# Correction <br> Correction: BCoR-L1 variation and breast cancer 

Felicity Lose ${ }^{1,2}$, Jeremy Arnold ${ }^{1}$, David B Young ${ }^{1}$, Carolyn J Brown³, Graham J Mann¹, Gulietta M Pupo ${ }^{4}$, The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, Kum Kum Khanna ${ }^{1}$, Georgia Chenevix-Trench ${ }^{1}$ and Amanda B Spurdle ${ }^{1}$

${ }^{1}$ Cancer and Cell Biology Division, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland, Australia, 4006
${ }^{2}$ School of Medicine, Central Clinical Division, University of Queensland, Royal Brisbane Hospital, Corner Butterfield Street and Bowen Bridge Road, Brisbane, Queensland, Australia, 4029
${ }^{3}$ Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, 2329 West Mall, Vancouver, BC, Canada, V6T 1Z4
${ }^{4}$ Westmead Institute for Cancer Research, University of Sydney at Westmead Millennium Institute, Westmead Hospital, Darcy Road, Westmead, New
South Wales, Australia, 2145

Corresponding author: Amanda B Spurdle, Amanda.Spurdle@qimr.edu.au

Published: 21 October 2008
This article is online at http://breast-cancer-research.com/content/10/5/406
© 2008 BioMed Central Ltd

Following the publication of our article [1] we noticed that, due to a production error, the figure legends and images were incorrectly matched. All legends were correctly placed, and cited in the text, but were associated with the wrong image.

The figures should therefore appear in the order shown in this correction.

## Reference

1. Lose F, Arnold J, Young DB, Brown CJ, Mann GJ, Pupo GM, The Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer, Khanna KK, Chenevix-Trench G, Spurdle AB: BcoR-L1 variation and breast cancer. Breast Cancer Res 2007, 9:R54.

Figure 1
(a)

(b)

$B c o R-L 1$ expression in cancer and normal cell lines. (a) BCoR-L1 expression in cancer and normal cell lines. (b) Mean and standard deviation of BCoR-L1 expression in cancer and normal cell lines. Normal cell lines: ovarian - OSE 64/96, HOSE 17.1; breast - SVCT, Bre80hTERT; prostate - RWPE1. BCoR-L1, BCL6 corepressor-like 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Figure 2

$B C o R-L 1$ haplotype sharing family pedigree detailing carriers of the $c .516 \mathrm{~T}>C$ and $c .3608-156 \mathrm{C}>\mathrm{T}$ variants. $\otimes=$ breast cancerpositive; c.516T>C and c.3608-156C>T-positive. $\otimes=$ breast cancernegative; c.516T>C and c.3608-156C>T-positive. $\square=$ breast cancernegative; c.516T>C and c.3608-156C>T-negative. $\bigcirc=$ female, $\square=$ male; subjects marked by small shapes were not available for genotyping. BCoR-L1, BCL6 corepressor-like 1.

Figure 3


BcoR-L1 expression in lymphoblastoid cell lines (LCLs) from breast cancer families. (a) BCoR-L1 expression in LCLs from breast cancer families (normalised to GAPDH). (b) BCoR-L1 expression in LCLs from breast cancer families (normalised to DIDO-1). (c) Mean and standard deviation of BCoR-L1 expression in samples, grouped according to type of family cancer or BCoR-L1 genotype (normalised to GAPDH). (d) Mean and standard deviation of BCoR-L1 expression in samples, grouped according to type of family cancer or $B C \circ R-L 1$ genotype (normalised to DIDO-1). *Subject also carries a BRCA2 mutation. \#Subjects from the same BCoR-L1 haplotype sharing family. BCoR-L1, BCL6 corepressor-like 1; DIDO-1, death inducer-obliterator 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.

Figure 4


Variation in control gene expression. (a) Variation in control gene expression in lymphoblastoid cell lines. (b) Variation in control gene expression in cell lines. DIDO-1, death inducer-obliterator 1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; UBC, ubiquitin C.

