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Abstract

Introduction: Metastases to the brain from breast cancer have a high mortality, and basal-like breast cancers have
a propensity for brain metastases. However, the mechanisms that allow cells to colonize the brain are unclear.

Methods: We used morphology, immunohistochemistry, gene expression and somatic mutation profiling to
analyze 39 matched pairs of primary breast cancers and brain metastases, 22 unmatched brain metastases of breast
cancer, 11 non-breast brain metastases and 6 autopsy cases of patients with breast cancer metastases to multiple
sites, including the brain.

Results: Most brain metastases were triple negative and basal-like. The brain metastases over-expressed one or
more members of the HER family and in particular HER3 was significantly over-expressed relative to matched
primary tumors. Brain metastases from breast and other primary sites, and metastases to multiple organs in the
autopsied cases, also contained somatic mutations in EGFR, HRAS, KRAS, NRAS or PIK3CA. This paralleled the
frequent activation of AKT and MAPK pathways. In particular, activation of the MAPK pathway was increased in the
brain metastases compared to the primary tumors.

Conclusions: Deregulated HER family receptors, particularly HER3, and their downstream pathways are implicated
in colonization of brain metastasis. The need for HER family receptors to dimerize for activation suggests that
tumors may be susceptible to combinations of anti-HER family inhibitors, and may even be effective in the
absence of HER2 amplification (that is, in triple negative/basal cancers). However, the presence of activating
mutations in PIK3CA, HRAS, KRAS and NRAS suggests the necessity for also specifically targeting downstream
molecules.

Introduction
Among women with breast cancer, 30% to 40% will
develop metastatic disease. The natural history of meta-
static breast cancer to the brain is of symptomatic dis-
ease in 10% to 20% of these patients and a dismal mean
survival of six months following diagnosis [1,2]. Associa-
tions with younger age, p53 positivity, estrogen receptor

(ER) negative and epidermal growth factor receptor 1
(EGFR) and two (HER2) positive cancers have been
reported [3-5]. The epidermal growth factor receptor
family comprises four receptors, HER1 to 4. Upon acti-
vation, hetero or homo-dimerization occurs, followed by
phosphorylation of specific tyrosine residues in the
intracellular domain, stimulating signaling cascades
mediated mainly by AKT and MAPK and the regulation
of cell proliferation, angiogenesis, migration and survival
[6,7].
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Basal-like tumors are generally high grade, negative for
ER, progesterone receptors (PgR) and HER2 (that is, tri-
ple negative) [8]. The current dogma would predict that
these tumors are unlikely to respond to endocrine and
trastuzumab-based therapy and no targeted therapy is
currently available, although clinical trials are ongoing
[8]. Despite being node negative, a proportion of
patients subsequently present with distant metastases,
particularly to the brain [9,10]
Using autopsy records of breast cancer patients, Paget

[11] demonstrated a non-random pattern of metastatic
spread. This suggested that tumor cells (the seed) could
have a specific affinity for the microenvironment of certain
organs (the soil). In agreement, animal models demonstrate
that particular sets of genes can increase the potential of
breast cancer cell lines to colonize specific distant sites, for
example, bone, lung [12,13]; and brain [14,15].
The cancer mutatome is very complex, with more

than 140 CAN genes identified which are mutated at a
significant frequency in cancer [16,17]. The genomic
landscape of breast cancer is also very complex and het-
erogeneous, with different subgroups of tumours (lumi-
nal, basal, HER2) harboring different types and patterns
of mutations [18]. There is also evidence that breast
cancer cell lines with a basal phenotype have a higher
frequency of mutations in BRAF, KRAS, and HRAS than
luminal breast cancer cell lines [19-21].
We have analyzed a relatively large and rare set of

human tumors to elucidate the mechanisms involved in
colonization of the brain. Samples studied involved
matched pairs of primary breast cancer and brain metas-
tases, unmatched brain metastases, non-breast brain
metastases and autopsy cases of breast cancer patients
with metastases to multiple sites, including the brain. We
provide evidence of increased activation of HER3 and
downstream pathway molecules in brain metastases from
breast cancer and suggest that the inhibition of HER
family receptors, even in the absence of HER2 gene
amplification (for example, triple negative/basal cancers),
could play a significant role in the management of
patients with brain metastases from breast cancer. In
addition, we demonstrated the possible fallacies of this
approach without considering the presence of somatic
activating mutations in downstream molecules [22-24].

Materials and methods
Additional detailed methodologies (see Additional file
1). The study was approved by the local research ethics
committees under the project number UQ2005000785
and RBHW 2005/22.

Clinical samples
All human clinical samples studied were available as for-
malin fixed-paraffin embedded (FFPE) tumor blocks.

Cohorts collected were: i) 39 matched pairs of primary
breast cancer and brain metastases; ii) 22 unmatched
brain metastases from breast cancer; iii) 11 brain metas-
tases from non-breast sites (one melanoma, one colorec-
tal, six lung, one prostate and two renal cell
carcinomas); and iv) 26 tumor samples (primary breast
cancer and metastases to multiple sites, including brain)
from six autopsy cases of patients who died of meta-
static breast cancer (the primary breast cancer from one
case was not available). The tumors were reviewed by
three pathologists (LDS, MC and SRL) and analyzed by
immunohistochemistry and chromogenic in situ hybridi-
zation (CISH) on tissue microarrays. Immunohistochem-
istry for EGFR, HER2, HER3, HER4, CD44 and CD24
was also done on whole sections.

Gene expression analysis
RNA was extracted from FFPE samples and the expres-
sion of 512 cancer related genes was analyzed using the
DASL assay (cDNA-mediated annealing, selection exten-
sion and ligation, Illumina Inc., San Diego, California,
USA) [25]. All data and protocols for DASL analysis can
be found at the Gene Expression Omnibus repository
(Accession number GSE14690) (see also additional file
1). Real-time PCR using TaqMan® gene expression
assays (Applied Biosystems, Inc, Carlsbad, California,
USA ) and immunohistochemistry were performed to
validate the expression of specific genes.

Somatic mutation analysis
Twelve matched pairs of primary breast tumors and cor-
responding brain metastases, nine non-breast brain
metastases and 26 tumor samples from the six autopsy
cases were subjected to primer extension and MALDI-
TOF mass spectrometry using the OncoCarta® Panel
Assay v1.0 (Sequenom Inc., San Diego, California, USA)
of 238 mutations in 19 oncogenes [26]. All mutations in
samples for which there was sufficient DNA remaining
were validated by High Resolution Melt (HRM) [27]
analysis, iPLEX (using newly designed PCR and exten-
sion primers that differed from the OncoCarta primers),
repeat OncoCarta analysis, and/or direct sequencing if
the Mutant Allele Proportion (MAP) was >30% (Table 1
and Additional file 2, Table S2). In addition, we were
able to validate the EGFR E746_A750del mutation in
four cases with a mutation-specific antibody [28].

Results
Clinical and pathological features
The median age at diagnosis was 48.5 years and the
median time for the development of brain metastasis
was 3.5 years. All but one of the series of primary breast
cancers and all brain metastases were grade 3 invasive
ductal carcinomas-no specific type (IDC-NST) [29]. The
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remaining tumor pair was a grade 2 mucinous carci-
noma. The autopsy samples comprised four grade 3 and
one grade 2 IDC-NST.

ER, PgR, HER2, ‘Basal’ markers and stem cell markers
(non-autopsy cases)
Immunohistochemistry data are summarized in Figure
1A, B (see also additional file 2, Table S1 and Figure
S1). It was noteworthy that 60% and 76% of the tumors
were negative for ER and PR, respectively, with com-
plete concordance between primary and metastases.
Seventy-seven percent (77%) and 81% of the unmatched
brain metastases were also ER and PR negative, respec-
tively. Twenty percent (20%) and 19% of the primary
breast tumors and metastases, respectively, had corre-
lated over-expression of HER2 (3+ staining) and all of
these showed gene amplification using CISH. Twenty
percent (20%) of the unmatched metastases were also
HER2+. Fifty-six percent (56%) of the primary tumors
and 48% of the matched metastases were triple negative
and of these, 60% were positive for at least one of the
basal markers respectively (CK14, CK5/6, CK17, EGFR
and SMA). Overall, 54% of the primary and 60% of the
metastases were of basal phenotype (irrespective of ER,
PR and HER2 status), confirming enrichment in this
cohort over the normal distribution in breast cancer [8].
Noteworthy, EGFR staining was seen mainly in the per-
iphery of the tumor where there was contact with non-
neoplastic brain parenchyma [30]. A higher proportion
of brain metastases had a putative stem cell-like pheno-
type (CD44+/CD24-) compared to the primaries, 55%
versus 25%, (Figure 1A). Fifty-one percent (51%) of the
primary tumors had a Ki-67 index higher than 10% in
contrast to matched and unmatched metastases
that had 86% and 85% of samples with index higher
than 10%.

Gene expression profiling
The availability of good quality RNA and stringent filter-
ing of the DASL data yielded gene expression profiling
data on 37/61 brain metastases from breast cancer (15/
39 from matched pairs and 22/22 from unmatched
metastases) and 15 matched primaries. Unsupervised
analysis highlighted a strong similarity between primary
tumors and their matched metastases (Figure 2A). Only
20 genes were differentially expressed between the
matched primaries and metastases. This may be a con-
sequence of the overall strong similarity between pri-
maries and metastases [31] coupled with the sample size
(n = 30) and number of genes analyzed (n = 512 cancer
genes in the DASL panel) [32]. Comparison between
primaries and all metastases (matched and unmatched)
identified 27 statistically significant, differentially
expressed genes (Figure 2B). Supplementary Figure 2Ta
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Figure 1 Immunohistochemical profile of primary breast and brain metastases. A - Immunohistochemical analysis of matched primary
breast and brain metastases. The graph depicts percentages of positive cases in each category. ER and PR were considered positive when >10%
cells showed staining, HER2 was considered positive when IHC showed 3+ staining (>30% positive cells) or CISH showed gene amplification.
Triple negative tumors were negative for ER, PR and HER2. CD44+/CD24- immunohistochemistry was assessed on serial sections and positivity
was expression in >10% cells. B - Breakdown of basal markers. A tumor was regarded as basal if any of the following markers were positive
(CK5/6, CK14, CK17, p63, SMA, and EGFR) with >10% cells showed staining.
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Figure 2 Gene expression profiling of brain metastases. A - Unsupervised hierarchical clustering of DASL gene expression data from 22
unmatched (black color bar) and 15 matched primary and brain metastases (other colors bars). Thirteen out of 15 matched samples are
clustering together. B - Heatmap and dendogram showing clustering of the samples based on the 27 genes differentially expressed between
primary tumors (blue line bar) and brain metastases (red line bar).
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(see Additional file 2, Figure S2) depicts principal com-
ponent analysis showing good separation of the pri-
maries and metastases using this 27-gene list. All 20
genes identified in the matched pair analysis were part
of this 27-gene set. Among this 20-gene set, were HER3
and one of its downstream target molecules GRB2 [33],
hypoxia related molecule HIF1-alfa, MAPKinase cascade
related protein CREBBP, cell cycle regulator RB1 and
proliferation related genes CCNH, CDK7 and CDC25B.
Since the brain is rich in neuregulin 1 [34,35] and this is
a ligand for HER3, we hypothesized that the neuregulin-
HER3 activation was important in allowing breast can-
cer cells to colonize the brain.

HER family receptors and downstream molecules
expression
HER3, EGFR, HER2, HER4 and HIF1-alfa expression
was assessed using quantitative RT-PCR (see Additional
file 2, Figure S3) in 12 matched breast/brain samples for
which DASL data and RNA were available. Similar to
the DASL data, 10 cases showed increased fold change
by RT-PCR of HER3 gene expression relative to their
matched primaries ranging from 1.12 to 5.8 and with an
average of 2.4. Immunohistochemistry for HER3 was
similar, showing positivity in 11/37 (29.7%) of the pri-
mary tumors, 22/37 (59%) of the matched metastases
and 13/21 (62%) of the unmatched brain metastases
(P = 0.019). In agreement, phosphorylated HER3 con-
firmed more frequent activation in the brain metastases,
with positivity in 14/37 (37%) of the primary tumors,
24/37 (64%) of the matched metastases and 18/21 (85%)
of the unmatched brain metastases (P = 0.046) (see
Additional file 2, Table S1 and Figure S1).
Immunohistochemistry for GRB2, HIF1-alfa and phos-

phorylated ERK1/2, JNK1/2, ERK5 and p38 also demon-
strated increased activation in the metastases compared
to the primary tumors; (see Additional file 2, Table S1
and Figure S1). In contrast, phosphorylated AKT was
equally high in both the primaries and metastases (see
Additional file 2, Table S1). Interestingly, the non-breast
derived brain metastases showed similarly high activation
of the MAPK pathway together with over-expression (3+
stain) of EGFR (in 9/11 (81%) metastases (a prostate and
one colon carcinoma did not) but in the absence of
HER3 activation (0/11) (see Additional file 2, Table S1).

Somatic mutation analysis
OncoCarta analysis identified mutations in the brain
metastases from primary breast cancers (non-autopsy
cases) in NRAS (2/12 - 17%), and PIK3CA (2/12 - 17%)
(Table 1 and Figure 3). Mutations were also identified in
brain metastases from non-breast primaries in EGFR (3/
9 - 33%; two lung and one kidney), HRAS (1/9 - 11%;

lung), KRAS (2/9 - 22%; one colon and one lung), NRAS
(3/9 - 33%; two lung and one kidney) and PIK3CA (2/9
- 22%; one melanoma and one lung).
Mutant Allele Proportions (MAPs) ranged from 9% to

80%. All these mutations were validated by immunohis-
tochemistry (using a specific antibody raised against the
protein with the EGFR E746_A750del mutation) or
sequencing except for one each in EGFR, HRAS (vali-
dated by iPLEX), NRAS and PIC3CA (validated by
HRM), where the estimated mutant allele proportion
was less than 15%, and two in PIK3CA in which there
was insufficient good quality DNA remaining to obtain
sequence data. EGFR G719 S appeared to be found fre-
quently by OncoCarta but could not be detected by
iPLEX, using independent PCR and extension primers.
The OncoCarta false-positive result appeared to be due
to hairpin formation of the extension primer that
occurred frequently when archival DNA was used as a
template, and the yield was low.
Except for one EGFR mutation (Case #13; Table 1), the

same somatic mutations were observed in the brain
metastases with similar MAPs as in the matched primary
breast tumors. It was noteworthy that the four matched
pairs harboring somatic mutation in NRAS or PIK3CA
also overexpressed a member of the HER family. For
example, matched pair #2 had a mutation in NRAS and
showed over-expression of HER3, matched pair #7 had a
mutation in NRAS and showed over-expression of HER1,
matched pair #9 had a mutation in PIK3CA and amplifi-
cation of HER2 and matched pair #10 had a mutation in
PIK3CA and overexpression of HER1 (Table 1).
Among the autopsy samples of cases with primary

breast cancer, we found mutations in EGFR in one liver
and one lymph node metastases, and a mutation in
PIK3CA in all the samples from one case, and in a liver
metastasis from another (see Additional file 2, Table
S2). One EGFR and one PIK3CA mutation could be ver-
ified by sequencing or immunohistochemistry but lack
of good quality DNA, and additional mutation-specific
antibodies, prohibited validation of the others. All the
samples from one case had the same mutation at similar
MAPs (PIK3CA H1074R in Patient #2).
We identified HRAS and PIK3CA mutations in the

basal breast cancer cell lines SUM 159 and BT20. The
mutations with MAPs >25% have been reported before
[19,20]: HRAS G12 D (MAP 53.2% in SUM159) and
PIK3CA H1047L (MAP 50.0% in SUM159) and P539R
(MAP 43.8% in BT20) but we also identified HRAS
Q61K at MAP 24.6% in SUM159 and HRAS Q61K at
MAP 14.1%, and PIK3CA H1047R at MAP 44.4% in
BT20. In addition, we were also able to show that all of
the mutations with MAPs >25% were present in mam-
mospheres derived from these cell lines.
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Discussion
We have collected a unique set of clinical material
through collaborations with multiple institutions around
the world and involving brain metastases which are
rarely excised. The analysis of this resource has led to
the development of hypotheses regarding the mechan-
isms of breast cancer colonization of the brain (Figure 4).
The set of tumor samples is enriched for triple negative/
basal breast cancers which is consistent with the find-
ings of an increased propensity for basal breast cancers
to metastasize to the brain [3,9,36]. An association
between CD44+/CD24- frequency and a basal tumor
phenotype has already been reported [37] and interest-
ingly we observed an increased frequency of CD44
+/CD24- cells in the brain metastases compared to their
matched primaries. CD44+/CD24- cells have been
reported to have stem cell properties and increased in
vivo tumorigenicity [38] and the increased frequency
seen in brain metastases may support this. Alternatively,
this may reflect selection as a result of a high content of

hyaluron, the ligand for CD44, within the brain micro-
environment [39,40]. Hence, this could be an important
factor in breast cancer colonization of the brain and
therefore a potential axis for future therapeutic interven-
tion [41].
In this study, brain metastases of breast cancer

expressed all members of the HER family of tyrosine
kinase receptors. HER2 was amplified and overexpressed
in 20% of brain metastases, EGFR was overexpressed in
21% of brain metastases, HER3 was overexpressed in
60% of brain metastases and HER4 was overexpressed in
22% of brain metastases and generally mutually exclu-
sive (Table 1). Interestingly, HER3 expression was
increased in breast cancer cells residing in the brain.
Neuregulin 1, the ligand for this receptor, is abundantly
expressed in the brain [34,35] and is released by a vari-
ety of mechanisms including the presence of hypoxia
[42]. Consistent with this, we observed the increased
expression of HIF-1alfa in the brain metastases, likely to
reflect the local hypoxic environment [43]. Increased

Figure 3 Oncocarta and validation mutation analyses. A). Example of NRAS Q61R mutation identified by OncoCarta in matched pair sample
#7 showing representative spectra and cluster plot. B) Sequence validation of NRAS G12C, sample D6 - lung metastasis. C) Sequence validation
of NRAS Q61R, breast and brain metastasis from sample #2. D) Immunohistochemistry of brain metastasis (sample D4) with antibody specific to
EGFR E746_A750del showing staining in the tumor but not the surrounding brain tissue.
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activation of both HER3 and downstream molecules
(GRB2, ERK5, ERK1/2, JNK1/2, p38) was also observed
in the brain metastases. These findings prompted us to
hypothesize that neuregulin/HER3 activation is an
important mechanism for breast cancer cell colonization
of the brain (Figure 4). As a further support to this
hypothesis, increased HER3 expression has also been
reported in brain metastases of lung cancer [44].
We investigated whether this association was generic

to all brain metastases and found activation of the
MAPK pathway in all 11 non-breast metastases to the
brain. Whilst HER3 was not activated in these tumors,
9/11 tumors showed over-expression of EGFR. It has
recently been shown, using animal models, that EGFR
ligands mediate breast cancer metastasis to the brain
and that this was abrogated by the use of EGFR inhibi-
tor cetuximab [14]. The combination of lapatinib and
trastuzumab has been shown to have a synergistic,

antiproliferative effect against ErbB2-positive breast can-
cer cells in vitro [45]. It is possible, therefore, that a
combination of anti-HER therapies could be effective in
the treatment of both breast and non-breast metastases
to the brain.
In order to activate downstream signaling pathways,

HER3 requires heterodimerization with other members
of the HER family following binding by neuregulin [46]
and even basal levels of the other HER proteins may be
sufficient to participate in the activation of these path-
ways. Hence, combination therapy against the HER
family, even in the absence of over-expression or ampli-
fication of HER2, may be of clinical benefit for a larger
proportion of breast cancer patients such as those with
HER2 negative disease. Recently, a study showed bene-
fits for a small group of HER2-negative patients in the
phase III National Surgical Adjuvant Breast and Bowel
Project (NSABP) B-31 trial that were HER2 negative by

Figure 4 Hypothetical mechanism of breast cancer cell colonization of the brain parenchyma. Hypoxic conditions, (HIF1a) can mediate
the elease of neuregulin 1 from neuronal cells. Neuregulin 1 is the ligand for HER3 and on binding activates the heterodimerisation of HER3-
HER2, HER3-HER4 and/or HER3-HER1, leading to downstream activation of the MAPK and AKT pathways. MAPK/AKT pathways activation is
related to survival, invasion, proliferation and angiogenesis. A second mechanism of colonization may relate to the enriched expression of CD44
breast cancer cells in the brain. The brain microenvironment is rich in hyaluron, the ligand for CD44, and so upon activation a series of
responses maybe triggered, including cell motility.
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FISH and had less than 3+ staining intensity by Her-
cepTest® (Dako, Carpinteria, CA, USA) [47]. Further-
more, another study suggested that the spectrum of
patients who may benefit from trastuzumab-based thera-
pies could be expanded to include patients with meta-
static breast cancer without HER-2 amplification but
who express transmembrane neuregulin, the ligand of
HER3 [48]. It has also been reported in non-HER2 over-
expressing xenograft models of prostate and breast can-
cer that pertuzumab, an inhibitor of HER3/HER2 het-
erodimerization, can inhibit tumor growth [49].
For the first time, we have identified somatic muta-

tions in genes related to the AKT/MAPK signaling path-
ways, such as EGFR, PIK3CA, KRAS, HRAS and NRAS,
in brain metastases of breast cancer and other types of
cancer. In addition, we have analyzed multiple autopsy
samples from six cases that had a primary breast cancer,
and found additional EGFR and PIK3CA mutations in
breast cancers that metastasized to various sites includ-
ing the brain. Thus, simply targeting the HER family of
receptors may not be sufficient for complete treatment
response. This analysis highlights additional actionable
targets [50] that may prove effective for the treatment of
some brain metastasis, such as PI3 kinase inhibitors.
Taken together, these findings are striking and show

another facet of the cell evolution landscape [51], high-
lighting the possibility of cancer cells resisting targeted
treatment to molecules such as HER2 or EGFR by
acquiring oncogenic mutations in downstream pathways.
This has been shown in vitro with activating PIK3CA
mutation [23] and herein we demonstrate an in vivo
example of this possible scenario using human tumors.
In another clinical angle, patients currently treated with
the anti-EGFR monoclonal antibodies cetuximab and
panitumumab can also acquire resistance to this therapy
due to downstream mutations in the ras gene [24].
Interestingly, animal models have suggested that down-
stream NF-kappaB inhibitory drugs may play a role in
the treatment of patients with defined mutations in
KRAS [52].
Interestingly the Mutant Allele Proportion (MAP) was

sometimes as low as 10%. Such low proportion muta-
tions, which would often be missed by direct sequencing
could reflect the presence of stromal (or brain) contami-
nation in the samples, tumor heterogeneity and amplifi-
cation or deletion of the mutant or wild type alleles.
However, the fact that the same MAP was often
observed in both the primary and the brain metastasis,
and in the multiple samples from an autopsy case,
might suggest that these metastases were not seeded by
a single cell but by groups of cells from the primary
tumor. This has also been shown by next generation
sequencing, whereby the mutant allele frequency for
some mutations was similar between a basal-like

primary breast cancer and its matched brain metastasis
[53]. However, it is also evident that significant genomic
evolution occurs during metastasis, since most muta-
tions identified in this metastasis, and one from a pri-
mary lobular breast cancer, were more prevalent in the
metastasis than in the respective primary tumours
[53,54]

Conclusions
In conclusion, we provide evidence to support a role of
HER3 and other HER family receptors in the ability of
cancer cells to colonize the brain. The data are intri-
guing and support the possibility that tumors with low
expression of HER2 may respond to trastuzumab, lapiti-
nib or combinations of HER family receptor inhibitors
since even basal levels may enhance the signaling
through homo/hetero-dimerization of the other recep-
tors. However, caution should be exercised because of
the possible presence of downstream oncogenic muta-
tions that may drive treatment resistance. These thera-
peutic modalities may therefore add another dimension
to the treatment of triple negative and basal-like cancers
where currently, no targeted therapy is available.
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