900 events and the two additional variants
were evaluated in a reduced sample size of 30,000 samples in order to ensure independence from the previously
published studies. Five variants reached nominal significance (P <0.05) in the pooled GWAS data compared to 2.8
expected under the null hypothesis. Seven additional variants were associated (P <0.05) with ER-positive disease.

Conclusions: Although no variants reached genome-wide significance (P <5 x 10−8), these results suggest that
there is some evidence of association between candidate common germline variants and breast cancer prognosis.
Larger studies from multinational collaborations are necessary to increase the power to detect associations, between
common variants and prognosis, at more stringent significance levels.
Introduction
Breast cancer is the most commonly diagnosed cancer
in women, in the world, with an estimated 1.67 million
new cancer cases diagnosed in 2012. Breast cancer
mortality is the second most common cancer-related
death in women in the more developed regions of the
world and accounts for 15.4% of cancer-related deaths in
women [1]. Breast cancer outcome is affected by several
factors including: age, tumour size, tumour grade, extent
of local and distal spread at diagnosis, oestrogen
receptor (ER) status, human epidermal growth factor
receptor 2 (HER2) status and treatment received. It is
also likely that inherited host characteristics, such as
genetic variants, are important [2].
The association between common germline genetic

variation and breast cancer survival has been examined
in many candidate gene studies investigating genes in
pathways known to be involved in breast cancer [3].
These studies have identified numerous single nucleotide
polymorphisms (SNPs) associated with outcome at
nominal significance levels, but none have been widely
replicated in further studies. The exceptions to this are
three genome-wide association studies (GWAS) [4-6] and
a study from the Breast Cancer Association Consortium,
which had substantial power to detect associated variants
with large effect sizes (hazard ratio (HR) >2) [7]. Two of
those GWAS have reported significant associations for
three polymorphisms (rs9934948, rs3784099, rs4778137)
[4,6]. The aim of this study was to evaluate the association
of previously reported SNPs with prognosis using data
from a hypothesis-generating pooled analysis of eight
breast cancer survival GWAS from ten studies including
37,954 breast cancer cases [8].

Methods
Literature review
Studies reporting common polymorphisms associated
with breast cancer prognosis were identified by searching
both Google Scholar and Pubmed. We searched Google
Scholar using the search terms: ‘breast cancer’, ‘survival’,
‘prognosis’, ‘polymorphisms’ and ‘SNPs’. The search terms
for Pubmed were ‘breast cancer’ AND (‘survival’ OR
‘prognosis’) AND (‘polymorphism’ OR ‘SNP’). The
references of all identified studies were then individually
interrogated for any additional studies. The search was last
updated on 6 June 2014. We considered studies to be
eligible for inclusion if they reported an association
between a germline genetic variant and at least one of the
following end points: overall survival, disease-free survival
and breast cancer-specific survival (BCSS). Studies evaluat-
ing the prognostic importance of rare high-penetrance vari-
ants with minor allele frequency <2% in BRCA1, BRCA2
and CHEK2 were omitted from the review. Only one study
conducted ER subtype-specific analyses.
For the purposes of comparison, all studies that used

genetic models that grouped together two genotypes into a
single category were defined as using ‘dominance models’.
This category includes both dominant and recessive
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models as each study's definition of a dominant or reces-
sive model is dependent on which allele is the major or
minor allele, whether they consider the effect allele to be
bi-directional, or whether they focus on only the risk allele.

Genome-wide association studies
We used data from a combined analysis of eight breast
cancer GWAS, from ten studies [9-19], that had genotype
data from a genome-wide SNP array and had collected
follow-up time data for the 37,954 breast cancer cases [8].
Genotype and sample quality control were carried out
separately for each study. In short, SNPs were excluded
based on: low call rate, minor allele frequency <1% and
significant deviation of genotype frequencies from the
Hardy-Weinberg equilibrium. Samples were excluded
for: low call rate, ambiguous gender, relatedness and ex-
treme heterozygosity. We also excluded subjects of less
than 90% European ancestry. Sample ancestry was deter-
mined separately for each GWAS included in the meta-
analysis using either principal component analysis, multi-
dimensional scaling or LAMP based on ethnicities from
HapMap samples. Samples with less than 90% European
ancestry were excluded. As different genotyping arrays
had been used for the different studies, imputation had
been performed using a reference panel from the 1000
Genomes Project [8,20]. We utilised the imputed data for
the SNPs of interest in this study. Details of the pooled
studies are shown in Additional files 1 and 2.
Cox proportional hazards models were fitted to assess

the association of genotype with breast cancer-specific
mortality under a co-dominant (log-additive) genetic
model using the likelihood ratio test. The models were
adjusted for principal components in order to minimise
the effect of population substructure, and the Collaborative
Oncological Gene-environment Study (COGS) [16] dataset
was stratified by study. Each survival GWAS was analysed
separately and the results were harmonised and combined
using a standard inverse-variance weighted fixed-effects
meta-analysis. In order to compare the results with the
published associations we used a one-sided test based on
Table 1 Previously identified breast cancer survival genes in

Pathway Nearest gene

DNA repair XRCC1, XRCC2, XRCC

Cell cycle control CCND1, CCND3, PRK

Matrix metalloproteinases MMP7, MMP8, MMP

Immune and drug response, metabolism Il-10, IL-6, IL-21, MPO
NEF2L2, TLR4, SLC28

Tumour progression NOS3, VEGF, NME1,

Vitamin D receptors RXRA, VDR

Miscellaneous TOX3, MTHFR, COX1

NB: the genes mentioned here are the candidate genes listed in the previous publi
and are not necessarily the genes on which the SNPs have a functional effect.
the reported direction of effect. In the initial analysis all 56
SNPs' models were unadjusted for prognostic factors.
However, we conducted multivariable analysis of the
previously reported SNPs that were significantly asso-
ciated with survival adjusting for age, stage and grade
using 29,360 samples from the COGS study.

Results
Literature review
We identified 46 publications reporting nominally
significant associations between 62 germline variants
and survival after a breast cancer diagnosis. Details of each
variant and the reported association with breast cancer
prognosis are shown in Additional file 3. The median
sample size was 890 cases; the smallest study had 85
cases and the largest 25,853. Fifty-nine variants were
from 44 candidate gene studies and three variants
were identified through GWAS. The candidate genes
were involved in the following pathways: DNA repair,
cell cycle control, matrix metalloproteinases, immune
response, drug response, tumour progression, vitamin D
receptors and miscellaneous other pathways (Table 1).
Findings from the identified publications were infrequently
replicated; only six variants out of the 62 were reported in
at least one subsequent publication.

Meta-analysis findings
Results from the GWAS meta-analysis included 58 of
the 62 previously identified variants discussed above.
The SNP (rs2886162) was replaced by a perfectly corre-
lated tagSNP (rs2364725, r2 = 1). Associations for four of
the variants identified: rs4778137 in OCA2, rs3803662 in
TOX3, rs1042522 in TP53 and rs2479717 in CCND1
were discovered in studies carried out by the Breast
Cancer Association Consortium using sets of samples
included in our GWAS meta-analysis. Therefore, we are
unable to replicate these associations independently in
the full dataset. The substantial sample overlap between
the studies that identified associations with rs4778137
and rs3803662 means that there is little to be gained
cancer-related pathways

References

3, RAD51B, LIG4, ERCC2 [6,28-32]

AG2, TP53, SIPA1, FGFR2, PPP2R2B [28,33-38]

2, SERPINE1, TIMP-3 [23,40-44]

, GSTP1, COMT, CYP19A1, CYP1A1, SULT1E1,
A3, CD24, CD44, NQO1

[14,22,24,45-57]

SELE, GNAS1, ZFP36, TGF [58-64]

[65,66]

1, OCA2, PLAUR. [4,7,34,65,67]

cations or are the nearest gene to the single nucleotide polymorphism (SNP)
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by attempting to replicate their associations in the
additional samples included in the meta-analysis.
However, the sample sizes in the studies identifying
rs1042522 and rs2479717 were relatively small, so we
evaluated their association with BCSS in the GWAS
meta-analysis omitting the samples from studies used in
the original publications. The two SNPs were evaluated in
29,224 and 31,434 samples respectively.
The results for the 56 SNPs evaluated in the meta-

analysis are presented in Additional file 4. In the analysis
of all cases, five SNPs (rs2981582, rs1800566, rs9934948,
rs1800470 and rs3775775) were significant with one-sided
P value <0.05, 51 SNPs were not significant at this
nominal P value. The most significant association was
for rs2981582 in FGFR2 (per G allele HR 1.09, 90%
confidence interval (CI) 1.04 to 1.14, one-sided P value =
0.00085). All significantly associated SNPs had good
imputation quality (r2 = 0.9 to 1). The imputation r2 for all
56 SNPs can be found in Additional file 4. No single SNP
reached the stringent level of significance generally
regarded as genome-wide significant (P value <5x10−8)
but the number of moderately significant associations (5)
was somewhat greater than that expected by chance (2.8).
This is illustrated by the quantile-quantile plot shown in
Figure 1. Seven SNPs not significantly associated with
prognosis in all patients were significant in ER-positive
disease. We found evidence of ER-positive specific associ-
ations with prognosis for seven out of the twelve SNPs
Figure 1 Quantile-quantile plot of results from look-up of previously repor
sided with direction assumed from previous association.
nominally associated (P <0.05) with survival. These SNPs
were not previously identified in patients with specifically
ER-positive disease; however, our observations may agree
with the previously reported results as most breast cancers
are ER positive. We measured the level of heterogeneity
between the studies included in the pooled analysis for the
12 SNPs associated with survival. There was moderate evi-
dence of heterogeneity for the SNP rs2981582 (I2 = 41.1%,
P value = 0.084). For all other SNPs there was low hetero-
geneity (I2 < 25%, P value >0.2). Details of the SNPs nom-
inally associated with BCSS are shown in Table 2. The
results for the nominally associated SNPs adjusted for age,
stage and grade are shown in Additional file 5. The HRs
for some of the SNPs were attenuated after adjustment.
Also, the associations with BCSS of SNPs rs3775775 and
rs2333227 were stronger in the multivariable analysis.

Discussion
There have been few studies focused on the replication
of sub-genome-wide significant associations identified
previously. Previous replication studies have focused on
reporting the SNPs with the strongest evidence of
association. We have found some evidence to support
previously reported associations between common
germline genetic variants and breast cancer prognosis.
However, the moderate evidence for some variants
provides a rationale for continued research efforts to
identify such variants. Significant variants were for
ted associations in genome-wide association studies. Tests were one-



Table 2 Previously reported associations replicated in the meta-analysis

All cases ER-negative cases ER-positive cases

SNP Gene Published Model Effect
allele

Effect allele
freq

HR (90% CI) One-sided HR (90% CI) One-sided HR (90% CI) One-sided
P value P value P value

rs2981582 FGFR2 Bayraktar et al. [34] Dominance G 0.57 1.09 (1.04-1.14) 0.00085 1.08 (1.00-1.16) 0.052 1.04 (0.98-1.10) 0.15

rs1800566 NQO1 Fagerholm et al. [14] Dominance A 0.19 1.10 (1.03-1.17) 0.0046 1.14 (1.03-1.25) 0.015 1.04 (0.95-1.13) 0.23

rs9934948 LOC100506172 Shu et al. [6] (GWAS) Co-dominance T 0.15 0.92 (0.86-0.98) 0.011 0.90 (0.79-1.01) 0.059 0.95 (0.86-1.04) 0.18

rs1800470 TGF Shu et al. [6] Co-dominance A 0.61 0.95 (0.91-0.99) 0.030 0.96 (0.88-1.04) 0.20 0.95 (0.88-1.02) 0.12

rs3775775 SULT1E1 Choi et al. [47] Dominance G 0.09 1.08 (1.00-1.16) 0.046 1.17 (1.03-1.31) 0.02 1.06 (0.95-1.17) 0.18

rs700519 CYP19A1 Long et al. [55] Dominance A 0.03 1.10 (0.98-1.22) 0.093 1.03 (0.83-1.23) 0.40 1.30 (1.10-1.50) 0.0050

rs731236 VDR Perna et al. [66] Co-dominance G 0.39 1.04 (1.00-1.08) 0.056 1.03 (0.95-1.11) 0.28 1.09 (1.02-1.16) 0.017

rs12900137 CYP19A1 Long et al. [55] Dominance C 0.05 1.01 (0.91-1.11) 0.47 0.94 (0.78-1.10) 0.70 1.18 (1.02-1.34) 0.032

rs10477313 PPP2R2B Jamshidi et al. [35] Dominance T 0.12 0.94 (0.87- 1.01) 0.08 0.92 (0.79-1.05) 0.15 0.88 (0.77-0.99) 0.035

rs2333227 MPO Ambrosone et al. [45] Dominance T 0.21 1.03 (0.97-1.09) 0.20 0.95 (0.87-1.03) 0.78 1.09 (1.01-1.17) 0.036

rs1902586 CYP19A1 Long et al. [55] Dominance A 0.05 1.01 (0.91-1.11) 0.44 0.99 (0.83-1.15) 0.54 1.16 (1.01-1.31) 0.041

rs28566535 CYP19A1 Long et al. [55] Dominance C 0.05 1.00 (0.90-1.10) 0.51 0.97 (0.81-1.13) 0.60 1.15 (1.00-1.30) 0.046

Hazard ratios are for breast cancer-specific survival using a Cox proportional hazards model corrected for principal components; hazard ratios, confidence intervals and P values are from a co-dominant model; P values
refer to a one-sided test of association in the direction indicated in bold in the 90% CI of the HR; P values in bold indicate results that are nominally significant (P <0.05). HR, hazard ratio; CI, confidence interval; GWAS,
genome-wide association study.
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the most part candidates in cancer-related genes as is
shown in Table 1. Despite the larger sample size and
therefore increased power to detect true associations
with prognosis in comparison to previous studies, a
possible reason for associations failing to reach
genome-wide significance may still be limited power.
Figure 2a illustrates that for our analysis with 2,900
survival events from 37,954 cases, there is limited
power to detect associations at stringent significance
levels for modest effect sizes based on a variant with a 0.3
minor allele frequency. Figure 2b shows that almost five
times as many events would be needed to detect with 80
per cent power at P value <10−8 an allele with a minor
allele frequency of 0.3 that confers a HR of 1.1.
In a two-sided test, five of the previously reported

associations with prognosis were significantly associated
with BCSS in the GWAS meta-analysis but had discordant
directions of effect to the original results. These discrep-
ancies may be caused by differing ethnicity between the
sample populations [21] as the meta-analysis is specific to
patients with European ancestry whereas the five original
studies consider non-European populations [6,22-24]. On
the other hand, they may also represent false positive
associations in both discovery and replication data.
Many previously published studies used a dominance

model to evaluate associations. We only used a co-
dominant model to detect association in the GWAS. This
is justified because thousands of common variants [25]
associated with a range of diseases have been identified
Figure 2 Power (%) to detect true associations with survival time across a ran
to detect true associations with survival time over a range of effect sizes at in
2,900 events. We used an imputation r2 = 0.8 to account for suboptimal impu
increasing numbers of events, at increasing orders of significance, given a min
imputation r2 = 0.8 to account for suboptimal imputation.
using a co-dominant model with little or no evidence for
dominance. It seems unlikely that breast cancer survival
would differ substantially from other phenotypes in any
true, underlying genetic model. Where the true underlying
model is co-dominant this approach will maximise statis-
tical power. While it is possible that some variants may be
truly associated under a dominance model, for example
through loss of heterozygosity of the specific germline vari-
ant in the tumour, we would still have reasonable power to
detect such an association with the large sample size of the
GWAS under a co-dominant model.
A further way to increase power to detect robust asso-

ciations with prognosis is to reduce the level of hetero-
geneity in the phenotype. Studies focusing on identifying
subtype-specific associations will have increased power
to detect variants associated with a particular subtype than
an analysis on all patients will have. In particular, studies
considering disease subtypes, for example ER-negative dis-
ease, may provide valuable information into the reasons
for known prognostic differences between subtypes. We
identified seven SNPs associated with ER-positive disease.
These SNPs were not previously identified in specifically
ER-positive disease, however, our observations may agree
with the previously reported results as most breast cancers
are ER positive. In addition, studies looking at interactions
with specific treatments, most notably adjuvant chemo-
therapy, hormonal therapy and adjuvant radiotherapy,
may further inform targeted treatment of subgroups of
patients according to their inherited genetic information.
ge of minor allele frequencies and numbers of events. (a) Power (%)
creasing orders of significance given a minor allele frequency of 0.3 and
tation. (b) Power (%) to detect true associations with survival time for
or allele frequency of 0.3 and an effect size of 1.1. We used an
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Some of the previously reported associations with progno-
sis were found in specific subgroups of patients; however,
as yet the sizes of these studies are limited. Large
subtype-specific studies are needed in order to investigate
interactions with particular subgroups effectively. The
generation of sufficiently large studies to deliver strongly
significant results, as well as having good outcome and
treatment data to enable powerful subtype-specific ana-
lyses, will only be possible by combining data resources
through large-scale global collaborations. Case-control
studies including approximately 100,000 cases are now
being conducted to identify common variants associated
with risk. It seems a realistic goal to carry out case-cohort
studies of a similar size. Reliable identification of SNPs
associated with breast cancer prognosis may help to under-
stand the molecular mechanisms of tumour progression
and metastasis. Ultimately, this may lead to the develop-
ment of new therapeutic targets. Polygenic risk scores
based on multiple risk alleles have been shown to have
potentially useful discrimination [26]. Similar polygenic
prognostic scores may improve discrimination of prognos-
tic and treatment benefit tools such as PREDICT [27].
Conclusions
We have found limited evidence to support the assertion
that germline genetic variation influences outcome
after a diagnosis of breast cancer. Large studies with
detailed clinical and follow-up information are needed
in order to achieve sufficient statistical power to detect
associations at stringent significance thresholds. In addition,
power can also be increased by reducing the level of pheno-
type heterogeneity, which will also provide valuable insights
into prognostic differences between subgroups.
Additional files

Additional file 1: Study information for GWAS included in
meta-analysis [8].

Additional file 2 Samples included in meta-analysis by study [8].

Additional file 3: Previously reported associations with breast
cancer survival.

Additional file 4: Look-up of previously reported associations in
meta-analysis.

Additional file 5: Multivariable analysis results adjusting for age,
stage and grade in samples from the COGS dataset.
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