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Long non-coding RNA expression profiles predict

metastasis in lymph node-negative breast cancer
independently of traditional prognostic markers
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Abstract

Introduction: Patients with clinically and pathologically similar breast tumors often have very different outcomes
and treatment responses. Current prognostic markers allocate the majority of breast cancer patients to the high-risk
group, yielding high sensitivities in expense of specificities below 20%, leading to considerable overtreatment,
especially in lymph node-negative patients. Seventy percent would be cured by surgery and radiotherapy alone
in this group. Thus, precise and early indicators of metastasis are highly desirable to reduce overtreatment. Previous
prognostic RNA-profiling studies have only focused on the protein-coding part of the genome, however the human
genome contains thousands of long non-coding RNAs (IncRNAs) and this unexplored field possesses large potential
for identification of novel prognostic markers.

Methods: \We evaluated IncRNA microarray data from 164 primary breast tumors from adjuvant naive patients with a
mean follow-up of 18 years. Eighty two patients who developed detectable distant metastasis were compared to 82
patients where no metastases were diagnosed. For validation, we determined the prognostic value of the IncRNA

profiles by comparing the ability of the profiles to predict metastasis in two additional, previously-published, cohorts.

Results: We showed that IncRNA profiles could distinguish metastatic patients from non-metastatic patients with
sensitivities above 90% and specificities of 64-65%. Furthermore; classifications were independent of traditional
prognostic markers and time to metastasis.

Conclusions: To our knowledge, this is the first study investigating the prognostic potential of INcRNA profiles.
Our study suggest that IncRNA profiles provide additional prognostic information and may contribute to the
identification of early breast cancer patients eligible for adjuvant therapy, as well as early breast cancer patients
that could avoid unnecessary systemic adjuvant therapy. This study emphasizes the potential role of IncRNAs in
breast cancer prognosis.

Introduction adjuvant systemic treatment. This prediction of risk

Breast cancer is the most common cancer in women, af-
fecting more than 10% of women in Western countries.
In Western countries, it is the leading cause of death
among women below the age of 50 years. The majority
of all breast cancer patients are diagnosed as having
a high risk of recurrence and are therefore offered
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based on clinical and pathological criteria is, however,
far from optimal, and considerable overtreatment oc-
curs, especially in the lymph node-negative group of
patients. It is of clinical interest to identify biomarkers
that could improve prognostic predictions.

Researchers have developed microarray-based gene ex-
pression profiles from frozen tumors from patients with
good or poor prognosis and the metastasis risk has been
predicted by gene expression of the primary tumor [1-4].
Gene expression analyses have also revealed that estrogen
receptor (ER)-positive and ER-negative breast cancers are
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molecularly distinct diseases [5,6] and stratification may be
necessary when making prognostic gene signatures [7].

During the past decade, advances in biotechnology
such as RNA sequencing have indicated that the major-
ity of the genome is transcribed into non-coding RNA
[8]. Increasing knowledge and identification of long non-
coding RNAs (IncRNAs) are emerging. IncRNAs are
RNA molecules that are longer than 200 nucleotides,
having no obvious protein-coding capacity [9,10]. In
general, IncRNAs show lower expression and are more
tissue-specific compared to protein-coding genes [10].

Different catalogs of several thousand human IncRNAs
have been generated from RNA-sequencing data [10,11].
However, only a small number of IncRNAs have been
functionally characterized in detail, although studies
have associated several IncRNAs with a broad spectrum
of biological mechanisms [12]. Generally, IncRNAs are
linked to diverse gene-regulatory roles such as chromo-
some dosage compensation, imprinting, epigenetic
regulation, cell-cycle control, nuclear and cytoplasmic
trafficking, transcription, translation, splicing, and cell dif-
ferentiation, et cetera. [13,14]. Most importantly, aberrant
expression of IncRNAs is linked to several disease states,
including cancer [13,15].

A few studies have associated certain IncRNAs with
poor outcome and disease progression in different types
of cancer: high HOTAIR expression was found in several
types of cancer, including breast and colorectal cancer
[16-18], overexpression of PCAT-1 has been observed in
prostate cancer [19] and overexpression of MALAT-1
has been observed in several types of cancer [15], includ-
ing early-stage non small-cell lung cancer [20].

In this study, we explored whether IncRNAs could
predict the clinical outcome in lymph node-negative
adjuvant-naive breast cancer patients and provide inde-
pendent prognostic information. We selected 82 primary
tumors from patients who subsequently developed dis-
tant metastasis and pair-matched them to 82 primary
tumors from patients who remained metastasis-free. We
analyzed the expression of IncRNAs, performed classifi-
cation and identified IncRNAs that predicted metastasiz-
ing primary tumors and non-metastasizing primary
tumors independent of classic prognostic markers and
with high accuracy.

Methods

Patients’ samples

We selected frozen tumor biopsies from lymph node-
negative patients who were diagnosed from 1980 to 2003
on the island of Funen, Denmark. All patients underwent
surgery for primary breast cancer, but none of the patients
received systemic adjuvant therapy. All tumors were <5 cm
in diameter and were snap-frozen and stored at -80°C.
Pathological examination of the samples was performed at
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the Department of Pathology at Odense University
Hospital, and all samples contained >50% tumor cells.
We selected biopsies from 82 patients who developed de-
tectable distant metastasis within a range of 0 to 15 years
and 82 biopsies from patients with no metastases diag-
nosed for at least 8 years or longer (one patient did
not fulfill this criterion) (mean follow up 18.1 years)
and matched them pair wise according to the follow-
ing criteria: tumor type, year of surgery (range 1980
to 2003), tumor size (range 0.6 to 5 cm), age (range
33 to 88 years), receptor status, and histological
grade (grade 1 to 3, or grade not available) (Table 1).
We chose the paired design to avoid classifications
dependent on traditional prognostic markers. By choosing
this design, we also increased the study power by enriching

Table 1 Patient and tumor characteristics

Metastasizing Non-metastasizing

tumors tumors
Age at diagnosis
(range 33 to 88 years)
<50 years 16 12
>50 years 66 70
Tumor size
<2.cm 35 36
2to5cm 47 45
Not available* 1
Estrogen receptor status
Positive 58 62
Negative 24 20
Tumor type
Invasive ductal carcinoma 64 67
Invasive lobular carcinoma 9 9
Mucinous carcinoma 2 2
Papillary carcinoma 3 2
Carcinoma with metaplasia 2 2
Not available* 2
Histologic grade
1 (good) 12 15
2 (intermediate) 29 25
3 (poor) 23 26
Not available* 18 16
Median year of surgery 1993 1994
(range 1980 to 2003)
Mean time to metastasis 484 -
(months)
Mean follow up (months) - 217
Vital status (number of patients 5 57

alive April 2013)

Results are presented as number of patients unless stated otherwise. *Not
available in the Danish Breast Cancer Cooperative Group (DBCG) database.
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for informative clinical endpoints compared with a cohort
study.

Of the 82 patients who were diagnosed with metasta-
sis, 16 had regional metastasis, while the remaining had
distant metastasis. We extracted all clinicopathological
features, including follow-up information, from the
Danish Breast Cancer Cooperative Group (DBCG) data-
base, the Funen pathology database, or the nationwide
pathology database. Patients who died from any cause
other than breast cancer were censored at the time of
death. There was no loss to follow up or censored obser-
vations. The study was approved by the Danish National
Committee on Health Research (S-VF-20020142). The
study was retrospective and we did not obtain informed
consent from the patients involved in the study as ap-
proved by the Ethical Committee.

Microarray analysis and re-annotation

Total RNA was isolated from the freshly frozen primary
breast tumor biopsies and processed as previously de-
scribed [18]. We used a modified standard design of the
SurePrint G3 Human GE 8x60k oligonucleotide slides
(G4102A) provided by Agilent Technologies (Santa Clara,
USA) for gene expression analysis. We kept the matched
sample pairs together during all steps of RNA extraction,
amplification, hybridization, and gene expression analysis.
Microarray data have been deposited to the Gene Expres-
sion Omnibus [GSE48408].

We matched the chromosomal positions of the probes
in the annotation file from Agilent to the chromosomal
positions of IncRNAs in the Human RNA catalog from
GENCODE version 16 [21] to select the probes covering
IncRNAs as previously described [22].

Statistical methods

Classification and feature selection

For classification, a support vector machine (SVM)
was applied with sigmoid kernel. The models were
developed using a threshold providing at least 90%
sensitivity, and maximizing the specificity, assessed
using leave one pair out cross-validation (LOPOCV).
Briefly, in this procedure a single pair of matched
samples served as test samples and the remaining
samples as a training set. This was repeated until all
pairs had been left out once and the accuracy of the
classifier was determined by the correctly classified
samples. The LOOCV procedure provides an unbiased
performance estimate and is the optimal method in small
datasets [23,24].

In the training set, feature selection is necessary to
avoid a small sample-per-feature ratio and has been
shown to provide better classification [24]. The feature
selection procedure used in this study consisted of three
steps: 1) testing the genes in the training set for
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significance using the paired t-test; 2) re-ranking the top
500 most significant genes/features according to their
random-forest importance value - for a given feature,
this value reports the standardized drop in prediction ac-
curacy when the class labels are permuted [25], and
3) finding the optimal number of features - by subse-
quently adding 10% of the features at a time in a top-
down forward-wrapper approach starting with the top
two features of the ranked list; at each increment the
classification accuracy of the training samples was
assessed using LOPOCYV in a nested loop [26]. Fisher’s
exact test was used to calculate the significance of the
classification results.

All calculations were performed using the open source
R-environment. The R packages randomForest and
€1071 were implemented for the random forest import-
ance ranking and SVM-based classification, respectively.
Differential survival in the predicted subgroups of sam-
ples was demonstrated by Kaplan-Meier plots and tested
by the log-rank test. The Cox proportional hazards re-
gression model was used to estimate the hazard ratio
(HR), with a 95% CI. The assumption of hazard propor-
tionality for the model was tested. Logistic regression
analysis was performed to examine the impact of age at
diagnosis, tumor size and grade on the classification
predictions and considered significant if the P-value
was <0.05.

We performed molecular subtype classification using
the 50-gene classifier described by Parker et al. [27]. All
50 genes included in the prediction analysis of micro-
array (PAM)50 classifier could be mapped to the Agilent
platform used. Distances to each of the five subtype cen-
troids were calculated using Spearman’s rank correlation
(R package genefu); the nearest centroid classified the
subtype of all 164 samples.

Optimal IncRNA gene signatures

The above-mentioned classification resulted in the same
number of different models and IncRNA gene sets as the
number of pairs unsuitable for validation in independent
datasets. To obtain optimal gene profiles for validation
purposes, we used the entire dataset for feature selection
as described above. We evaluated the performance of
the optimal classifier using LOPOCYV by adding one fea-
ture at a time in a top-down selection starting with the
top two features of the ranked genes, thereby, optimizing
the number of genes for obtaining 90% sensitivity, to-
gether with the highest specificity with a specified gene
list.

Heatmaps of the optimal IncRNA profiles were used to
visualize the patterns of expression in the different samples.
The normalized log ratios from the IncRNA list were mean-
centered within each IncRNA. We produced all heatmaps in
Qlucore Omics Explorer 2.3 (Qlucore, Lund, Sweden).
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Validation in independent datasets and comparison to
the MammaPrint signature

To examine the performance of the IncRNA profiles,
we identified two gene expression datasets measured
with  Affymetrix HG-U133A +B array containing
IncRNAs on a comparable breast cancer patient cohort
and therefore suitable for validation [28,29]. We re-
annotated the probes as described for the Agilent
microarray platform. The Miller dataset consisted of
236 breast cancer patients. Of these, 149 patients were
lymph node-negative, 135 of whom had not received
systemic adjuvant therapy, and 55 patients died be-
cause of breast cancer. The Pawitan dataset consisted
of 159 breast cancer patients, most of whom had re-
ceived systemic adjuvant therapy and 29 died because
of breast cancer. The performance of the IncRNA
profiles in the independent validation dataset was
evaluated using the LOOCV procedure described
above. The prognostic potential of the highest ranked
IncRNAs of the IncRNA profiles was further investi-
gated in the independent datasets using Kaplan-
Meier plots and was tested by the log-rank test. To
examine the performance of the MammaPrint signa-
ture in our dataset, we performed classification using
the 70 genes from the MammaPrint signature, with a
threshold providing at least 90% sensitivity, together
with the highest specificity.

Functional implications of individual IncRNAs

In order to associate functional gene sets to each
IncRNA in the top of the profiles, we performed
gene set enrichment analysis (GSEA). We used the
highest ranked IncRNA of the profiles, and computed
the Pearson correlation coefficient for each IncRNA-
mRNA combination. mRNAs were then ranked accord-
ing to the Pearson correlation coefficient to generate
ranked gene lists for GSEA. GSEA was performed by
the JAVA program [30] using the MSigDB C2 CP:
REACTOME gene set collection (674 gene sets).
Gene sets with a false discovery rate (FDR) value <0.05
after performing 1,000 permutations were considered sig-
nificant [31].

Relative expression levels of the top IncRNAs, in dif-
ferent subtypes, both in our dataset and in the Affyme-
trix validation datasets were visualized by box plots and
tested for significant associations with the molecular
subtypes using the t-test. All plots and tests were per-
formed in Qlucore Omics Explorer 2.3 (Qlucore).

Results

Re-annotation resulted in identification of 4,810 IncRNA
probes on the Agilent array. Further analysis was per-
formed using only the 4,810 probes covering 2,811
unique IncRNAs.
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Classification of tumor samples

We performed genome-wide gene expression analysis on
frozen tumor biopsies from 164 patients with primary
invasive breast cancer. All patients included in the study
were adjuvant-naive, lymph node-negative and had a
tumor measuring less than 5 cm; the selected group of
non-metastasizing patients had a mean follow up of
18.1 years. Table 1 summarizes the clinical and patho-
logical parameters of patients and their tumors.

Our primary objective was to investigate whether
IncRNAs had a prognostic expression pattern that de-
fined the metastatic phenotype. We achieved this goal
by developing an SVM classifier; the accuracy of the
classifier was the measure of how successful the method
was at assigning samples to the correct class. To per-
form classification, we used 162 samples as training set
and performed testing on the remaining matched pair.
Repeating this procedure for all matched pairs resulted
in cross-validation of all samples and a predicted prob-
ability for each patient of having a poor outcome.

In Denmark, systemic adjuvant therapy is offered to
patients with high risk of recurrence, defined as a cumu-
lative risk of 10% or more of recurrence of breast cancer
within 10 years [32]. Therefore, the patient group eli-
gible for adjuvant systemic therapy needs to be classified
with a sensitivity > 90%, e.g. misclassification of no more
than 8 patients out of the 82 metastatic patients. This
sensitivity threshold resulted in an overall classification
(82 pairs of samples) that correctly classified 74 out of
82 metastatic samples as having poor prognosis and 53
out of 82 non-metastatic samples as having good prog-
nosis (Figure 1A). Thus, the sensitivity was 90%, specifi-
city 65% and accuracy 77% (Table 2). Furthermore, the
Kaplan-Meier analysis for metastasis-free survival (MFS)
demonstrated a highly significant difference between
the groups predicted to have good or poor prognosis
(P = 6.0e-10, HR = 7.26, 95% CI 3.49, 15.08) (Figure 1B).

The prognostic classifier was developed in a majority
of ER-positive samples. Our evaluation of the overall
classification performance within the ER-positive and
ERnegative samples revealed better specificity of 68%
in the ER-positive samples, whereas the specificity in
the ER-negative samples was 55% (Additional file 1:
Table S1).

Because all the tumor samples included in the study
were collected more than a decade ago, no information
about human epidermal growth factor (HER)2 status
was available in the DBCG database and it was not pos-
sible to match samples according to HER2 status. Pre-
diction of intrinsic molecular subtypes revealed unequal
distributions of subtypes within the metastatic and non-
metastatic patient groups. The luminal A subtype was
overrepresented in the non-metastatic group and the lu-
minal B subtype was overrepresented in the metastatic
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Figure 1 Classification and survival analysis within all samples. (A) Dot plot of the overall classification (82 pairs of samples) illustrating the
probability of metastasis plotted versus the tumor number (P = 7.3e-14). The dashed vertical line separates the patients with metastasis (left of the
line) from the non-metastatic patients (right of the line). The horizontal line refers to the discriminating limit; hence, the upper left and lower right
corners contain the correctly classified patients. (B) Kaplan-Meier survival curve of metastasis-free survival according to model-based prediction

group. The HER2-enriched subtype was also overrepre-
sented in the metastatic group, while the basal-like sub-
type was underrepresented. In the original study by
Parker et al., the normal-like class was represented using
normal breast tissue [27], indicating that the samples
predicted as normal-like most likely contain a large
component of normal tissue. Nevertheless, evaluation
of the overall classification (82 pairs of samples) per-
formance in the predicted intrinsic molecular subtypes
revealed similar overall accuracies in all molecular sub-
types (Additional file 1: Table S1).

The overall classification (82 pairs of samples) seemed
to be confounded by the influence of ER status, despite

matching of the samples. Because of the matched design,
it was not possible to perform multivariate analysis to
test whether the metastatic outcome in the samples was
correlated to any of the traditional clinical variables. In-
stead, we performed logistic regression analysis to exam-
ine whether the prediction accuracies were independent
of the traditional clinical variables; age, tumor size,
grade, and ER status (Table 3). We found that neither
ER status nor any of the other variables influenced the
prediction accuracies significantly. Furthermore, we
investigated whether the relative expression levels of
the top 10 IncRNAs from the overall profile were asso-
ciated with molecular subtypes. Nine IncRNAs were
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Table 2 Overall classification, estrogen receptor (ER)-positive classification, ER-negative classification and classification

using the MammaPrint profile

Profile Number of samples

(metastasis/non-metastasis)

Sensitivity (true positive)

Specificity (true negative)  Accuracy® PP

LncRNA classification

Overall classification 82/82 90 (74) 65 (53) 77 73e-14
ER-positive classification 55/55 91 (50) 64 (35) 77 1.1e-9
ER-negative classification 17/17 94 (16) 0(0) 47 0.50
MammaPrint classification

All samples 82/82 90 (74) 22 (18) 56 0.03
ER-positive samples 55/55 91 (50) 55 (30) 73 1.9e-7
ER-negative samples 17/17 94 (16) 0(0) 47 0.50

3Mean of sensitivity and specificity. PFisher’s exact test, one-tailed. Classification performances were assessed by leave one pair out cross-validation with a threshold that

resulted in >90% sensitivity and maximized the specificity.

not associated with molecular subtypes, and only
HOXAI1I-AS was significantly associated with the HER2
subtype (Additional file 2: Figure S1).

To test whether the predictions would be improved in
a more homogeneous sample group, we stratified the
samples into 55 ER-positive and 17 ER-negative pairs.
We built new classifiers in each group, using the same
settings in the SVM algorithm as in the overall classifica-
tion. We determined the ER status by the ESRI expres-
sion to obtain the missing values in the DBCG database
(Additional file 2: Figure S2). We failed to match ten
pairs of samples correctly for ER status (according to
ESRI expression) and omitted them in the development
of new classifiers. Furthermore, this stratification should
minimize the influence from the molecular subtypes,
especially the effect of the HER2-enriched samples.

Using the 90% sensitivity threshold, the ER-positive
(ER+) classification (55 pairs of samples) correctly classi-
fied 50 out of 55 metastatic samples as demonstrating

poor prognosis, and 35 out of 55 non-metastatic samples
as demonstrating good prognosis, hence, demonstrating
a sensitivity of 91% and a specificity of 64% (accuracy
77%) (Figure 2A, Table 2). In addition, the Kaplan-Meier
analysis for MFS demonstrated a highly significant dif-
ference between the groups predicted to have good or
poor prognosis (P =1.1e-6, HR =7.15, 95% CI 2.85, 17.98)
(Figure 2B).

The ER-negative (ER-) classification (17 pairs of
samples), correctly classified 16 out of 17 metastatic
samples as having poor prognosis, and 0 out of 17 non-
metastatic samples as having good prognosis. Thus, the
accuracy was 47% and insignificant (Table 2).

Once more, we performed logistic regression analysis
to examine whether the prediction accuracies in the ER-
positive classification were independent of the traditional
clinical variables; age, tumor size, and grade (Table 3).
The test revealed a trend towards significant dependency
of age in the non-metastatic patients (P =0.053, odds

Table 3 Logistic regression analysis of overall classification and estrogen receptor (ER)-positive classification results on

the traditional clinical variable and time to metastasis

Overall classification

Metastatic patients (n=82)

Non-metastatic patients (n=82)

Odds ratio® P Odds ratio® P?
Age (<50 versus >50 years) 1.004 0.97 0914 0.57
Tumor size (range 6 mm to 50 mm) 1.002 0.56 0.990 0.19
Grade (range 1 to 3) 1.057 033 0971 0.75
ER status (negative versus positive) 1.002 0.98 1.095 0.56
Time to metastasis (range 0 to 181 months) 1.001 041 - -

ER-positive classification

Metastatic patients (n =55)

Non-metastatic patients (n =55)

Odds ratio® P 0Odds ratio® P?
Age (<50 versus >50 years) 1.088 049 0.526 0.053
Tumor size (range 6 mm to 50 mm) 0.996 0.34 0.991 0.36
Grade (range 1 to 3) 1.084 0.21 1.051 0.65
Time to metastasis (range 5 to 131 months) 1.000 0.86 - -

®Logistic regression analysis.
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Figure 2 Classification and survival analysis within estrogen receptor (ER)-positive samples. (A) Dot plot of the ER-positive classification (55 pairs
of samples), illustrating the probability of metastasis plotted versus the tumor number (P=1.1e-9). The dashed vertical line separates the patients
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the upper left and lower right corners contain the correctly classified patients. (B) Kaplan-Meier survival curve of metastasis-free survival according
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ratio (OR) = 0.526). We also examined whether a shorter
or longer time to metastasis (range 5 to 131 months)
influenced the prediction accuracies of the classifier and
found that the classifications were independent of time
to metastasis.

Evaluations of the ER-positive and ER-negative
classifications within the intrinsic molecular subtypes
(Additional file 1: Table S1) showed a very small dif-
ference in performance between the luminal subtypes
in the ER-positive classification, although only two or
three samples represented the difference, due to the
small sample size.

Classification with the 70 genes from the MammaPrint
profile, using the 90% sensitivity threshold in all our
samples, resulted in a specificity of 22%. Classification of
the ER-positive samples provided sensitivity of 91% and
specificity of 55%, whereas the MammaPrint profile
failed to classify any non-metastasizing ER-negative sam-
ples (Table 2).

Optimal IncRNA profiles

Because the classifications provided slightly different
IncRNA sets in each round of cross-validation, we gener-
ated an optimal IncRNA set by building new models in
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all pairs (Additional file 2: Figure S3A) and in all ER-
positive pairs (Additional file 2: Figure S3B), and
LOPOCYV was used to determine the optimal length of
the IncRNA profiles.

The resulting optimal IncRNA profiles consisted of 47
and 168 IncRNA probes in all pairs and in ER-positive
pairs of samples, respectively (Additional file 1: Tables S2
and S3, Additional file 2: Figures S4 and S5). The overall
and the ER-positive profiles had 31 overlapping IncRNA
probes (Additional file 1: Tables S2 and S3).

Identification of associated biological pathways

GSEA pathway analysis using mRNA ranked according
to IncRNA correlation revealed a significant enriched
pathway associated with two of the top IncRNAs
(FDR < 0.01) (Additional file 1: Table S5). The nuclear
enriched abundant transcript 1 (NEATI) was associ-
ated with several pathways involved in RNA polymer-
ase I promoter opening and transcription. The HOXAI1I
antisense RNA (HOXA11-AS) was associated with collagen
formation pathways and extracellular matrix organization
pathways.

External validation

To pursue an external validation of our IncRNA profiles
in independent datasets, we examined two existing
Affymetrix datasets [28,29]. We focused on re-annotating
the Affymetrix U133A +B array because of its higher
abundance of probes covering the entire transcriptome,
including a selection of IncRNAs. Unfortunately, only
15 IncRNAs from the overall 47-gene profile were cov-
ered by 20 probesets on the Affymetrix U133A +B
array. Fifty-nine IncRNAs from the ER-positive 168-gene
profile were covered by 75 probesets on the Affymetrix
U133A + B array, which was presumed to reduce
power of the external validation. We found that the
ER-positive profile could be validated in the ER-
positive samples in the Miller dataset combined with
the Pawitan dataset (324 samples) with an accuracy of
58%. This result was significant (P = 0.003) (Additional
file 1: Table S4), despite the fact that the Affymetrix
dataset only covered 59 of the IncRNAs in the overall
168-gene profile (Additional file 1: Table S3). Further-
more, survival analysis of the ER-positive profile in
the independent samples showed that it could separ-
ate patients with respect to probability of MFS (P = 0.006;
HR = 3.05; 95% CI 1.32, 7.07) (Figure 3).

In the independent samples, we also investigated the
prognostic potential of some of the individual IncRNAs,
found in the top of our profiles. Kaplan-Meier survival
analysis showed that expression levels of four out of
seven of the investigated IncRNAs significantly corre-
lated with unfavorable MFS in the validation samples
(P <0.05) (Additional file 2: Figure S6).
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Discussion

The aim of the study was to identify breast cancer pa-
tients who are overtreated using the current protocol.
We have analyzed IncRNA expression in 164 primary
breast tumors by microarray gene expression analysis
and showed for the first time that a profile consisting ex-
clusively of IncRNAs is associated with the risk of metas-
tases in lymph node-negative breast cancer patients. The
patients included in our study had not received any ad-
juvant treatment because most of them were diagnosed
20 to 30 years ago. By using gene expression data
and an SVM algorithm, we were able to generate
IncRNA classifiers that predicted metastasis outcome
with high accuracy.

Typically, retrospective studies are often biased to-
wards patients with available tumor material, which
again is related to tumor size and outcome [33]. We
employed a matched design that increased the power of
the predictor by enriching for informative clinical end-
points compared to a cohort study; furthermore, we
avoided classifications that were dependent on the trad-
itional clinical variables. Matching the samples also min-
imized bias related to storage time, sampling method,
and diagnostic procedures. We reduced the technical
variation during the purification and microarray proced-
ure by processing the matched pair concurrently.

Many studies have developed microarray-based gene
expression profiles consisting primarily of mRNA from
frozen tumors from patients with good or poor progno-
ses and predicted the metastasis risk by overall gene ex-
pression analysis of the primary tumor [1-4,34]. Many of
these signatures are not purely prognostic, because they
were developed in a mixture of patients who were
treated with or without systemic therapy. Additionally,
validation studies have demonstrated that the prognostic
accuracy is strongly time-dependent in several of these
signatures and their use might be better suited to predict
early relapse [35,36]. In the present data, the very long
follow-up time resulted in very reliable information
about outcomes in our patients and provided strength
to the classifier for predicting both early and late me-
tastasis events. The logistic regression analysis showed
that the classifiers predictions were independent of
time to event.

To explore whether IncRNAs could be used to predict
metastatic outcomes in early breast cancer, we re-
annotated our Agilent platform and found 4,810 probes
covering 2,811 unique IncRNAs. This Agilent array is
particularly enriched for IncRNAs and useful for study-
ing the IncRNA transcriptome. Using only the IncRNA
gene expression data, we performed the LOPOCV
method to estimate the prediction performance in our
samples. Both the overall classification and the ER-
positive classification resulted in an accuracy of 77%.
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However, we observed differences in prediction per-
formance in ER-positive and ER-negative subgroups.
The classification performance was low in ER-negative
samples in the non-metastasizing group of patients,
which was expected because the model was devel-
oped in a majority of ER-positive samples. In general,
most prognostic profiles developed in heterogeneous
patient cohorts contain proliferation-related genes
and possess prognostic power only in ER-positive
and HER2-negative tumors, because proliferation is
the major determinant of prognosis in this subgroup
of patients [37,38].

To test whether classification in ER-positive samples
alone would improve the specificity, we stratified the
pair of samples according to ER status, determined
by the ESRI expression. Microarray-based determin-
ation of ER status is a reliable measure to predict
immunohistochemistry-based ER status [39]. Dividing
the dataset further into intrinsic molecular subtypes
would have resulted in very small datasets.

The classification specificity within the ER-positive
samples was comparable to the overall classification; the
prediction gene lists developed in both classifications
had many IncRNAs in common. It further demonstrated
the high magnitude of the majority of samples during
classifier development. Thus the ER-negative samples
did not affect the overall classification within the ER-
positive samples.

Most interestingly, we found that the classifications
were independent of most of the traditional prognostic
markers, including ER status, tumor size, and grade, re-
vealing that the IncRNAs provide additional prognostic
information beyond the classical parameters. Further-
more, we found that short or long time to event had
no influence on the predictions, which is of major

importance, especially in ER-positive cancer, where the
risk of death from the tumors persists for 20 years [40].
ER positivity is only associated with a more favorable
prognosis during the first 5 years after diagnosis; studies
with longer follow-up time have shown equal survival
rates among ER-positive and ER-negative patients [41].

In addition, the classifications appeared to be subtype-
independent, although the distribution of luminal A and
luminal B subtypes was dissimilar, with a predominance
of the luminal B subtype in the metastatic patients and a
predominance of the luminal A subtype in the non-
metastatic patients.

The classification accuracy within the ER-negative
samples was not significant; this could be due to the
small number of samples analyzed and the interference
of molecular subtypes. Other studies have shown the dif-
ficulties in identification of good prognosis ER-negative
cancer patients, especially triple-negative basal-like can-
cers [42]. Conversely, a larger study using 186 untreated
ER-negative basal-like patients found that high expres-
sion of immune response genes gave a better outcome
than ER-negative cancers with low expression [43].

Examination of associated functional pathways re-
vealed that IncRNAs included in the profile are involved
in RNA polymerase I transcription and extracellular
matrix organization. Several studies have shown that
genes involved in extracellular matrix organization and
collagen formation are important players, when cancers
cells metastasize to distant sites and, therefore, are
closely related to the survival time of breast cancer pa-
tients [44].

The pathways associated with NEATI included purely
histone cluster genes indicating that NEAT1 could be in-
volved in epigenetic modifications. In prostate cancer
NEATI are involved in gene transcription of cancer
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progression genes by interacting with histones and/or
chromatin-modifying proteins [45], which supports our
findings.

Validation of the identified IncRNA profiles in inde-
pendent datasets was challenged by the lack of suitable
IncRNA datasets. Even though only 59 out of 168
IncRNAs were present in the independent validation
dataset, we sought to validate our ER-positive profile.
Despite the incomplete coverage of IncRNAs and the
fact that many of these patients were lymph node-
positive and had been treated with adjuvant therapy, we
were able to obtain significant prediction of metastasis.
Furthermore, the classification results were significantly
associated with MFS. These results indicate a true prog-
nostic value of IncRNA expression in breast cancer.

We performed survival analysis to further investigate
the prognostic potential of some of the IncRNAs indi-
vidually in the validation datasets. We found that high
expression of NEATI in the ER-negative validation sam-
ples correlated with poor survival. A similar association
has also been demonstrated in a large cohort of both
ER-positive and ER-negative breast cancer patients
[46]. High expression of TOPORS antisense RNA 1
(TOPORS-ASI) was associated with good outcome in
the ER-positive validation samples and with poor out-
come in the ER-negative validation samples. TOPORS-
AS1 has previously been associated with good outcome
in breast cancer patients and the authors suggested that
TOPORS-ASI acts as a tumor suppressor [47]. TOPORS-
ASI could potentially work as a prognostic biomarker,
although the association with hormone receptor status
needs to be further investigated. The IncRNA RP11-
539 L10.3 was also associated with good outcome in the
ER-positive validation samples. This IncRNA was the
most significant prognostic marker in our ER-positive
samples; however, additional studies are needed to clarify
the significance of RP11-539 L10.3. High HOX11-AS
was associated with poor outcome in the ER-positive
validation samples, an association not previously re-
ported. HOXAI11-AS has been proposed to negatively
regulate HOXAI1 mRNA levels in the human endo-
metrium [48].

Previous studies have conducted data mining of
Affymetrix arrays for IncRNAs [49-51]. We re-annotated
the probes at the Affymetrix 133A + B array to identify the
probesets covering the IncRNAs in the classifiers. We iden-
tified two different datasets from these Affymetrix chips
containing breast cancer samples and validated the profiles
in different subgroups of samples from these two datasets.
However, only about one third of the IncRNA probes in
the profiles could be mapped to probesets at the Affyme-
trix array, impeding the validation.

Several other sources of variation affect the out-
come when transferring gene sets from one dataset
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to another. Differences in RNA extraction, amplification,
labeling, size of oligonucleotides, sequence variation and
hybridization procedures, as well as differences in data
pre-processing and biological variation within patient
samples represent major challenges [52]. Previous studies
have shown the difficulties of external validation in data-
sets from different microarray platforms and the perfor-
mances of the classifiers dropped dramatically [53,54].This
study is the first to assess whether IncRNAs can be used
for prognostic profiling in breast cancer. Several other
studies have investigated gene expression data or RNA
sequencing data and identified single IncRNAs with
prognostic power or cancer progression properties
[16,19]. Du et al. re-annotated Affymetrix arrays and
identified relevant IncRNAs that were associated with
cancer subtypes and clinical prognosis in prostate
cancer, glioblastoma, ovarian cancer and lung squa-
mous cell carcinoma [50]. Another study found sig-
nificant RNA profiles, comprising both mRNAs and
IncRNAs, which were correlated with primary and
metastatic ductal pancreatic adenocarcinoma [55].

The clinical relevance of the current study is to sup-
port a more accurate prognosis and thereby reduce the
use of adjuvant therapy in lymph node-negative breast
cancer patients. The challenge is to obtain a higher spe-
cificity than the traditional markers currently used. A
retrospective study has shown that the treatment guide-
lines provided by the St Gallen consensus criteria [56] and
the online tool, Adjuvant! Online (standard version 8.0),
assigned very few patients to the low-risk group, providing
sensitivity above 90% at the expense of specificity below
20% [57]. We obtained slightly higher specificity in our
study (65% and 64%), when comparing our classification
results with the prognostic performances of different prog-
nostic gene profiles. The Dutch MammaPrint profile ini-
tially showed specificity of 59% [2], however this dropped
to 42% in a validation study [58]. The MammaPrint profile
performed worse than expected in our dataset, probably
due to the large number of ER-negative non-metastasizing
patients. The performance of MammaPrint improved
when stratifying patients by ER status, demonstrating
highly significant performance in ER-positive samples,
whereas, the prognostic significance of the MammaPrint
profile in ER-negative patients is questionable. Notably,
our ER-positive IncRNA profile improved the specificity
by 9% compared to the MammaPrint profile. Our profiles,
if further confirmed, could therefore result in a substantial
reduction of the number of lymph node-negative patients
who are recommended to have unnecessary systemic adju-
vant therapy.

Conclusions
We used primary tumors to develop prognostic profiles
consisting of IncRNAs that predict metastasis in lymph
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node-negative breast cancer patients independently of
the traditional clinical markers such as tumor size,
grade, and ER status. To our knowledge, this is the
first study that demonstrates that IncRNA profiles
can distinguish metastatic patients from non-metastatic
patients with sensitivity above 90% and specificity of
64 to 65%. The patients included in the study had
not received any kind of adjuvant treatment; hence
the performance of the profiles was not influenced
by treatment response. Further analysis within ER-
negative and ER-positive samples revealed similar
prediction accuracy in ER-positive breast cancer samples,
whereas we did not have statistical power to assess a
potential prognostic value of IncRNAs in ER-negative
cancers.

We managed to validate the prognostic value of our
ER-positive profile in two independent breast cancer
datasets, although these datasets were created with a
completely different type of microarray. Further valid-
ation in a dataset from the same type of microarray plat-
form or validation using PCR-based methods or target
RNA sequencing is necessary.
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ER-positive classification, resulting in an optimized number of INcRNAs to
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The 47 IncRNAs are order via hierarchical clustering. The metastatic
status and ER status are shown in the top bar. Figure S5 Expression
data matrix of the ER-positive 168-gene profile visualized as a heatmap.
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