
5-FU = 5-fluorouracil; GPC = glycerol phosphocholine; MR = magnetic resonance; MRS = magnetic resonance spectroscopy; NTP = nucleoside
triphosphate; PC = phosphocholine; PDE = phosphodiester; PE = phosphoethanolamine; Pi = inorganic phosphate; PME = phosphomonoester.
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Introduction
The purpose of this section is to review the potential appli-
cations of magnetic resonance spectroscopy (MRS) to
non-invasive probing of the underlying biochemistry of cells
comprising a breast tumour. MRS does not generate an
image of the tumour directly, but the spectroscopic data
can now be obtained from a well localised area. Thus the
biochemical information obtained from MRS can be inter-
preted in relation to a defined anatomical location, and
images of metabolite distributions can be generated. In
using MRS, the first aim is to identify surrogate biochemical
markers of cellular transformation, thus differentiating
benign tumours from malignant or potentially identifying the
different tumour types. Subsequently, prognostic and diag-
nostic information is sought from the spectrum of malignant
tumours. In prognosis, by yielding biochemical information
on the tumour composition (eg the presence of a hypoxic
or a drug-resistant fraction), MRS could allow the selection
of an appropriate treatment. In diagnosis, early detection of

tumour response to treatment, or monitoring of drug uptake
and metabolism, could enable rapid optimisation of treat-
ment if the tumour failed to respond. Overall, treatment that
is better adapted to the individual patient could result from
a better understanding of the biochemical events occurring
within the tumour.

So far, most patient and model system studies have
focused on 31P MRS. Within the 31P spectrum, the three
nucleoside triphosphate (NTP) peaks, composed primarily
of ATP, together with the inorganic phosphate (Pi) and
phosphocreatine peaks, are indicative of energetic status.
The Pi peak can also serve as a measure of intracellular
pH. The phosphomonoester (PME) signal, which can be
resolved into phosphocholine (PC) and phospho-
ethanolamine (PE) at higher field strengths or by decou-
pling, together with the phosphodiester (PDE) peak,
composed of glycerol phosphocholine (GPC) and glycerol
phosphoethanolamine, are indicative of lipid metabolism.
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Finally, NAD(H) and uridine diphosphate sugars can also
sometimes be resolved in the 31P spectrum (Fig. 1).

In spite of its higher sensitivity compared to 31P MRS, 1H
MRS has been used less frequently owing to the large
signals from water and lipids that often dominate the spec-
trum, as well as the significant number of metabolite
signals distributed over a relatively small chemical shift
range. Nevertheless, when water-suppressed spectra are
recorded, total choline, total creatine, lipids, glutamate,
glutamine, inositols and lactate can be detected, poten-
tially providing diverse biochemical information.

Other nuclei of interest include 19F and 13C. 19F has been
used primarily in studies of drug metabolism, particularly
5-fluorouracil (5-FU). The use of 13C MRS in breast
cancer has been restricted to model system investigations
in which studies of the metabolism of specific pre-labelled
compounds such as glucose or choline can be used to
elucidate specific alterations in tumour biochemistry.

Considering spectra obtained from patients, these are
often of poor sensitivity and resolution owing to technical
challenges, the limited sensitivity of the method and low
metabolite concentations. Consequently, the number of in
vivo patient MRS studies is relatively limited, particularly in
breast tissue. To identify the potential uses of MRS in the
imaging of biochemistry in vivo, results obtained at higher
field strengths from breast cancer tumour extracts will be
discussed. Data obtained from model systems composed
of homogenous cell populations or implanted tumour
xenografts will also be presented, concentrating wherever
possible on human breast cancer models.

Studies of tumour extracts, cells and
xenograft models
Use of MRS to differentiate between benign and
malignant tumours
In an effort to differentiate between benign and malignant
tumours, early work concentrated on the 31P MRS spec-
trum of human breast tumour extracts [1•,2]. These studies
demonstrated higher levels of PMEs and NTPs in the carci-
nomas relative to benign tumours. Others have identified
an association between the PC component of the PMEs
and tumour grade as well as the proliferating fraction [3,4].
The importance of the PME region in identifying cellular
transformation was further recognised by pattern recogni-
tion studies of spectra obtained from xenografts and com-
pared with normal tissues such as liver, brain or muscle [5].
More recent studies comparing a normal human mammary
epithelial cell line and a transformed human breast cancer
cell line demonstrated that the levels of PMEs as well as
PDEs were extremely low in the normal cells, and signifi-
cantly less than in the breast cancer cell line [4]. A further
assessment of PC as well as total choline content in a
series of breast cancer cell lines demonstrated that levels

of choline-containing metabolites are correlated with malig-
nant transformation and progression [6] as well as the
acquisition of a metastatic potential [7].

Such studies have recently been complemented by 1H
MRS investigations of extracts from non-involved breast
tissue and breast tumours. The spectra demonstrated a
high choline content as well as low levels of glucose and
increased levels of lactate in the tumour spectra [8•].
Finally, spectra from about 200 fine-needle aspirate
samples have shown that the choline peak in the 1H spec-
trum could be used to distinguish between benign and
malignant tumours with relatively high sensitivity and
specificity [9].

Use of MRS in understanding tumour biochemistry
As recently reviewed [10•], it is still not entirely clear
which are the metabolic changes that lead to the
increased levels of PMEs observed in breast and other
cancers. Changes have been hypothesised to be associ-
ated with an enhanced cell membrane synthesis, cellular

Figure 1

31P MRS spectra of human breast cancer tumour recorded in vivo at
1.5 T (top) and recorded in vitro after extraction at 5.8 T (bottom) [28].
DPDE, diphosphodiesters; GPE, glycerol phosphoethanolamine; 
NMP = nucleoside monophosphates. Reprinted from [28] by
permission of the publisher, Churchill Livingstone.
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growth, or nutrient availability, as well as with cell sig-
nalling by lipid hydrolysis. Nevertheless, some under-
standing of the biochemical processes involved has been
obtained by 13C and 2H MRS, in combination with
labelled metabolites such as choline [4,11]. In breast
cancer cells, rapid choline transport into the cells has
been demonstrated, probably explaining the high levels of
PC present in those cells. Furthermore, PC synthesis in
quiescent breast cancer cells was slower than in prolifer-
ating cells, leading to lower PC levels in the non-prolifer-
ating population [4].

The rates of glucose uptake and lactate production have
also been monitored with 13C MRS and labelled glucose.
Such studies demonstrate that the rate of glycolysis is
affected by the proliferation state of the cell, as well as by
hormone treatment, with glucose uptake reduced in quies-
cent cells and in cells treated with tamoxifen [4]. In other
cell models, cellular de-differentiation [12] as well as
apoptosis [13] were associated with changes in glucose
uptake and metabolism that were detectable by MRS.

The chemical shift of the Pi peak enables the determina-
tion of pH within a sample. With the use of this informa-
tion, MRS has been highly instrumental in demonstrating
that whereas the extracellular pH of a tumour is acidic, its
intracellular pH is in fact neutral to alkaline, leading to a
reversed pH gradient in the transformed cell [14,15]. This
finding affects the potential usefulness of some
chemotherapeutic agents that are designed for optimum
activity in an acidic intracellular environment, and some
studies aimed at altering the pH gradient have been
reported [16]. Another aspect of tumour physiology that
can affect response to treatment, particularly radiotherapy,
is oxygenation, and 19F MRS of perfluorocarbons can be
used in some cases to assess the presence of hypoxic
regions within a tumour [15].

Use of MRS in monitoring response to therapy
The response to chemotherapy of experimental tumour
models has been reviewed by Steen [17] and Daly and
Cohen [18]. They show that untreated tumour growth was
associated in several studies with an increase in the PME
resonance and a decrease in the signal intensity of
energy-rich metabolites. This trend is reversed after
chemotherapy. After treatment and tumour shrinkage, a
decrease in PME levels has been observed. Furthermore,
an increase in NTP levels was reported after response to
treatment and was termed by Steen tumour ‘activation’, a
process potentially resulting from improved perfusion to
the cells present in the residual shrinking tumour.

The use of MRS to detect the uptake and metabolism of
the chemotherapeutic drugs themselves is also possible in
some cases, as has been recently reviewed by Griffiths
and Glickson [19]. 5-FU, which contains the magnetic res-

onance (MR)-visible 19F nucleus, has been extensively
investigated and with 19F MRS it is possible to identify the
catabolites of 5-FU in the liver, and to detect the parent
drug as well as small peaks originating from the various
nucleotides and nucleosides of 5-FU within the tumour
itself. 19F MRS has also been used to monitor the conver-
sion of 5-fluorocytosine to 5-FU after transgene expres-
sion in a glioma model [20]. Others have been able to
detect the expression of a virally transfected gene by mon-
itoring the subsequent MR-visible build-up of a new
metabolite in the 31P MRS spectrum [21]. Finally, some
studies of specifically labelled drugs such as 13C-temozo-
lamide have also been reported [19], demonstrating that
this methodology could also be used to monitor drug
pharmacokinetics in vivo.

Studies in vivo
Use of MRS in differentiating between benign and
malignant tumours
Negnedank [22••] comprehensively reviewed the MRS
studies in vivo performed on different types of human
cancer. More recently, concentrating specifically on
human breast cancer, Leach et al [23••] summarised the
finding from nine different 31P MRS studies in vivo. In line
with the results obtained in model systems and described
above, investigations in vivo demonstrate large PME and
PDE signals in proliferating breast tumours. In 80% of
breast cancers, PME signals, composed of both PC and
PE, were higher than in normal breast, and PDE signals
were higher in 77% of investigated tumours. If the Pi peak
is taken as an indicator of pH, these reviews of the litera-
ture also demonstrate that breast tumours, like other
cancers, show a slightly alkaline pH shift relative to control
tissue. More recently, 1H MRS studies performed in vivo
have also demonstrated an increase in the choline
metabolite peak, which reflects choline, PC and GPC
levels. Roebuck et al [24••] and Kvistad et al [25] showed
an increase in choline-containing metabolites in 70–80%
of breast carcinomas, whereas only 14–18% of benign
tumours demonstrated a detectable choline peak.
However, choline was also detected in most breast-
feeding volunteers.

Use of MRS in monitoring response to therapy
On the basis of the review by Leach et al [23••], response
to therapy has been associated with a decrease in PME
content in 14 of 17 patients, with all non-responding
patients demonstrating an increase in PME levels. A
further serial study by the same authors of 25 patients
undergoing hormone, chemotherapy and radiotherapy
treatments showed a significant correlation between a
decrease in PME, PDE and total NTP levels and response
to therapy as measured by a decrease in tumour volume
[23••]. A multi-institutional trial is now in progress to
confirm these results by extending localised 31P MRS
studies to investigate greater numbers of patients [26].
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Considering the use of MR-visible chemotherapeutic drugs
to monitor their uptake by the treated tumour, Wolf et al
[27] recently published results obtained from different
tumour types, including 26 cases of breast carcinoma.
These studies demonstrated that after a bolus infusion of
5-FU, ‘trapping’ of the drug within the tumour region for rel-
atively long periods (compared with drug in the blood pool)
was strongly associated with tumour response to treat-
ment, with 70% of trappers responding to treatment. None
of the non-trappers demonstrated response to treatment.

Future perspectives
The results obtained from tumour extracts, cell models and
models of implanted xenografts demonstrate the potential
of MRS in assessing surrogate markers of transformation
and response to therapy. However, clinical measurements
so far have often been limited by the signal : noise ratio as
well as the length of time required for measurements. Nev-
ertheless, considerable progress has recently been made
in this area. Improved automatic shimming and calibration
methods lead to shorter examination times and therefore
make spectroscopic studies more acceptable to the
patient. The implementation of decoupling in the 31P
spectra has already led to an improvement in the separa-
tion of PE and PC signals in vivo as well as an improve-
ment in signal : noise ratio by providing enhancement by
the nuclear Overhauser effect. Recent measurements
showing the practicality of 1H spectroscopy in the breast
indicate the potential to measure smaller tumours in vivo
than has been possible with 31P spectroscopy at 1.5 T.
This also facilitates integrating such measurements into
routine imaging studies because the same coil can be
used. Most recently, new developments leading to clinical
spectrometers with higher fields should improve both the
sensitivity and the resolution of spectra in vivo. Together
with improved localisation techniques, the ability to
acquire signal from smaller voxels should lead to a better
separation of tumour and normal tissue, and future studies
might be able to generate enough metabolic information to
provide both the diagnostic and prognostic parameters
required by the clinician.
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