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CENP = centromere binding protein; ER = oestrogen receptor; FTI = farnesyltransferase inhibitor; GGPT = protein geranylgeranyl transferase;
MAPK/ERK=mitogen-activated protein kinase/extracellular signal-related kinase; PI3-K = phosphatidylinositol 3-kinase.
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Introduction
Farnesyltransferase inhibitors (FTIs), initially developed to
target cancers in which the ras proto-oncogene was
mutated and overactive, represent a novel form of
anticancer therapy. However, in many tumours that lack
ras mutations, activation of Ras protein may still occur
because of permanent upstream growth factor activity.
Breast carcinomas are known to have a very low (< 2%)
incidence of ras mutations, and yet aberrant function of
the Ras pathway is thought to be common [1]. In
transgenic mouse mammary tumours, receptor tyrosine
kinase pathways result in activated Ras protein signalling
[2], whereas hormone-sensitive MCF-7 breast cancer
cells have been shown to express high levels of Ras-

related proteins [3]. Thus, a strategy of targeting Ras
protein function in cancer need not limit itself to tumours
with proven oncogenic ras mutations.

Farnesylation as a novel target
For the Ras protein to become activated it must first
associate with the cell membrane, a process that is
dependent on prenylation (Fig. 1). Prenylation is the
addition of either a farnesyl group or a geranylgeranyl
group to a conserved carboxyl-terminal cysteine residue
on the Ras protein, a step that can be catalyzed by two
different enzymes. Protein farnesyltransferase enables the
transfer of a farnesyl group from farnesyl pyrophosphate to
the cysteine residue, and it recognizes a specific
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Abstract

Current systemic therapies for breast cancer are often limited by their nonspecific mechanism of
action, unwanted toxicities on normal tissues, and short-term efficacy due to the emergence of drug
resistance. However, identification of the molecular abnormalities in cancer, in particular the key
proteins involved in abnormal cell growth, has resulted in development of various signal transduction
inhibitor drugs as new treatment strategies against the disease. Protein farnesyltransferase inhibitors
(FTIs) were originally designed to target the Ras signal transduction pathway, although it is now clear
that several other intracellular proteins are dependent on post-translational farnesylation for their
function. Preclinical data revealed that although FTIs inhibit the growth of ras-transformed cells, they
are also potent inhibitors of a wide range of cancer cell lines that contain wild-type ras, including
breast cancer cells. Additive or synergistic effects were observed when FTIs were combined with
cytotoxic agents (in particular the taxanes) or endocrine therapies (tamoxifen). Phase I trials with FTIs
have explored different schedules for prolonged administration, and dose-limiting toxicities included
myelosuppression, gastrointestinal toxicity and neuropathy. Clinical efficacy against breast cancer
was seen for the FTI tipifarnib in a phase II study. Based on promising preclinical data that suggest
synergy with taxanes or endocrine therapy, combination clinical studies are now in progress to
determine whether FTIs can add further to the efficacy of conventional breast cancer therapies.
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sequence of amino acids, the CAAX motif (where C =
cysteine, A = aliphatic amino acid, and X = residues such
as methionine, serine, leucine, alanine and glutamine).
Protein geranylgeranyl transferase (GGPT) type 1 also
acts at the CAAX motif, and it is the X residue that
determines which enzyme becomes activated [4]. After
prenylation the CAAX proteins undergo further
processing, the result of which is an increase in the
hydrophobic properties of Ras such that it can readily
associate with the lipid bilayer of the cell membrane. This
enables it to cycle from its inactive GDP-bound state to
the active GTP-bound state in response to upstream
tyrosine kinase signalling.

One key event resulting from Ras activation is the
recruitment of Raf-1 to the cell membrane. Activated Raf-1
then phosphorylates the protein kinases MEK1 and MEK2,
which in turn activate mitogen-activated protein kinase/
extracellular signal-related kinase (MAPK/ERK), a
sequence of events that results in the transcription of
target genes that are involved in cell proliferation [5]. In
addition, Ras can activate other cellular effectors
independent of Raf-1, such as phosphatidylinositol 3-
kinase (PI3-K), which signals via an alternative pathway to
influence the suppression of apoptosis [6]; the protein
kinase MEK kinase, which activates the c-jun transcription
factor [7]; and the G proteins Rac and Rho, which are
involved in regulation of the cytoskeleton. Despite the fact
that there are alternative ways in which prenylation of Ras
takes place, farnesylation has attracted most attention
because it is critical for oncogenic Ras signalling [8], and
FTIs have been developed as a novel drug therapy to
target aberrant Ras function in cancer.

Development of farnesyltransferase
inhibitors
One approach to development of FTIs was the rational
design of several peptidomimetic compounds based on
the CAAX sequence of Ras. Ester prodrugs such as
L-744,832 were found to inhibit the growth of more than
70% of tumour cell lines [9] and significantly inhibited the
growth of spontaneous mammary tumours in H-ras
transgenic mice without systemic toxicity [10]. Alternative
prodrugs such as FTI-277 were synthesized in which the
central portion of the CAAX mimetic was replaced by a
rigid spacer group [11]. Others combined the properties
of a farnesyl disphosphate analogue with those of a
peptidomimetic, such as the bisubstrate inhibitor
BMS-186511.

An alternative approach was high throughput screening of
natural products or compound libraries, which led to the
discovery of the two unrelated compounds SCH 66336
and R115777, both of which are orally active and in the
clinical arena. SCH 66336 (ionafarnib; Sarasar™) is a
selective, tricyclic piperidinyl piperidine carboxamide
developed by Schering Plough Research, and R115777
(tipifarnib; Zarnestra™) is a methyl quinolone developed by
Janssen Research Foundation (now part of Johnson and
Johnson Pharmaceutical Research and Development).
They are both potent inhibitors of farnesyl transferase at
nanomolar concentrations and have shown activity in a
variety of human tumour lines and animal models [12,13].
There are two other compounds of note: BMS-214,662, a
selective imidazole-containing tetrahydrobenzodiazepine
that came from a series of nonthiol, tetrapeptide Ras FTIs
developed by Bristol Myers Squibb [14]; and L-778,123,
a peptidomimetic from Merck & Co Incorporated [15].

Preclinical data with farnesyltransferase
inhibitors
Experiments characterizing the sensitivity of various human
tumour cell lines to FTIs were pivotal because they
showed that the sensitivity did not correlate with the
presence of oncogenic ras mutations [13]. Indeed, breast
cancer cells that lacked ras mutations but had active
protein kinases, in which the transformed phenotype may
depend on upstream activation of Ras protein, were
especially sensitive to the drugs. Another important initial
observation was that many of the cellular effects of FTIs
appeared to be cytostatic rather than cytotoxic and that,
after removal of FTI from the culture medium, cells
reverted to their transformed phenotype [16]. Several lines
of in vitro and xenograft data supported the cytostatic
effect by showing that FTIs induced either a G1 or G2/M
cell cycle arrest [17,18]. In hormone-sensitive, oestrogen
receptor (ER)-positive MCF-7 breast cancer xenografts,
the FTI R115777 appeared cytostatic on tumour growth
in vivo (Fig. 2), but analysis of FTI-treated xenografts
revealed a significant fall in cell proliferation index (Ki-67)

Figure 1

Ras processing and membrane association: role of farnesy protein
transferase (FPTase) and CAAX cleavage. Post-translational
modifications of Ras proteins that allow subsequent hydrophobic
interaction with the plasma membrane after addition of a 15-carbon
farnesyl moiety by the enzyme FPTase. CMT,
carboxymethyltransferase; RCE, Ras converting enzyme.
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and induction of the cdk inhibitor p21cip1/waf1, together
with a twofold rise in apoptotic scores [19].

Various conditions in which other cell survival pathways
are modulated may determine whether FTIs have a
cytotoxic or proapoptotic effect. For example, activation of
the PI3-K/Akt pathway (which can be Ras-independent)
prevented the FTI L-744,832 from inducing apoptosis in
ras-transformed fibroblasts [20]. However, inhibiting this
pathway with the PI3-K inhibitor LY-294002 or depriving
the cells of serum (which normally promotes cell survival
through cytokine/insulin mediated activation of Akt)
allowed L-744,832 to induce significant apoptosis in
these cells. Thus, FTIs may appear cytostatic in some
systems because of activation or over-expression of
alternative cell survival pathways, some of which may be
independent of Ras. As such, combinations of an FTI with
other pathway inhibitors might be a rational approach to
maximizing the effect of these compounds. As discussed
below, this concept was developed in breast cancer by
combining FTIs with tamoxifen, an endocrine agent that is
well known to modulate cell survival in ER-positive breast
cancer cells.

As FTIs have been developed, controversy has continued
to surround exactly which farnesylated proteins are the key
targets for the anticancer effect of these agents. Although
FTIs clearly inhibit Ras farnesylation, it is unclear whether
their antiproliferative effects result exclusively from their
inhibition of Ras functioning [21]. For example, it has been
shown that centromere binding protein (CENP)-E and
CENP-F, which are preferentially expressed in mitotic
cells, are direct substrates for FTIs, and that their
prenylation can be inhibited by the FTI SCH 66336 [22].
Other intracellular targets for FTIs include perioxomal

membrane [23] and nuclear membrane (lamin A and B)
associated proteins [24], or an effect on the PI3-K/Akt cell
survival pathway [25]. FTIs also inhibit soft agar growth of
several breast cancer cell lines independent of their
mutant Ras status [9], probably through an alternative
target such as the 21 kDa protein RhoB, which regulates
receptor trafficking and cell adhesion/motility [26]. In total,
more than 100 polypeptides possess a CAAX sequence
that potentially can be farnesylated, and as such FTIs may
have multiple targets that may be inhibited to produce a
net anticancer effect [27].

Potential for farnesyltransferase inhibitors to
enhance efficacy of current breast cancer
therapies
In addition to in vitro and in vivo preclinical evidence that
breast cancer cells may be growth inhibited by FTIs,
emerging data suggest that FTIs could enhance the
efficacy of several conventional therapies for breast
cancer. A series of combination experiments were
performed with ras wild-type breast cancer cells,
examining the effects of the FTI L-744,832 in combination
with various cytotoxic drugs, including doxorubicin,
cisplatin, vinblastine, 5-fluorouracil and paclitaxel.
Although the effects on growth inhibition for FTI plus most
of these agents were merely additive, the combination of
L-744,832 with paclitaxel was clearly synergistic [28].
These findings have been supported by preclinical studies
with both tipifarnib and lonafranib in combination with
paclitaxel [29,30]. Indeed, in wap-ras transgenic mice,
which develop spontaneous mammary tumours that are
resistant to paclitaxel, lonafarnib was able to overcome
resistance [29]. The finding that lonafarnib prevents
farnesylation of CENP-E and CENP-F raises the possibility
that FTIs may inhibit microtubule formation, resulting in
cells accumulating in the G2/M phase of the cell cycle,
which in turn may lead to enhanced sensitivity to the
microtubule stabilizing action of the taxanes. Several
clinical trails have been initiated to explore the combination
of FTIs with taxane-based chemotherapy (see below).

Perhaps greater interest has surrounded the potential of
combinations of FTIs with endocrine agents, in particular
whether they can overcome or prevent the endocrine
resistance that can develop during prolonged therapy with
either tamoxifen or aromatase inhibitors. It has become
clear that ER signalling and growth factor pathways
crosstalk to modulate endocrine response in breast
cancer cells during prolonged therapy [31]. This crosstalk
can occur at a number of levels, including the type-1
tyrosine kinase growth factor family (epidermal growth
factor receptor and HER2) [32] and the PI3K/Akt pathway
[33] interacting directly to activate ER signalling, with
evidence that these pathways become upregulated or
activated during the development of endocrine resistance
[34]. At least four independent groups, using both in vitro

Figure 2

Dose-related effects of the farnesyltransferase inhibitor tipifranib on the
growth of oestrogen receptor-positive MCF-7 breast cancer xenografts.
Reproduced with permission from Kelland and coworkers [19].
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and in vivo experimental models, have now shown that
various signal transduction inhibitors (i.e. tyrosine kinase
inhibitors and MEK inhibitors) can treat or even prevent
endocrine-resistant growth [35–38]. For example, in
hormone-sensitive MCF-7 breast cancer cells, combined
treatment with the tyrosine kinase inhibitor gefitinib and
the endocrine agent tamoxifen was more effective than
either treatment alone, with greater antiproliferative/pro-
apoptotic effects and near complete inhibition of phosphory-
lated ERK1/2 MAPK and Akt [37]. This resulted in greater
G0/G1 arrest and suppression of the cell survival protein
bcl-2 than are observed with just tamoxifen, promoting the
novel concept in breast cancer that combined signal trans-
duction inhibitor/endocrine therapy may be considerably
more effective that endocrine therapy alone [39].

Similar data have now emerged that support the
combination of FTIs with endocrine therapy in breast
cancer. In vivo, tipifarnib produced a modest cytostatic
effect on MCF-7 xenograft growth, with evidence of
induction of apoptosis and enhanced expression of the
cell-cycle inhibitory protein p21 [19]. In contrast, when
tipifarnib was combined with tamoxifen or oestrogen
deprivation therapy, combined treatment induced
significantly greater tumour regression as compared with
either therapy alone [40]. The mechanism underlying any
interaction of FTIs with endocrine therapy remains unclear.
Analysis of the excized xenografts revealed significantly
lower cell proliferation (Ki-67 scores), without any
enhanced apoptosis. Three other groups also reported a
similar interaction for FTIs with tamoxifen or aromatase
inhibitors, and suggested either a synergistic [41] or an
additive antitumour effect [42]. One recent study implied
an additive effect on G0/G1 cell cycle arrest, and that
FTI-277, when combined with tamoxifen, maintained
higher levels of the Cdk inhibitor p21waf/cip1, resulting in an
additive effect on inactivation of cyclin E/Cdk2 complexes
and decreased phosphorylation of pRb [43]. Whether the
effect seen in these studies represents true synergy is
sometimes unclear because formal mathematical methods
of analysis have not always been employed. However,
these emerging data have led to the initiation of several
clinical trials in breast cancer to investigate the
combination of an FTI with endocrine therapy (see below).

Clinical trials of farnesyltransferase inhibitors
in breast cancer
Phase I/II monotherapy studies
A number of phase I studies have been published over the
past 3 years in a variety of solid tumours. Initial studies
targeted solid tumours with Ras mutations (e.g. colorectal
and pancreatic carcinomas [44,45]). Unfortunately, these
studies failed to show evidence of efficacy, which might
be explained in part by mutations in the K-Ras protein,
which can be alternatively prenylated by GGPT-1 and
therefore be resistant to FTIs. L-788,123 has recently

been shown to inhibit both protein farnesyltransferase and
GGPT-1 in a phase I trial [46], and dual inhibitors of this
kind may ultimately prove to be more efficacious in K-Ras
mutated tumours.

In phase I studies, dose-limiting toxicities included myelo-
suppression, gastrointestinal toxicity, peripheral neuro-
pathy and fatigue. However, it became clear that the
dosing schedule was as important for toxicity as dose. For
example, twice daily SCH66336 300–400 mg, given
intermittently, was well tolerated [47], but severe toxicity
emerged when the same dose was given in a continuous
regimen [48]. Similar results were found when using
R115777; an intermittent schedule at doses of 300 mg or
less twice daily produced infrequent toxicity as compared
with continuous dosing, and could be administered for
more than 6 months using a 21/28 day schedule, provided
the twice daily dose did not exceed 240 mg/m2 [49].

To date, only one phase II trial has been reported in
patients with breast cancer [50]. Seventy-six patients with
advanced breast cancer were treated with tipifarnib using
either a continuous dose of 300 or 400 mg twice daily
(n = 41) or an intermittent dose of 300 mg twice daily for
21 days followed by 7 days of rest (n = 35). In the
continuous dose treatment arm there were four partial
responses (10%) lasting between 4 and 12 months and
six patients with stable disease (15%) for at least
6 months. In the intermittent dose treatment arm there
were five partial responses (14%) and three patients with
stable disease (9%). All primary tumours were assessed
for ras mutations but only one tumour was found to have
such a mutation, which is consistent with previously
published data indicating that breast carcinomas contain a
low frequency of ras mutations [3]. Clinical efficacy was
also independent of ER/progesterone receptor status, but
six out of nine patients who responded to R115777 had
tumours that were HER2/neu positive. The main toxicities
were neutropaenia, thrombocytopaenia, neurotoxicity and
fatigue. The incidence of grade 3 toxicity or greater was
significantly less with the intermittent dosing schedule
(continuous dose versus intermittent dose): neutropaenia
43% versus 14%, thrombocytopaenia 9% versus 3%, and
neuropathy 12% versus 0%. Thus, although clinical
efficacy was similar between patients treated intermittently
and those receiving continuous dosing, the side effect
profile was significantly improved by using an intermittent
schedule. The conclusions of the phase II study were that
in breast cancer in which wild-type ras may be driven by
upstream growth factor over-expression, FTIs exhibited
activity and were well tolerated.

Phase I and II combination studies
Based on encouraging preclinical data outlined above
suggesting synergy, there have been a number of
published phase I studies of FTIs in combination with
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chemotherapy agents used in breast cancer (for review
[51]). Lonafarnib, tipifarnib and BMS-214,662 have all
been combined with taxanes, whereas lonafarnib and
tipifarnib have also been combined with cisplatin or
carboplatin, with myelosuppression and gastrointestinal
effects being dose-limiting toxicities. In patients with
taxane-resistant non-small-cell lung cancer, partial
responses were seen when paclitaxel was combined with
the FTI lonafarnib [52]. In addition, tipifarnib has been
studied in combination with capecitabine, 5-fluorouracil
and herceptin, which are all established treatments for
metastatic breast cancer. Toxicities were predictable and
manageable, with no pharmacokinetic interactions
between the drugs and evidence of clinical activity that
was considered encouraging. In a study examining the
combination of tipifarnib with docetaxel, one complete
response, seven partial responses and six patients with
stable disease were recorded [53]. In the combination
study looking at capecitabine [54], eight patients had
stable disease after four courses of treatment, and one
patient with melanoma had stable disease after 12
courses. Partial responses were seen in other solid
tumours, including breast cancer. To date there are no
published phase II combination studies using FTIs and
cytotoxics in breast cancer, although studies in
combination with taxanes are in progress.

A number of small phase I/II trials have been initiated with
FTIs in combination with endocrine therapies, including
tamoxifen, fulvestrant, or an aromatase inhibitor (Table 1).
Some of these trials are in the post-tamoxifen setting, with
at least one trial enrolling patients whose tumor is
progressing on tamoxifen, and then adding the FTI

tipifarnib to determine whether clinical responses can be
observed and resistance reversed. It is unlikely that any
overlapping toxicities will be seen for combinations of FTIs
with endocrine therapy, although it is important to ensure
that no pharmacokinetic interactions exist whereby
tamoxifen or aromatase inhibitor induced hepatic enzymes
could enhance clearance of FTIs and lower serum
concentrations. Recently, pharmacokinetic and pharmaco-
dynamic end-points were assessed using a sequential
design in 11 patients [55]; they were treated initially with
the FTI tipifarnib (either 200 mg twice daily or 300 mg
twice daily for 21/28 days), and after 1 week tamoxifen
was added. There was no significant change in the
pharmacokinetic profile for tipifarnib. Moreover, the
pharmacodynamic end-point (inhibition of farnesyltrans-
ferase in peripheral blood mononuclear cells) was
enhanced from 30% enzyme suppression to 41% by the
combination. In addition, such trials may help to determine
the optimal schedule for the combination.

The ultimate clinical test for the hypothesis that FTIs
enhance the efficacy of endocrine therapy is the
randomized controlled clinical trial. The primary end-point
for these trials is to investigate whether time to disease
progression can be significantly prolonged by the addition
of an FTI to endocrine therapy, thus delaying the
emergence of resistance, as demonstrated in various
preclinical models described above. Table 2 lists the
current randomized, controlled clinical trials of endocrine
therapy with or without FTIs in advanced breast cancer.
The majority are placebo-controlled, double-blind,
randomized phase II studies including only 100–200
patients, and in several studies the primary efficacy end-
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Table 1

Phase I/II clinical trials in oestrogen receptor-positive metastatic breast cancer

Number Primary 
Combination Clinical setting of patients end-point Trial group

Tipifarnib + Tamoxifen Hormone responsive/hormone nonresponsive cancer 52 PK/PD National Cancer Institute

Tipifarnib + Tamoxifen Post tamoxifen 40 ORR H Roche (Toulouse)

Tipifarnib + Tamoxifen 2nd line: post tamoxifen or aromatase inhibitor 45 CBR National Cancer Institute

CBR, clinical benefit rate; ORR, objective response rate; PK/PD, pharmacokinetic/pharmacodynamic.

Table 2

Randomized phase II clinical trials in oestrogen receptor-positive metastatic breast cancer

Combination Clinical setting Number of patients Primary end-point Trial group

Letrozole ± tipifarnib 2nd line 108 ORR J&J-INT-22

Letrozole ± tipifarnib 1st/2nd line 100+ ORR CALGB

Anastrazole ± lonarfarnib 1st line 110 ORR Schering

ORR, objective response rate.
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point is objective response rate rather than time to disease
progression. In the first-line ER-positive setting, such
studies are examining whethter the combination can
provide greater initial antitumour activity than endocrine
therapy alone, thereby enhancing the response in tumours
with de novo endocrine resistance. Given the mechanism
of action of these drugs in combination (i.e. enhanced
G0/G1 arrest without enhanced apoptosis), an enhanced
clinical benefit rate that includes an assessment of stable
disease may be a better end-point for such randomized
phase II trials, especially if FTIs ultimately contribute to
prolonged control of the disease.

Conclusion
FTIs have shown promise in early preclinical and clinical
studies as a novel anticancer agent for breast cancer.
Although their true mechanism of action remains unclear,
ongoing clinical trails are assessing their potential to
enhance the efficacy of current endocrine and cytotoxic
therapies in breast cancer. Combinations with other signal
transduction inhibitors may be an additional strategy that
merits further research.
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