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Abstract

Introduction Dendritic cells (DCs) are key antigen-presenting
cells that play an essential role in initiating and directing cellular
and humoral immunity, including anti-tumor responses. Due to
their critical role in cancer, induction of DC apoptosis may be
one of the central mechanisms used by tumors to evade immune
recognition.

Methods Spontaneous apoptosis of blood DCs (lineage
negative HLA-DR positive cells) was assessed in peripheral
blood mononuclear cells (PBMCs) using Annexin-V and TUNEL
assays immediately after blood collection. The role of tumor
products was assessed by culturing cells with supernatants
derived from breast cancer cell lines (TDSN) or PBMCs (PBMC-
SN, as a control). The capacity of DC stimulation to prevent
apoptosis was assessed by incubating DC with inflammatory
cytokines, poly I:C, IL-12 or CD40 ligand (CD40L) prior to
culture with TDSN. Apoptosis was determined by flow
cytometry and microscopy, and Bcl-2 expression determined by
intracellular staining.

Results In this study we document the presence of a
significantly higher proportion of apoptotic (Annexin-V+ and
TUNEL+) blood DCs in patients with early stage breast cancer

(stage I to II; n = 13) compared to healthy volunteers (n = 15).
We examined the role of tumor products in this phenomenon
and show that supernatants derived from breast cancer lines
induce apoptosis of blood DCs in PBMC cultures. Aiming to
identify factors that protect blood DC from apoptosis, we
compared a range of clinically available maturation stimuli,
including inflammatory cytokines (tumor necrosis factor-α, IL-1β,
IL-6 and prostaglandin (PG)E2 as a cytokine cocktail), synthetic
double-stranded RNA (poly I:C) and soluble CD40 ligand.
Although inflammatory cytokines and poly I:C induced robust
phenotypic maturation, they failed to protect blood DCs from
apoptosis. In contrast, CD40 stimulation induced strong antigen
uptake, secretion of IL-12 and protected blood DCs from
apoptosis through sustained expression of Bcl-2. Exogenous IL-
12 provided similar Bcl-2 mediated protection, suggesting that
CD40L effect is mediated, at least in part, through IL-12
secretion.

Conclusion Cumulatively, our results demonstrate spontaneous
apoptosis of blood DCs in patients with breast cancer and
confirm that ex vivo conditioning of blood DCs can protect them
from tumor-induced apoptosis.

Introduction
Dendritic cells (DCs) are bone marrow-derived leukocytes
specialized in antigen presentation [1]. They play an essential

role in initiating and directing cellular and humoral immunity,
including antitumor responses. Tumor production of immuno-
suppressive factors (cytokines, arachidonic acid metabolites,
glycosphingolipids, polyamines) with detrimental effects on
DC maturation and function can significantly prevent the
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APC = allophycocyanin; CC = cytokine cocktail; DC = dendritic cell; FACS = fluorescence activated cell sorting; FITC = fluorescein isothiocyanate; 
FSC = Forward side characteristic; IL = interleukin; Lin = lineage markers; Lin-HLA-DR+ = lineage negative HLA-DR positive; PBMC = peripheral 
blood mononuclear cell; PBMC-SN = PBMC-conditioned supernatant; PBS = phosphate-buffered saline; PE = phycoerythrin; PG = prostaglandin; 
SSC = side scatter characteristic; TDSN = tumor-derived supernatant; TNF = tumor necrosis factor; TLR = Toll-like receptor; ∆MFI = delta mean 
fluorescence intensity; 7-AAD = 7-Aminoactinomycin D.
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establishment of effective antitumor immune responses [2].
Recent evidence has indicated that induction of apoptosis in
immune cells is yet another mechanism used by tumors to
evade immune recognition [3]. Indeed, several studies have
demonstrated that DCs undergo apoptosis after interacting
with cancer cells or tumor-derived factors in vitro [4-7]. How-
ever, these studies have used DCs generated in vitro following
prolonged culture with cytokines and cytokine-driven activity
may not reflect the functional status of DC populations circu-
lating in vivo.

In vivo circulating blood DCs are identified by their high
expression of HLA-DR and lack of specific lineage markers
(CD3, CD14, CD19, CD20, CD56 and CD34) found on other
leukocytes [8]. DCs freshly isolated from blood offer the theo-
retical advantage of being in their natural state of differentia-
tion, free from the influence of exogenous cytokines, more
responsive and presumably capable of stimulating immune
responses in a more physiological manner. Hence, there is
active interest in using blood DCs as vectors for cancer immu-
notherapy, with preliminary reports confirming their clinical
potential [9,10].

Several studies, however, have demonstrated severe pheno-
typic and functional impairment of DCs in patients with breast
cancer [11,12]. Tumor-infiltrating DCs are neither mature nor
activated [13,14] and blood DCs express low levels of co-
stimulatory molecules [11,12] and IL-12 [15] and exhibit an
impaired capacity to stimulate T-cells [11,12]. In this context,
knowledge of the mechanisms responsible for tumor-induced
DC defects in breast cancer is essential to overcome DC dys-
function and to harness their immunotherapeutic potential.
Recent reports revealed spontaneous apoptosis of several
subpopulations of peripheral blood mononuclear cells
(PBMCs; T-cells, B-cells and monocytes) in patients with can-
cer [16-18]. Those findings together with the reported
decreased DC function prompted us to assess the extent of
spontaneous apoptosis in blood DCs from patients with
breast cancer and to identify clinically available factors to pro-
tect blood DCs against tumor-induced apoptosis.

Materials and methods
Patients and donors
Thirteen female patients, 40 to 75 years of age, with histolog-
ically confirmed breast adenocarcinoma were enrolled in the
study. All patients presented with early disease (stage I to II),
were newly diagnosed and had received no prior cancer ther-
apy. Staging was performed in accordance with the Interna-
tional Union Against Cancer, UICC TNM Classification [19]. In
addition, 15 healthy female donors, 24 to 73 years of age, vol-
unteered for the study and served as controls. The Australian
Red Cross Blood Service, Brisbane, provided buffy coats. The
research ethics committees of both the clinical (Wesley Med-
ical Centre and Royal Brisbane and Women Hospital) and sci-

entific (Queensland Institute of Medical Research) institutions
approved the study protocols.

Monoclonal antibodies, reagents and cytokines
The following monoclonal antibodies were used in this study:
CD3, CD14, CD19, CD20, CD56, CD34, HLA-DR, CD80,
CD86, tumor necrosis factor (TNF)-α and IgG1, IgG2a and
IgG2b isotype controls from BD Pharmingen (BD Bio-
sciences, San Jose, CA, USA); HLA-DR, CD40, CD83, CD19
and IgG1 isotype control from Beckman Coulter (Fullerton,
CA, USA); and IL-10 and IL-12 from Caltag laboratories (Bur-
lingame, CA, USA). All antibodies were used as the fluores-
cein isothiocyanate (FITC), phycoerythrin (PE), biotin,
allophycocyanin (APC) or PE-Cy5 conjugate. The PE-conju-
gated Bcl-2 antibody reagent kit was purchased from BD
Pharmingen. Complete media included RPMI 1640 supple-
mented with 10% fetal calf serum, penicillin (100 u/ml), strep-
tomycin (100 µg/ml), L-glutamine (2 mM), HEPES (25 mM)
and non-essential amino acids all purchased from Gibco Life
Technologies (Gaithersburg, MD, USA). The combination of
pro-inflammatory cytokines consisted of IL-1β (10 ng/ml), IL-6
(10 ng/ml) and TNF-α (10 ng/ml) obtained from R&D systems
(Minneapolis, MN, USA) plus Prostaglandin E2 (PGE2, 1 µg/
ml) from Sigma (St Louis, MI, USA). Double stranded RNA
(poly I:C, 50 µg/ml) [20] was purchased from Sigma; IL-12
(100 ng/ml) was purchased from Mabtech (Stockholm, Swe-
den) and soluble human recombinant CD40-ligand (CD40L; 2
µg/ml) was kindly provided by Amgen (Seattle, WA, USA).

Determination of apoptosis
Venous blood obtained from patients and volunteers was col-
lected in heparinized tubes. Samples were processed and
PBMCs recovered by Ficoll-Hypaque centrifugation. To deter-
mine the proportion of apoptotic cells, Annexin-V binding and
TUNEL assays were performed after blood collection. In all
experiments, each patient was tested in parallel with at least
one healthy volunteer. Annexin-V binding assays were per-
formed using the Annexin-V kit (BD Pharmingen). Briefly,
PBMCs were adjusted to 106 cells/ml and stained with a mix-
ture of lineage markers (CD3, CD14, CD19, CD20, CD56,
CD34) and HLA-DR for 20 minutes at 4°C. CD34 was added
to the lineage mixture to exclude circulating hematopoietic
stem cells. Cells were washed and resuspended in binding
buffer prior to incubating with Annexin-V and 7-Aminoactino-
mycin D (7-AAD) for 15 minutes at room temperature. Sam-
ples were analyzed by fluorescence activated cell sorting
(FACS) within one hour of staining. The TUNEL assay was per-
formed using the Apo-BrDU-Red DNA fragmentation assay kit
(BioVision, Mountain View, CA, USA). As above, PBMCs were
adjusted to 106 cells/ml, stained for surface markers, fixed with
1% (w/v) paraformaldehyde and resuspended in ice-cold 70%
ethanol for 30 minutes prior to incubation with DNA labeling
and antibody solutions according to the manufacturer's
instructions. Samples were analyzed within one hour of stain-
ing. In all experiments, 5 to 10 × 105 events were collected
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within the mononuclear cell gate. Data were acquired on a
FACS Calibur flow cytometer and analyzed using CellQuest
3.1 (BD Bioscience), FloJo (TreeStar, San Carlos, CA, USA)
or Summit (DakoCytomation, Fort Collins, CO, USA) software.

Tumor-derived supernatants
The breast cancer cell lines MCF7, MB435 and SKBR3 were
sourced from the American Type Culture Collection (ATCC,
Manassas, VA, USA). The MA11 line was a generous gift of Dr
Phil Rye (Norwegian Radium Hospital, Oslo, Norway). Tumor-
derived supernatants (TDSN) were prepared by seeding 107

tumor cells in 20 ml of complete medium and incubating for 72
h. Before passage, culture supernatants were collected, cen-
trifuged to remove cells, dialyzed against fresh medium (24 to
48 h at 4°C in the dark) to replenish nutrients and stored at -
20°C. Dialysis membranes (membra-cell, Polylabo, Strasborg,
France) with a molecular weight cut-off of 10,000 to 14,000
were used. For each experiment, PBMCs were cultured (107

cells/ml) for 24 h in the presence of 50% (v/v) TDSN or
PBMC-conditioned supernatant (PBMC-SN) as a control.
Cells were harvested, washed and apoptosis in lineage nega-
tive HLA-DR positive (Lineage (Lin)-HLA-DR+) cells deter-
mined using Annexin-V binding and TUNEL assays. For
morphological analysis following culture with TDSN, viable (7-
AAD negative) Lin-HLA-DR+ cells were sorted (99% purity)
using a MoFlo Sorter (DakoCytomation), resuspended in com-
plete medium and cyto-centrifuged. Histology was performed
on cytospin preparations made by seeding 2 to 3 × 104 sorted
cells onto a glass slide. These were air-dried and stained using
May-Grunwald-Giemsa.

Phenotypic maturation, cytokine secretion and Bcl-2 
expression
Four-color flow cytometry was used to analyze the phenotype
and cytokine secretion of Lin-HLA-DR+ cells. Briefly, PBMCs
were cultured (107 cells/ml) in 6-well plates for 18 to 36 h in
complete medium in the presence of inflammatory cytokines (a
cytokine cocktail (CC) containing IL-1β (10 ng/ml), IL-6 (10
ng/ml), TNF-α (10 ng/ml) plus PGE2 (1 µg/ml)), poly I:C (50
µg/ml) or CD40L (2 µg/ml) and subsequently stained for flow
cytometric analysis. Doses and incubation times were opti-
mized in preliminary experiments. For cytokine secretion, 107

PBMCs were cultured with the CC, poly I:C or CD40L (in
addition to IFN-γ and IL-1β) in the presence of brefeldin-A (10
µg/ml; Sigma). Cells were stained for surface markers, fixed
with 1% w/v paraformaldehyde and stained with cytokine-spe-
cific monoclonal antibodies (TNF-α, IL-10 and IL-12) in 0.2%
w/v saponin/PBS at 4°C overnight. For determination of Bcl-2
expression, 106 PBMCs were stained for surface markers
(CD3, CD14, CD19, CD20, CD56, CD34 and HLA-DR), fixed
with 1% w/v paraformaldehyde and stained with anti-Bcl-2 or
isotype control in 0.2% w/v saponin/PBS at 4°C overnight. In
all experiments, 5 to 10 × 105 events were collected within the
mononuclear cell gate. Data were acquired on a FACS Calibur

flow cytometer and analyzed using CellQuest 3.1 (BD Bio-
science), FloJo (TreeStar) or Summit (Cytomation) software.

Statistical analysis
Comparisons of samples to establish statistical significance
were determined by the two tailed Students' t-test or one way
analysis of variance (ANOVA) followed by Bonferroni's com-
parison test. Results were considered to be statistically signif-
icant when the p-value was <0.05.

Results
Spontaneous apoptosis of blood dendritic cells in 
patients with breast cancer
In accordance with the published literature [11-14], we also
confirmed that there is significant DC dysfunction in patients
with breast cancer prior to therapy (Additional file 1). Given
that apoptotic DCs are ineffective at inducing immunity, here
we examined the presence of apoptotic DCs obtained from
patients with breast cancer (stage I to II; n = 13) compared to
age-matched healthy females (n = 15). In order to include all
cells undergoing apoptosis, gating was set as described in
Fig. 1a. This strategy of double gating confirmed the viability of
all cells while eliminating acellular debris. Blood DCs were
identified as Lin-HLA-DR+ cells and apoptosis was assessed
using Annexin-V and TUNEL assays. The minimal proportion of
spontaneously apoptotic blood DCs in healthy volunteers was
significantly increased in patients with breast cancer (p < 0.05
and p < 0.01, respectively) (Fig. 1b,c).

Apoptosis in blood dendritic cells is induced by tumor 
derived supernatants
Given that significantly less apoptosis was observed in sam-
ples from healthy volunteers, we hypothesized that tumor
products were responsible for the elevated proportion of
apoptotic blood DCs in patients with breast cancer. To more
accurately examine this hypothesis, we used an in vitro model
of blood DC culture in the absence of exogenous cytokines
[21]. For this purpose, PBMCs were incubated in the pres-
ence of TDSN and apoptosis measured in Lin-HLA-DR+ cells.
Incubation with PBMC-SN served as a control. All superna-
tants were filtered and dialyzed against fresh medium prior to
use. This approach excluded the possibility of apoptosis
induced by nutrient depletion. Analysis of Annexin-V binding
and TUNEL assays in different cultures revealed minimal apop-
tosis on fresh samples and less than 10% apoptosis following
culture with PBMC-SN (Fig. 2a,b). On the other hand, incuba-
tion with TDSN resulted in a significant (p < 0.05) increase in
the proportion of apoptotic Lin-HLA-DR+ cells. Moreover, mor-
phological evaluation frequently demonstrated features of
apoptotic death in cultures containing TDSN (Fig. 2c). These
data suggest that factors derived from breast cancer cell lines
induce apoptotic death of Lin-HLA-DR+ cells.
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CD40 stimulation protects blood dendritic cells against 
TDSN-induced apoptosis
It has recently been demonstrated that protection of DCs from
apoptosis can improve antitumor immunity in vivo [22]. There-
fore, the identification of factors that protect blood DCs
against tumor-induced apoptosis could enhance their poten-
tial for immunotherapy. Analysis of Annexin-V binding revealed
that pre-incubation with a CC did not decrease apoptosis in
blood DCs whereas poly I:C stimulation induced a modest
(not significant) reduction in apoptosis (Fig. 3). In contrast,
incubation with CD40L demonstrated a significant (p < 0.05)
decrease of TDSN-induced apoptosis to levels seen in control
cultures. These data show that CD40 stimulation leads to
increased resistance of blood DCs to TDSN-induced
apoptosis.

Effects of IL-12 on TDSN-induced apoptosis
Due to the differential effects of inflammatory mediators on DC
apoptosis, we assessed the functional maturation induced on
Lin-HLA-DR+ cells following stimulation with a CC, poly I:C or

CD40L. All maturation stimuli induced significant increases in
the expression of HLA-DR and co-stimulatory molecules
(CD40, CD80, CD83 and CD86) (Fig. 4a). The cytokine
secretion profile, however, was markedly different between
stimuli. While the CC induced minimal cytokine secretion, poly
I:C induced moderate secretion of TNF-α as well as IL-12. On
the other hand, CD40 ligation induced modest secretion of
TNF-α and robust production of IL-12. Given that IL-12 has
been reported to protect in vitro-derived DCs from apoptosis
induced by co-culture with prostate cancer cells [23], we
examined whether IL-12 could protect blood DCs from apop-
tosis induced by breast tumor-derived supernatants. Exoge-
nous IL-12 significantly (p < 0.05) reduced blood DC
apoptosis (Fig. 4b), indicating that IL-12 also has a protective
role against tumor-induced apoptosis.

Sustained expression of Bcl-2 correlates with protection
Given that members of the Bcl-2 family of proteins are involved
in the regulation of tumor-induced apoptosis in DCs derived in
vitro [7], we examined whether protection from TDSN-induced

Figure 1

Spontaneous apoptosis of blood dendritic cells (DCs) in patients with breast cancerSpontaneous apoptosis of blood dendritic cells (DCs) in patients with breast cancer. Peripheral blood mononuclear cells isolated from patients with 
breast cancer (stage I to II; n = 13) and age-matched healthy volunteers (n = 15) were analyzed for apoptosis by flow cytometry. (a)In order to 
include all apoptotic cells and avoid debris, gating was set to include only 7-AAD negative events (R1) which were then visualized and re-gated on 
forward (FSC) and side scatter (SSC) characteristics (R2). Within this mononuclear cell population, blood DCs were identified as lineage negative 
HLA-DR positive cells (R3). Representative dot plots are shown. (b)Apoptosis in blood DCs from patients (black) and healthy volunteers (grey) was 
determined by two different methods, Annexin-V binding and TUNEL assays. In all experiments, each patient was tested in parallel with at least one 
healthy volunteer. Representative histograms are shown. (c)Summary of apoptosis data. The proportions of Annexin-V+ and TUNEL+ blood DCs esti-
mated for all patients (black) and healthy volunteers (grey) are shown accordingly. Error bars indicate the standard error of the mean. Statistically sig-
nificant differences between controls and patients are indicated as: *, p < 0.05; **, p < 0.01.
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apoptosis could be mediated by modulation of the expression
of the anti-apoptotic protein Bcl-2. We found that incubation
of cells with TDSN, but not PBMC-SN, resulted in significant
(p < 0.05) down-regulation of Bcl-2 expression in blood DCs
(Fig. 5a,b). Interestingly, pre-incubation of cells with the CC or
poly I:C did not significantly change the reduction of Bcl-2
expression caused by tumor supernatants (Fig. 5b). In con-
trast, pre-incubation with IL-12 or CD40L resulted in sustained
expression of Bcl-2, abrogating the suppressive effect
induced by the TDSN (Fig. 5b). In fact, comparable levels of
Bcl-2 expression were observed on fresh samples or following
culture with CD40L (Fig. 5b). These data suggest loss of Bcl-
2 is involved in blood DC apoptosis induced by TDSN and that
protection from TDSN-induced apoptosis (as shown for

CD40L and IL-12) involves sustained expression of this
molecule.

Discussion
In this study, we document the presence of a significantly
higher percentage of apoptotic blood DCs in patients with
breast cancer compared to healthy volunteers, suggesting
that in these patients, a higher proportion of blood DCs are
programmed in vivo to undergo apoptosis. This phenomenon
appeared to be related to their cancer as all patients were
newly diagnosed (no prior therapy) and no comparable apop-
tosis was observed in blood DCs from healthy volunteers.
Although previous reports have described increased apopto-
sis in tumor-infiltrating DCs in patients with melanoma and

Figure 2

Apoptosis in blood dendritic cells (DCs) is induced by breast tumor-derived supernatantsApoptosis in blood dendritic cells (DCs) is induced by breast tumor-derived supernatants. (a)Apoptosis in blood DCs was determined by Annexin-V 
binding and TUNEL assays following culture (24 h) in the presence of 50% (v/v) peripheral blood mononuclear cell (PBMC)-derived supernatant 
(PBMC-SN) or tumor-derived supernatants (TDSN; MCF7, MB435, MA11 and SKBR3). Representative dot plots (SSC on y-axis versus apoptosis 
on x-axis) are shown with numbers indicating the percentage of apoptotic cells. (b)Summary of apoptosis data. The proportions of Annexin-V+ and 
TUNEL+ blood DCs represent the average ± standard error of the mean of five independent experiments for which statistically significant differences 
compared to PBMC-SN are shown: *, p < 0.05; **, p < 0.01; ***, p < 0.001. (c)For morphological analyses (original magnification times 1,000), 50 
cells were assessed in three separate fields. In contrast to PBMC-SN, cultures incubated with TDSN (MA11) frequently demonstrated features of 
apoptotic death in blood DCs (reduction in cell volume and nuclear size, cytoplasmic blebbing, cell membrane convolutions and formation of apop-
totic bodies). Three independent experiments with similar findings were performed.
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ovarian cancer [7], our findings clearly indicate that the inhibi-
tory influence of the tumor extends far beyond the tumor micro-
environment. In keeping with this, previous studies [16,17]
have described spontaneous apoptosis of several mononu-
clear cell subsets (T and B lymphocytes, NK cells and
monocytes) in blood of patients with different types of cancer,
suggesting a rather generalized phenomenon. This, however,
is the first description of spontaneous apoptosis in DCs from
the peripheral blood of patients with cancer.

The physiological and clinical significance of blood DC apop-
tosis in patients with cancer is of substantial interest. Circulat-
ing DCs are essential for adequate immunity given that they
continually replenish the pool of tissue-residing DCs and play
a critical role in shaping immune responses in vivo [1]. Indeed,
most circulating DCs appear to be en route from the bone
marrow to peripheral and lymphoid tissues or from non-lym-
phoid tissues to the regional lymph nodes and spleen [24,25].
Given that apoptotic cells are rapidly cleared from the circula-

tion by the reticulo-endothelial system, our observation of a
higher fraction of blood DCs undergoing apoptosis in patients
with breast cancer suggests increased turnover of these cells
in vivo. If this assumption is correct, continual efforts to
replace the pool of blood DCs from bone marrow would
impose chronic stress on the immune system of breast cancer
patients, resulting in a relative paucity of DCs in the circulation
[15,26] as well as a failure to effectively replenish DCs that
infiltrate breast tumor tissue [13,14] or in the ability of DC to
migrate to lymphoid organs [12] for the initiation of T-cell
immunity. Accordingly, in patients with operable breast carci-
noma, blood DC numbers are significantly reduced over pro-
longed periods of time (approximately 48 weeks post surgery)
independently of other blood cell counts (monocytes, neu-
trophils, platelets), suggesting diminished availability of DC
precursors in these patients (A Pinzon-Charry et al, unpub-
lished observations). Moreover, in a cohort of 35 patients with
early (stage I and II) and advanced (stage IV) breast cancer
(stage I, n = 17; stage II, n = 10; stage IV, n = 8), we found

Figure 3

CD40 stimulation protects blood dendritic cells (DCs) against tumor-derived supernatant (TDSN)-induced apoptosisCD40 stimulation protects blood dendritic cells (DCs) against tumor-derived supernatant (TDSN)-induced apoptosis. TDSN-induced apoptosis in 
blood DCs was determined by Annexin-V binding following incubation (24 h) in the presence or absence of: (a)a combination of inflammatory 
cytokines (tumor necrosis factor-α, IL-1β, IL-6 and prostaglanding (PG)E2 as a cytokine cocktail (CC)); (b)synthetic double-stranded RNA (poly I:C); 
or (c)CD40 ligand (CD40L) prior to culture (24 h) with 50% (v/v) peripheral blood mononuclear cell-conditioned supernatant (PBMC-SN) or TDSN 
(MA11, MB435, MCF7 and SKBR3). Representative dot plots (SSC on y-axis versus apoptosis on x-axis) are shown with numbers indicating the 
percentage of apoptotic cells. Five independent experiments were performed for which p-values are indicated.
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that reduction in blood DC numbers correlated with disease
progression [27]. The resulting immune dysfunction would
lead to reduced antitumor immunity [11] and, thus, tumor
progression.

The increased pro-apoptotic effect of tumor supernatants
demonstrated in this work may have a differential effect on the
various DC subsets. In a separate study, we have carefully
examined the DC compartment for various immune functions.
We identified a population of Lin-HLADR+ cells that is CD11c
and CD123 negative that appears to be particularly resistant
to apoptosis induced by supernatants derived from breast
(MB231, MA11, MB435, SKBR3 and MCF7) as well as colon
(LOVO) cancer cell lines. In contrast, Lin-HLA-

DR+CD11c+CD123+ DCs consistently undergo increased
levels of apoptosis under the same conditions [28].

We therefore set out to directly confirm the role of tumor prod-
ucts in the induction of blood DC apoptosis in breast cancer.
We found that supernatants derived from several breast can-
cer lines significantly reduced blood DC survival as assessed
by Annexin-V, TUNEL and morphological analyses. Our find-
ings on blood DCs confirm previous studies on in vitro gener-
ated monocyte-derived DCs wherein tumor products (IL-10,
prostanoids, gangliosides or ceramides) induced marked lev-
els of apoptosis [4,5,29]. Moreover, in view of the increased
level of apoptosis in circulating DCs in patients with cancer
described here, it is tempting to speculate that pro-apoptotic

Figure 4

Protective effect of IL-12 on tumor-derived supernatant (TDSN)-induced apoptosisProtective effect of IL-12 on tumor-derived supernatant (TDSN)-induced apoptosis. (a)Expression of HLA-DR and co-stimulatory molecules (CD40, 
CD80, CD83 and CD86) as well as secretion of cytokines (tumor necrosis factor (TNF)-α, IL-10 and IL-12) was determined for blood DCs following 
stimulation (24 h) with a cytokine cocktail (CC), synthetic double-stranded RNA (poly I:C) or CD40 ligand (CD40L) as described in Materials and 
methods. Histograms indicate expression in the absence (shaded) or presence (non-shaded) of stimulation. Numbers indicate delta mean fluores-
cence intensity (∆MFI, stimulated cells minus unstimulated cells) and are representative of five independent experiments. (b)TDSN-induced apopto-
sis in blood DCs was determined by Annexin-V binding following incubation (24 h) in the presence or absence of exogenous IL-12 prior to culture 
(24 h) with 50% (v/v) peripheral blood mononuclear cell-conditioned supernatant (PBMC-SN) or TDSN (MA11, MB435, MCF7 and SKBR3). Rep-
resentative dot plots (SSC on y-axis versus apoptosis on x-axis) are shown with numbers indicating the percentage of apoptotic cells. Five independ-
ent experiments were performed for which the p-value is indicated.
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tumor products that regularly gain access to the peripheral cir-
culation at high concentrations, such as IL-10 and ganglio-
sides [30,31], could potentially impair viability of blood DCs in
vivo [2].

From an immunotherapy perspective, our results are relevant
in two ways. Firstly, because blood DCs have been proposed
for use in cancer immunotherapy [9]. Blood DCs offer the the-
oretical advantage of being in their natural state of
differentiation and presumably capable of stimulating immune
responses in a more physiological manner. Apoptotic DCs,
however, are ineffective at inducing immunity [32], which may
explain, at least in part, the failure of blood DCs from breast
cancer patients to capture antigens and generate adequate T-
cell responses as described by us (Additional file 1) and oth-
ers [11,12]. Secondly, because therapeutic DCs would be
subject to suppression when re-introduced into patients and,
thus, re-exposed to pro-apoptotic products derived from the
tumor. In this regard, our results demonstrate that the addition
of specific maturation stimuli can protect blood DCs from

tumor-induced apoptosis, thus facilitating their survival and
potential effectiveness.

Indeed, by comparing a range of stimuli available for clinical
use, including inflammatory cytokines (CC), poly I:C and solu-
ble CD40L, we found that the CC and poly I:C induced robust
phenotypic maturation, but failed to protect blood DCs from
apoptosis. These results imply that the upregulation of matura-
tion and costimulatory molecules may have only minimal effect
on DC survival. In contrast, CD40 stimulation induced strong
phenotypic maturation, in addition to augmented IL-12 secre-
tion and protected blood DCs from TDSN-induced apoptosis
through sustained expression of the anti-apoptotic molecule
Bcl-2. Similarly, exogenous IL-12 protected blood DCs from
apoptosis through sustained expression of Bcl-2, suggesting
that CD40L-induced protection could be mediated, at least in
part, through IL-12 secretion.

Together with Toll-like receptor (TLR) interactions, DC survival
induced by CD40L appears to be mediated by the activation

Figure 5

Effect of tumor-derived supernatant (TDSN) and stimulation on expression of Bcl-2Effect of tumor-derived supernatant (TDSN) and stimulation on expression of Bcl-2. (a)Expression of Bcl-2 in blood dendritic cells (DCs) was deter-
mined: ex vivo (Fresh); following culture (24 h) in the presence of 50% (v/v) peripheral blood mononuclear cell-conditioned supernatant (PBMC-SN) 
or TDSN (MA11); or following stimulation (24 h) with a cytokine cocktail (CC), synthetic double-stranded RNA (poly I:C), IL-12 or CD40 ligand 
(CD40L) prior (24 h) to culture with 50% (v/v) TDSN. Representative histograms (filled) are shown with numbers indicating the mean fluorescence 
intensity (MFI) of Bcl-2 expression. The unfilled histogram shows staining with isotype control. (b)Summary of Bcl-2 expression data. Results show 
the average ± standard error of the mean of five independent experiments for which statistically significant differences compared to fresh cells (*, p 
< 0.05; ***, p < 0.001) or after incubation with TDSN (##, p < 0.01; ###, p < 0.001) are indicated.
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of NF-κB transcription factor proteins [33]. In a mouse model,
the beneficial effect of CD40 ligation has been related to the
function of the anti-apoptotic protein Bcl-2, which counter-bal-
ances the apoptotic property of various DC maturation stimuli
[34]. Our data support and advance this idea in that we iden-
tify IL-12 as playing a similar protective role. Further studies on
the mechanisms involved in this process will provide better
understanding of the homeostatic function of Bcl-2 in DC sur-
vival. Interestingly, TRANCE/RANKL, another modulator of
NF-κB, has been implicated in prolonged DC survival [35],
particularly after stimulation with CD40L [36]. A recent report
correlated a high expression of RANKL in breast tumor cells
with a decreased metastatic (bone) phenotype [37]. Consid-
ering our data, it is tempting to speculate that the joint effect
of RANKL with CD40L leading to prolonged DC survival may
prevent tumor growth; an additional argument for the potential
benefit of CD40L linked with DC immunotherapy for breast
cancer.

In models in which DCs are generated in vitro, CD40 stimula-
tion can induce increased DC survival and IL-12 secretion
[38], thus promoting IFN-γ production by T-helper cells [39] as
well as tumor-specific cytotoxic responses [40]. These data
strongly support the use of CD40L conditioning for DCs in
cancer immunotherapy. Hitherto, one study has shown the
potential of CD40L as an efficient stimulator of professional
APC under clinically applicable conditions [41] and two ongo-
ing cancer trials with CD40L-conditioned DCs [42] are await-
ing completion. Our results demonstrate that ex vivo
conditioning of blood DCs with CD40L can protect them from
tumor-induced apoptosis and, thus, further support this
approach.

Conclusion
Our data demonstrate that in the peripheral circulation, more
blood DCs are undergoing apoptosis in patients with breast
cancer than in healthy donors. Given that no significant apop-
tosis was detected in samples from healthy donors, we pro-
pose that these cells are programmed in vivo to undergo
apoptosis by a mechanism related to the presence of tumor
products. Indeed, supernatants from breast cancer cell lines
induce significant apoptosis of blood DCs in vitro. Moreover,
we show that loss of expression of the anti-apoptotic molecule
Bcl-2 is involved in apoptosis induced by breast cancer cell
line supernatants and demonstrate that exogenous condition-
ing with CD40L (and IL-12) protects blood DCs from apopto-
sis through sustained expression of Bcl-2. Cumulatively, our
findings support the use of exogenous conditioning of DCs to
ensure their survival and, thus, may prove crucial in improving
the efficacy of DC-based immunotherapies for cancer.
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