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Abstract

Introduction A physiological feature of many tumor tissues and
cells is the tendency to accumulate high concentrations of
copper. While the precise role of copper in tumors is cryptic,
copper, but not other trace metals, is required for angiogenesis.
We have recently reported that organic copper-containing
compounds, including 8-hydroxyquinoline-copper(II) and 5,7-
dichloro-8-hydroxyquinoline-copper(II), comprise a novel class
of proteasome inhibitors and tumor cell apoptosis inducers. In
the current study, we investigate whether clioquinol (CQ), an
analog of 8-hydroxyquinoline and an Alzheimer's disease drug,
and pyrrolidine dithiocarbamate (PDTC), a known copper-
binding compound and antioxidant, can interact with copper to
form cancer-specific proteasome inhibitors and apoptosis
inducers in human breast cancer cells. Tetrathiomolybdate (TM),
a strong copper chelator currently being tested in clinical trials,
is used as a comparison.

Methods Breast cell lines, normal, immortalized MCF-10A,
premalignant MCF10AT1K.cl2, and malignant
MCF10DCIS.com and MDA-MB-231, were treated with CQ or
PDTC with or without prior interaction with copper, followed by
measurement of proteasome inhibition and cell death. Inhibition
of the proteasome was determined by levels of the proteasomal
chymotrypsin-like activity and ubiquitinated proteins in protein
extracts of the treated cells. Apoptotic cell death was measured

by morphological changes, Hoechst staining, and poly(ADP-
ribose) polymerase cleavage.

Results When in complex with copper, both CQ and PDTC, but
not TM, can inhibit the proteasome chymotrypsin-like activity,
block proliferation, and induce apoptotic cell death preferentially
in breast cancer cells, less in premalignant breast cells, but are
non-toxic to normal/non-transformed breast cells at the
concentrations tested. In contrast, CQ, PDTC, TM or copper
alone had no effects on any of the cells. Breast premalignant or
cancer cells that contain copper at concentrations similar to
those found in patients, when treated with just CQ or PDTC
alone, but not TM, undergo proteasome inhibition and
apoptosis.

Conclusion The feature of breast cancer cells and tissues to
accumulate copper can be used as a targeting method for
anticancer therapy through treatment with novel compounds
such as CQ and PDTC that become active proteasome
inhibitors and breast cancer cell killers in the presence of
copper.

Introduction
Copper is an essential trace metal for animals. The amount of
copper in an organism is tightly regulated [1,2]. Angiogenesis,

the growth of a tumor blood supply, is essential for tumor
growth, invasion, and metastasis [3-6]. It has been shown that
tumors, without a blood supply, do not grow larger than 1 to 2
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mm3 [7]. Molecular processes of angiogenesis that require
copper as an essential cofactor include stimulation of
endothelial growth by tumor cytokine production (i.e., vasoen-
dothelial growth factor), degradation of extracellular matrix
proteins by metalloproteinases, and migration of endothelial
cells mediated by integrins [3-12]. Consistently high levels of
copper have been found in many types of human cancers,
including breast, prostate, colon, lung, and brain [13-21].
Three anti-copper drugs have been tested in clinical trials
[8,9], particularly tetrathiomolybdate (TM), a copper chelator,
which was originally used for patients with Wilson's disease
[8,11]. TM has been found to be effective in impairing the
growth of mammary tumors in HER2/neu transgenic mice [22]
and lung metastatic carcinoma in C557BL6/J mice [23]. In a
phase I clinical trial with patients suffering from metastatic can-
cers, TM therapy achieved stable disease in five of six patients
who were copper-deficient [11]. However, the disease
advanced in some other patients before copper levels were
sufficiently lowered [8,9,11]. These reports support the idea of
copper control as an anticancer strategy.

Apoptosis, an evolutionarily conserved form of cell death, is
the process by which a cell will actively commit suicide under
tightly controlled circumstances [24]. Apoptosis occurs in two
physiological stages, commitment and execution [25,26]. Acti-
vation of effector caspases leads to apoptotic execution prob-
ably through the proteolytic cleavage of important cellular
proteins [27], such as poly(ADP-ribose) polymerase (PARP)
[28], and the retinoblastoma protein [29-31]. Other hallmarks
of apoptosis include cellular shrinkage, membrane blebbing,
and DNA fragmentation [25-27].

The ubiquitin/proteasome system plays an important role in
the degradation of cellular proteins. This proteolytic system
involves two distinct steps, ubiquitination and degradation
[32,33]. The eukaryotic proteasome contains at least three
known activities, which are associated with its β subunits.
These are the chymotrypsin-like (cleavage after hydrophobic
residues, β5 subunit), trypsin-like (cleavage after basic resi-
dues, β2 subunit), and caspase-like or peptidyl-glutamyl pep-
tide-hydrolyzing (cleavage after acidic residues, β1 subunit)
activities [34,35]. Inhibition of the proteasomal chymotrypsin-
like activity has been found to be associated with induction of
apoptosis in tumor cells [36-41].

Most recently, we discovered that several organic-copper (but
not zinc or nickel) compounds, such as bis-8-hydroxyquino-
line-copper(II), potently and specifically inhibited the chymot-
rypsin-like activity of the proteasome in vitro and in human
tumor cell culture [42]. Inhibition of the proteasome activity by
organic copper compounds occurs very rapidly in tumor cells
(15 minutes), followed by induction of apoptosis. Neither pro-
teasome inhibition nor apoptosis were found in human normal
or non-transformed cells under the same treatment. Most
importantly, proteasome inhibition and apoptosis were also

detected in copper-containing tumor cells treated with 8-
hydroxyquinoline (8-OHQ; Fig. 1a). None of these events
occurred in cells treated with either inorganic copper, ligand-
treated cells that did not contain copper, or pretreatment with
the closely related nickel followed by addition of the ligand
[42]. We also found that 5,7-dichloro-8-hydroxyquinoline (5,7-
DiCl-8-OHQ; Fig. 1a) synthesized to contain copper was a
potent proteasome inhibitor and apoptosis inducer [42].

Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline; CQ; Fig. 1a)
belongs to the quinoline class of compounds and is structur-
ally similar to 5,7-DiCl-8-OHQ. This class of compounds pos-
sesses an established toxicology profile with the US
Pharmacopoeia [43]. During the 1950s to the 1970s, CQ was
used as an antibiotic [44,45]; however, it was withdrawn due
to association with subacute myelo-optic neuropathy possibly
due to overdose and/or a reversible vitamin B12 deficiency
[44,46-48]. Recently, interest in CQ has reemerged due to
studies involving its use, in combination with B12, for treatment
of Alzheimer's disease [43,49,50]. Regardless of it being a
controversial compound, CQ can still serve as a model com-
pound from which analogs could be developed that exploit its
copper binding potential but avoid its negative associations.
CQ is a lipophilic compound that is capable of forming stable
complexes with copper(II) ions [51]. In a phase II clinical trial,
CQ, at a starting concentration of 3.3 mg/kg, the same order
of magnitude of treatment used in mice, was found to be well-
tolerated and suitable for further study [49]. Examination of
CQ in animal studies has continued to further characterize its
effects [52].

Figure 1

Copper complex formation as indicated by color changeCopper complex formation as indicated by color change. (a) Chemical 
structures of compounds referenced in the text: 5,7-DiCl-8-OHQ, 5,7-
dichloro-8-hydroxyquinoline; 8-OHQ, 8-hydroxyquinoline; CQ, clioqui-
nol; PDTC, pyrrolidine dithiocarbamate. (b) 50 mM of PDTC, CQ, or 
tetrathiomolybdate (TM) were mixed in a 1:1 molar ratio with CuCl2. All 
solutions were made in dimethylsulfoxide. In each case the appearance 
of intensified color indicated formation of a copper complex.
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Dithiocarbamates are a class of metal chelating compounds.
These compounds have previously been used in the treatment
of bacterial and fungal infections, and have been considered
for use in the treatment of AIDS [53,54]. Pyrrolidine dithiocar-
bamate (PDTC; Fig. 1a) is a synthetic antioxidant and inhibitor
of NF-κB that is capable of binding copper [55,56]. PDTC and
other dithiocarbamates have been found to induce apoptosis
in conjunction with copper in different types of cancer cells
[55,57]. Previously we found a synthetic PDTC containing
copper was a potent proteasome inhibitor and apoptosis
inducer [42].

Here we show that CQ and PDTC are capable of binding cop-
per, spontaneously forming new complexes that have proteas-
ome-inhibitory and apoptosis-inducing activities to cancer but
not normal/non-transformed breast cells, and that premalig-
nant or cancer breast cells cultured to contain elevated copper
are sensitive to treatment with CQ or PDTC alone. In contrast,
TM-copper or TM alone had no effects in the same experi-
ments. We propose that targeting highly elevated copper can
be tumor-specific and that formation of an active anticancer
proteasome inhibitory complex between CQ or PDTC and
tumor cellular copper is a novel strategy that has great poten-
tial for breast cancer therapies.

Materials and methods
Chemicals and reagents
CQ, PDTC, disulfiram (tetraethyl thiuram disulfide), tetramethyl
thiruam disulfide, methyl propyl disulfide, allyl disulfide, isopro-
pyl disulfide, TM, CuCl2, dimethylsulfoxide (DMSO), bisbenz-
imide Hoechst No. 33258 stain, cholera toxin, hydrocortisone,
3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide
(MTT), epidermal growth factor, and insulin were purchased
from Sigma-Aldrich (St. Louis, MO, USA). F12 medium,
DMEM, horse serum, penicillin, and streptomycin were pur-
chased from Invitrogen (Carlsbad, CA, USA). Fluorogenic
peptide substrate Suc-Leu-Leu-Val-Tyr-AMC (for the proteas-
omal chymotrypsin-like activity) was obtained from Calbio-
chem (San Diego, CA, USA). Mouse monoclonal antibody to
human PARP was from Roche Applied Science (Indianapolis,
IN, USA). Mouse monoclonal antibody to human ubiquitin was
from Santa Cruz Biotechnology Inc (Santa Cruz, CA, USA).

Cell culture and lysates preparation
MCF10A (normal-MCF10), MCF10AT1K.cl2 (premalignant-
MCF10), and MCF10dcis.com (malignant-MCF10) cells were
cultured as described previously [58]. Briefly, normal-MCF10
and premalignant-MCF10 cells were cultured in 1:1 F12/
DMEM prepared as follows: 500 ml of media was supple-
mented with 5.26% (v/v) horse serum, 100 units/ml of penicil-
lin, 100 µg/ml of streptomycin, 52.55 µg of cholera endotoxin,
5 mg insulin, 10 ml of 1 M NaHCO3, 10 µg of epidermal
growth factor, and 250 µg hydrocortisone. Malignant-MCF10
cells were cultured in 1:1 F12/DMEM media supplemented
with 5.26% (v/v) horse serum, 10 ml of 1 M NaHCO3, 100

units/ml of penicillin, and 100 µg/ml of streptomycin. MDA-
MB-231 cells were purchased from the American Type Cul-
ture Collection (Manassas, VA, USA) and cultured in DMEM
media containing 10% (v/v) fetal bovine serum and 100 units/
ml of penicillin, 100 µg/ml of streptomycin. All cells were main-
tained at 37°C in a humidified incubator with an atmosphere of
5% CO2. For copper enrichment experiments, premalignant-
MCF10 or MDA-MB-231 cells were cultured in media further
supplemented with 25 µM CuCl2 for 3 days to 2 weeks.
Whole cell extracts were prepared as described previously
[29]. Briefly, cells were harvested, washed with PBS twice,
and homogenized in a lysis buffer (50 mM Tris-HCI (pH 8.0),
150 mM NaCI, 0.5% NP40 (v/v), 0.5 mM phenylmethylsulfonyl
fluoride, and 0.5 mM dithiothreitol) for 30 min at 4°C. After-
wards, the lysates were centrifuged at 12,000 g for 30 min-
utes, and the supernatants were collected as whole cell
extracts.

Color change and precipitate formation reactions
CQ, PDTC, TM, and CuCl2 were dissolved in DMSO to a final
concentration of 50 mM. Then CuCl2 was mixed with each in
a 1:1 ratio and qualitatively examined for color change and pre-
cipitate formation. After mixing, solutions were heated and vor-
texed repeatedly until clear. For the visual studies, solutions
were examined for color change and precipitation as indica-
tors of complex formation. In cellular studies, however, stock
concentrations were kept lower (10 and 20 mM) prior to dilu-
tion during mixing in order to prevent precipitation.

Cell proliferation assay
The MTT assay was used to determine the effects of these
agents on overall proliferation of cells. Cells were plated in a
96-well plate and grown to 70–80% confluency, followed by
addition of each compound at an indicated concentration for
24 h. MTT (1 mg/ml) in PBS was then added to wells and incu-
bated at 37°C for 4 h to allow for complete cleavage of the
tetrazolium salt by metabolically active cells. Next, MTT was
removed and 100 µl of DMSO was added, followed by color-
imetric analysis using a multilabel plate reader at 560 nm
(Victor3; PerkinElmer (Wellesley, MA, USA)). Absorbance val-
ues plotted are the mean from triplicate experiments.

Cellular and nuclear morphology analysis
A Zeiss (Thornwood, NY, USA) Axiovert 25 microscope was
used for all microscopic imaging with either phase contrast for
cellular morphology or fluorescence for nuclear morphology
with Hoechst staining. For fluorescent nuclear morphology
analysis, Hoechst stain was used as follows. Cells, either
attached in plates or collected as a detached fraction, were
washed once with ice cold PBS. Cells were then fixed in eth-
anol for 1 h and afterwards washed with ice cold PBS. Cells
were stained with 50 µM Hoechst and kept in the dark at 4°C
for 30 minutes and then visualized using fluorescence micros-
copy. Punctate and bright staining, or granular and bright
staining nuclei were considered apoptotic.
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Copper pretreatment and ligand post-treatment
To simulate the in vivo copper status of cancer cells, prema-
lignant-MCF10 and MDA-MB-231 cells were cultured in
media containing 25 µM copper as done previously with pros-
tate PC-3 cells [42]. MDA-MB-231 cells were cultured for a
minimum of 48 h and premalignant-MCF10 cells were cultured
for a minimum of 2 weeks. After copper enrichment culturing,
cells were washed with PBS and then treated for the indicated
hours using standard cell media containing TM (25 µM), CQ
(1 to 100 µM), or PDTC (1 or 10 µM).

Cellular copper measurement
Premalignant-MCF10 cells were cultured for 2 weeks in cul-
ture media with or without 25 µM CuCl2. Cells were collected
and counted to determine total cells in the sample. Samples
were spun down, washed with PBS, and provided to Quantum
Labs (Wixom, MI, USA) for graphite furnace analysis to deter-
mine total copper in each sample.

Western blot analysis
Cells were treated as indicated (see Figure legends). After-
wards, cells were harvested and lysed. Cell lysates (50 µg)
were separated by SDS-PAGE and transferred to a nitrocellu-
lose membrane, followed by visualization using the enhanced
chemiluminescence kit (Amersham Biosciences, Piscataway,
NJ, USA). Western blot analysis was performed using specific
antibodies to ubiquitin and PARP as described previously
[36]. Proteasome inhibition was measured as accumulation of
ubiquitinated proteins and apoptosis by cleavage of PARP
[36].

Analysis of the proteasome chymotrypsin-like activity in 
whole cell extracts
Whole cell extracts (10 µg) of cells treated as indicated were
incubated for 60 minutes at 37°C in 100 µl of assay buffer (50
mM Tris-HCL, pH 7.5) with 40 µM of fluorogenic substrate for
the proteasomal chymotrypsin-like activity. After incubation,
production of hydrolyzed 7-amino-4-methylcoumarin (AMC)
groups was measured using a Victor 3 Multilabel Counter with
an excitation filter of 380 nm and an emission filter of 460 nm
(PerkinElmer, Boston, MA, USA). Changes in fluorescence
were calculated against non-treated controls and plotted with
statistical analysis using Microsoft Excel™ software.

Results
CQ and PDTC spontaneously react with copper to form a 
new complex
In order to use endogenous elevated tumor copper as a target-
ing mechanism for breast cancer therapy (Fig. 2), it is neces-
sary that the ligand under consideration be capable of reacting
spontaneously with copper to form a new complex. Complex
formation reactions, particularly those involving metal, can
result in dramatic color changes and/or precipitate formation.
To test the reactivity of CQ and PDTC with copper, 50 mM of
each was added to a 50 mM solution of copper (II) chloride

(Fig. 1). The reaction of CQ and PDTC with copper, in DMSO,
results in a dramatic color change (Fig. 1), indicating a chemi-
cal reaction has occurred and a metal complex has formed.
These results are consistent with previous publications show-
ing that both CQ and PDTC are strong copper chelators
[51,55]. Therefore, these ligands may be capable of combin-
ing with endogenous tumor copper and forming a reactive
complex.

The CQ-copper mixture has been further examined by the
advanced photon source (APS) of Argonne National Labora-
tories (Argonne, IL, USA). The result is consistent with forma-
tion of a new complex between CQ and copper in solution
(unpublished data). Furthermore, samples of a PDTC-copper
mixture will be analyzed by the APS to confirm complex forma-
tion and the resulting structure. The details of these studies
will be presented in a future manuscript.

CQ and PDTC combine with copper to form proteasome-
inhibitory complexes
As both compounds can form a complex with copper, as indi-
cated by color change (Fig. 1), we then tested whether these

Figure 2

Diagram of a proposed copper-targeting therapeutic strategyDiagram of a proposed copper-targeting therapeutic strategy. Cancer 
cells contain high levels of copper compared to normal cells. Upon 
treatment with a copper-binding ligand, a proteasome inhibiting copper 
complex will be formed. Only a minimal amount of complex should be 
formed in normal cells, therefore making them resistant to proteasome 
inhibition. In contrast, cancer cells may have a high dose of complex 
formed and are thus sensitive to proteasome inhibition, resulting in 
apoptosis. Copper forms the basis of the selection criteria between 
normal and tumor cells.
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complexes were capable of inhibiting the proteasome activity
in intact cells. Breast cancer MDA-MB-231 cells were treated
with copper, CQ, CQ-copper mixture, PDTC, or PDTC-copper
mixture, using TM and TM-copper mixture as controls. After a
24 h treatment, cells were collected and the cell extracts were
prepared for analysis of proteasome inhibition by the chymot-
rypsin-like activity assay (Fig. 3a) and accumulation of ubiqui-
tinated proteins (Fig. 3b). We found that both CQ-copper and
PDTC-copper mixtures significantly inhibited the proteasome
activity in MDA-MB-231 cells, as indicated by decreased lev-
els of the proteasomal chymotrypsin-like activity (Fig. 3a) and
accumulation of ubiquitinated proteins (Fig. 3b). The PDTC-
copper mixture is more potent than that of CQ-copper (Fig.
3a). Copper, CQ, or PDTC alone had no effect. Interestingly,
we found that TM and the TM-copper mixture had little to no
proteasome-inhibitory activity (Fig. 3), supporting the inactive
complex nature of TM-copper [42]. These data support that
CQ and PDTC can combine spontaneously with copper to
form a proteasome-inhibitory complex.

Although we have shown that copper alone can inhibit the
activity of a purified proteasome [42], it is still possible that
dithiocarbamates could be oxidized by copper to thiuram
disulfides [59], which could be responsible for the observed
proteasome inhibition. We therefore tested the effects of two
thiuram disulfides and three disulfides on the proteasome
activity. In the absence of copper, disulfiram (tetraethyl thiuram
disulfide) and tetramethyl thiuram disulfide are incapable of
inhibiting the proteasomal activity of MDA-MB-231 cell extract

at micro-molar concentrations (data not shown). In addition,
none of the tested disulfides, methyl propyl disulfide, allyl
disulfide, and isopropyl disulfide, could inhibit the proteasome
activity under the cell-free conditions (data not shown). This
result suggests that complex formation between PDTC and
copper, rather than general oxidation of PDTC to thiuram
disulfide, is the likely mechanism of proteasome inhibition. Fur-
thermore, we have found and reported that production of
H2O2 does not occur in this system and that reductants do not
block copper-mediated proteasome-inhibitory activity, sup-
porting the idea that mechanisms other than oxidation are
involved in proteasome inhibition [42]. This suggests that gen-
eral oxidation or oxidation of dithiocarbamates is not sufficient
to result in proteasome inhibition at these concentrations in
these systems.

CQ and PDTC when mixed with copper block 
proliferation of breast cancer MDA-MB-231 in a dose-
dependent manner
After finding that CQ-copper and PDTC-copper mixtures
could inhibit proteasome activity (Fig. 3a,b), we measured the
effects of each compound on breast cancer cell proliferation
(Fig. 4). We found that, associated with proteasome inhibition,
the CQ-copper and PDTC-copper complexes inhibited cellu-
lar proliferation in a dose-dependent manner. CQ-copper
showed 40% inhibition at 10 µM and increased to approxi-
mately 80% inhibition at 30 µM (Fig. 4). The PDTC-copper
mixture inhibited proliferation by 40% at 1 µM and greater than
90% inhibition at 10 µM (Fig. 4). In contrast, copper, CQ,

Figure 3

Inhibition of proteasome activity and apoptosis induction in MDA-MB-231 breast cancer cells by clioquinol (CQ) + copper and pyrrolidine dithiocar-bamate (PDTC) + copperInhibition of proteasome activity and apoptosis induction in MDA-MB-231 breast cancer cells by clioquinol (CQ) + copper and pyrrolidine dithiocar-
bamate (PDTC) + copper. MDA-MB-231 breast cancer cells were treated with 20 µM copper (Cu), CQ, CQ + copper (CC), tetrathiomolybdate 
(TM), TM + copper (TC), or 10 µM PDTC (P), or PDTC + copper (PC), using DMSO (DM) as a control. Cells were collected after 24 h treatment 
and analyzed for proteasome inhibition. (a) Proteasome activity as measured in released fluorescence units (RFUs) by release of 7-amino-4-methyl-
coumarins (AMCs) from substrate specific for chymotrypsin-like activity. (b) Western analysis for accumulation of ubiquitinated proteins as an indica-
tor of proteasome inhibition. Treatment with PDTC + copper (PC; 10 µM) or CQ + copper (CC; 20 µM) results in reduced release of AMCs and 
ubiquitinated protein accumulation, suggesting proteasome inhibition. (c) Western analysis for cleavage of poly(ADP ribose) polymerase (PARP) as 
an indication of apoptosis. Treatment with CQ + copper (20 µM) or PDTC + copper (10 µM) results in cleavage of PARP, indicating that these com-
plexes are capable of inducing apoptosis.
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PDTC, or TM alone or TM mixed with copper had no significant
effect (Fig. 4). The ranking of these compounds with respect
to their ability to inhibit breast cancer cell proliferation matches
well with their ability to inhibit the cellular proteasome activity
(Figs. 4 versus 3a). Due to the nature of the MTT assay and the
inability to separate apoptosis from growth arrest, both possi-
ble outcomes of the proteasome inhibition, IC50 values of
these complexes were not measured. These data suggest that
CQ and PDTC can spontaneously combine with copper to
form an anti-proliferative complex.

CQ and PDTC combine with copper to form a product 
toxic to malignant-MCF10 and MDA-MB-231 and 
premalignant-MCF10 cells, but non-toxic to normal-
MCF10 breast cells
We found that the same CQ-copper and PDTC-copper com-
plexes capable of proteasome inhibition (Fig. 3a, b) also dem-
onstrated apoptosis induction, as shown by cleavage of PARP
(Fig. 3c). In the absence of copper, neither CQ nor PDTC was
able to induce apoptosis at these concentrations (Fig. 3c,
lanes 6 and 7 versus lanes 3 and 4). TM, in the presence or
absence of copper, does not induce apoptosis, further sup-
porting TM's action as passive chelation and elimination of
copper. These data support the idea that CQ and PDTC, but
not TM, can combine spontaneously with copper to form a pro-
teasome-inhibitory and apoptosis-inducing complex.

To determine whether the CQ-copper and PDTC-copper
complexes have differential effects on normal and tumor
breast cells, the MCF10 series of cells [58] were then treated
with CQ alone, copper alone, or the product of a 1:1 mixture
of each at 20 µM (Fig. 5). The 20 µM CQ-copper complex

induces apoptotic nuclei within 24 h for both premalignant-
and malignant-MCF10 cells (10% and 65%, respectively; Fig.
5b, c). The malignant-MCF10 cells fully detached, suggesting
that these cells were more sensitive to the complex than the
premalignant cells. However, the normal-MCF10 cells demon-
strated no apoptotic nuclei after 24 h of treatment with the
CQ-copper complex (<2%; Fig. 5a).

We then tested the effects of the PDTC-copper mixture. The
three breast cell lines were treated with PDTC alone, copper
alone, or their mixture at 5 µM for 24 h. Again, both the prema-
lignant- (63%; Fig. 5b) and the malignant-MCF10 (75%; Fig.
5c) cells showed a dramatic induction of apoptotic nuclei after
treatment with the mixture, while the normal-MCF10 cells
(<2%; Fig. 5a) showed no apoptosis induction from the mix-
ture. As a control, neither CQ alone, PDTC alone, nor copper
alone had effect on any of these cell lines (<2% in all the
cases; Fig. 5). These data suggest that CQ and PDTC can
spontaneously bind with copper and that the resulting com-
plex is an apoptosis inducer to premalignant and cancerous,
but not normal/non-transformed, breast cells, suggesting that
such a complex if formed in a normal cell would not be toxic,
but would be toxic in tumor cells.

CQ and PDTC in complex with copper do not inhibit 
proteasome activity in normal breast MCF10A cells
To better understand the mechanism of resistance in normal
breast cells to apoptosis induction by these organic-copper
complexes, we treated both normal- and malignant-MCF10
cells with CQ-copper and PDTC-copper complexes and
measured changes in the proteasome activity levels. Both cell
lines were treated with 20 µM Cu, CQ, TM, CQ-copper, and

Figure 4

Anti-proliferative effects of clioquinol (CQ) + copper and pyrrolidine dithiocarbamate (PDTC) + copperAnti-proliferative effects of clioquinol (CQ) + copper and pyrrolidine dithiocarbamate (PDTC) + copper. MDA-MB-231 cells were treated for 24 h 
with the following: copper (Cu; at 30 µM); CQ (CQ; at 30 µM); PDTC (P; 10 µM); tetrathiomolybdate (TM; 30 µM); CQ + copper (CC; 10, 20, 30 
µM); PDTC + copper (PC; 1, 5, 10 µM); TM + copper (TC; 10, 20, 30 µM); or dimethylsulfoxide (DMSO) as a control. After 24 h the media was 
removed and cells were treated with 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide (MTT) solution. Measurement of MTT conversion 
by absorbance at 560 nm showed that MDA-MB-231 cells responded in a dose-dependent manner to CQ-copper and PDTC-copper complexes. 
This suggests that these organic-copper complexes act as anti-proliferative agents.
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TM-copper, or 5 µM PDTC and PDTC-copper (Fig. 6). We
found that PDTC-copper and CQ-copper both strongly
inhibited proteasome activity in malignant but not in normal
cells (Fig. 6). Again, TM or the TM-copper mixture had no
effects on either of the cell lines (Fig. 6). These data suggest
that these organic-copper complexes do not inhibit the protea-
some and, therefore, do not induce apoptosis in normal breast
cells, further protecting normal cells from toxicity.

Premalignant-MCF10 cells accumulate copper when 
cultured in copper-enriched conditions
A difficulty with examining the effectiveness of copper target-
ing in cell culture models is that cultured cancer cells seem to
possess low to trace levels of copper [42]. This differs from
the in vivo situation where cancer cells and tissues can con-
tain micromolar concentrations of copper. In one study, the
serum copper in breast cancer patients was approximately 2
µg/100 ml (equivalent to 0.3 µM) [60], while another study
showed that the plasma copper levels in the malignant pros-
tates were 124 µg/100 ml (equivalent to 19.5 µM) [16].

To simulate the in vivo situation, premalignant-MCF10 breast
cells were cultured in media enriched with 25 µM CuCl2 for at
least 2 weeks (see Materials and methods). Afterwards, cells
were collected and subject to graphite furnace analysis to
determine copper content (Table 1). The results of the analysis
show that these cells can accumulate at least 16 times more
copper when cultured in copper-enriched media (referred to
here as copper-enriched cells) than when in a normal culture
and an individual enriched cell has at least an order of magni-
tude more copper than a standard culture cell. Given a volume
of 10 ml, this would be equivalent to 6 µM. Previously, we pre-
treated prostate cancer PC-3 cells with 100 µM CuCl2 for 48
h, which resulted in cellular copper levels being increased to
0.2 µM [42]. These data show that, in our enrichment system,
premalignant-MCF10 cells can accumulate similar copper
concentrations to those found in patients.

Figure 5

Induction of apoptosis by clioquinol (CQ) + copper and pyrrolidine dithiocarbamate (PDTC) + copper complexes in premalignant- and malignant-MCF10 cellsInduction of apoptosis by clioquinol (CQ) + copper and pyrrolidine dithiocarbamate (PDTC) + copper complexes in premalignant- and malignant-
MCF10 cells. CQ and PDTC were mixed in a 1:1 molar ratio with CuCl2. Normal-, premalignant, and malignant-MCF10 cells were treated with CQ 
alone (CQ), copper alone (Cu), or CQ + copper (CQ+Cu) at 20 µM, or PDTC alone or PDTC + copper (PDTC+Cu) at 5 µM for 24 h. Dimethylsul-
foxide (DMSO) was used as a control. After treatment, cells were stained with Hoescht for determination of apoptotic nuclei. Nuclei that were punc-
tate or granular and bright were considered apoptotic. (a) The normal MCF10 cell line showed no apoptosis induction from the ligand, copper, or 
mixture (<2% in all cases). However, both (b) the premalignant MCF10AT1K.cl2 and (c) the malignant MCF10DCIS.com cells showed a dramatic 
induction of apoptotic nuclei after treatment with the mixture. (b) The percentages of apoptosic nuclei in MCF10AT1K.cl2 cells were: CQ+Cu, 10%; 
PDTC+Cu, 63%; and others <2%. (c) The percentages of apoptotic nuclei in MCF10DCIS.com cells were: CQ+Cu, 65%; PDTC+Cu, 75%; and 
others <2%.

Figure 6

Clioquinol (CQ) + copper and pyrrolidine dithiocarbamate (PDTC) + copper fail to inhibit proteasome activity in normal MCF 10 (MCF-10A) cellsClioquinol (CQ) + copper and pyrrolidine dithiocarbamate (PDTC) + 
copper fail to inhibit proteasome activity in normal MCF 10 (MCF-10A) 
cells. Normal MCF-10A and malignant mCF-10 (DCIS) breast cells 
were treated with 20 µM of copper (Cu), CQ, CQ + copper (CC), 
tetrathiomolybdate (TM), TM + copper (TC), or 5 µM PDTC or PDTC + 
copper (PC). Dimethylsulfoxide (D) was used as a control. After 24 h, 
cells were collected and lysed. Lysates were analyzed for chymotrypsin-
like activity and showed as released fluorescence units (RFUs). The 
complexes were capable of eliminating proteasome activity in DCIS 
cells but not in MCF-10A cells. This strongly suggests that these metal 
complexes do not inhibit proteasome activity in normal breast cells.
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Copper-enriched breast pre-malignant and cancer cells 
are sensitive to treatment with CQ or PDTC alone
Fundamental to the strategy we are presenting is the ability of
a normally non-toxic ligand to bind with endogenous tumor cel-
lular copper (Fig. 2). Studies in various cancer cells and tis-
sues have found that patients can have copper concentrations
in the micromolar ranges in those tissues [16,60]. Similarly,
when premalignant-MCF10A cells are cultured in copper they
can contain micromolar concentrations of copper (Table 1).
We therefore tested the effects of CQ or PDTC alone in cop-
per-enriched breast premalignant or cancer cells.

We first treated the copper-enriched premalignant-MCF10
cells with CQ alone. CQ at 1 to 10 µM caused apoptotic mor-
phological changes of these copper-containing cells (Fig. 7a).
Consistent with the morphology study, after 24 h treatment
with CQ, these copper-enriched cells underwent extensive
apoptosis, measured by the appearance of the PARP cleav-
age fragment (Fig. 7c). In contrast, premalignant-MCF10 cells
that did not contain elevated copper were highly resistant to
25 µM of CQ (Fig. 7c, lanes 1 and 2). Similarly, copper-
enriched premalignant-MCF10 cells were also sensitive to
treatment with PDTC, but not TM (data not shown; Fig. 7b, d,
e).

We also found that copper-enriched breast cancer MDA-MB-
231 cells adopt apoptotic morphology after post-treatment
with CQ or PDTC, but not TM (Fig. 7b). In the same
experiment, lysates of these cells were subjected to western
analysis. Both CQ and PDTC were capable of inducing pro-
teasome inhibition and apoptosis in copper-pretreated MDA-
MB-231 cells, as measured by accumulation of ubiquitinated
proteins and cleavage of PARP, respectively (Fig. 7d, e). This
is dramatically different from the behavior of these compounds
in the absence of copper or in non-copper enriched cells (Fig.
7d, e versus Fig. 3b, c). In contrast, TM neither inhibited the
proteasome activity nor induced apoptosis in these copper-
enriched cells (Fig. 7b, d, e). These data support the idea that
CQ and PDTC can spontaneously bind with copper in copper-
enriched breast cancer cells and form an apoptosis-inducing
complex and that cells containing trace or undetectable
amounts of copper are resistant to this effect. It is possible,
therefore, that CQ and PDTC act as apoptosis inducers
through proteasome inhibition in a copper-dependent manner

and can do so in cancer cells that contain copper in concen-
trations similar to those found in patients' tissues and serum.

Discussion
A difficulty facing most cancer chemotherapy is the inability to
discriminate between normal and malignant cells. Anti-angio-
genesis and proteasome inhibition may be effective
approaches to cancer therapy due to the dependence of can-
cer on these activities [9,37,61]. Unique among the trace met-
als, copper is required for angiogenesis [8-11]. Furthermore, it
is well documented that cancer cells and tissues accumulate
high concentrations of copper [13,18,21,62-64]. We previ-
ously reported that certain types of organic-copper complexes
are capable of proteasome inhibition that is not a result of oxi-
dative effects [42]. Therefore, the capability of organic copper
to inhibit the proteasome, the necessity of copper for angio-
genesis, and the accumulation of copper by cancer cells and
tissues allows for a novel therapeutic strategy focusing on ele-
vated copper as a selection mechanism against cancer cells
and tissues (Fig. 2).

Our previous study [42] Additional file: 1 only briefly looked at
an isolated system and examined the phenomenon of organic
ligands binding to copper to form proteasome inhibitors and
apoptosis inducers. The current study confirms and signifi-
cantly expands our original findings. Specifically, this study
examines a complete breast cancer system, including normal,
premalignant and malignant cells. Furthermore, this study
examines compounds that have clinical relevance and
expands the copper enrichment studies. Several different
approaches have been used in the analysis.

CQ and PDTC are two copper-binding compounds [51,53].
CQ has been investigated for use in Alzheimer's disease in
regards to its ability to bind to copper found in amyloid plaques
[43,47-50]. PDTC is a synthetic copper-binding antioxidant
that has been studied for use in AIDS [53,54]. Previously, we
have seen that 5,7-DiCl-8-OHQ (an analog of CQ) and PDTC
when in complex with copper possessed strong proteasome-
inhibitory and apoptosis-inducing abilities [42]. We report
here the ability of CQ and PDTC to spontaneously react with
copper, and inhibit the proteasome, which is followed by
apoptosis, in breast cancer but not normal cells.

Table 1

Accumulation of copper by MCF10AT1K.cl2 cells

Cell line No. of cells in sample Total copper (µg) Copper per cell

KCL2 5,725,000 ND (1.75 × 10-8)a

KCL2-Cu25 1,468,750 0.4 2.72 × 10-7

aThis is theoretical content assuming no more than 0.1 µg total copper, which is the minimal detection limit. Because cells grown in media without 
copper enrichment had no detectable copper, the number reported is the highest possible content per cell based on the minimum detection. ND, 
not detected.
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Our strategy revolves around the idea that a normally inactive
or nontoxic organic ligand could bind with copper found in
tumor tissues, resulting in a complex capable of proteasome
inhibition. It has been shown that cancer cells are more sensi-
tive to proteasome inhibition than normal cells [37,61,65-67].
To that end, we first verified that these two ligands directly
interact with copper and form a new metal complex as indi-
cated by dramatic color change (Fig. 1).

Once we verified that these two compounds spontaneously
bind with copper and form a new complex we tested these
complexes in MDA-MB-231 breast cancer cells to determine
whether or not these complexes were proteasome inhibitors.
We examined both cellular proteasome activity (Fig. 3a) and
accumulation of ubiquitinated proteins (Fig. 3b). We found
that treatment with ligand-copper mixtures significantly
reduced chymotrypsin-like activity (Fig. 3a) and resulted in
accumulation of ubiquitinated proteins (Fig. 3b), indicating
proteasome inhibition had occurred. In contrast, ligand alone,

copper alone, or TM mixed with copper did not inhibit the pro-
teasome (Fig. 3). Previously we found that copper-mediated
accumulation of ubiquitinated proteins is transient [42]. There-
fore, the ubiquitinated protein pattern induced by CQ-copper
and PDTC-copper shown in Fig. 3b should be considered
transient and relevant only to the time point under
consideration.

After determining that these organic-copper complexes could
inhibit proliferation in MDA-MB-231 cells (Fig. 4), we exam-
ined the apoptosis-inducing abilities of the complexes. The
organic-copper complexes were capable of inducing apopto-
sis strongly in malignant-MCF10 and MDA-MB-231,
moderately in premalignant-MCF10, and did not induce apop-
tosis in normal-MCF10 cells (Figs. 5 and 3c). As a control,
CQ, PDTC, TM or copper alone, or TM mixed with copper,
were incapable of inducing apoptosis (Figs 5 and 3c). There-
fore, the primary concerns of the strategy presented were ful-
filled: the compound alone shows no toxic effects, the

Figure 7

Induction of apoptosis in premalignant-MCF10 breast cells and proteasome inhibition and apoptosis induction in breast cancer MDA-MB-231 cells cultured to contain elevated copper and post-treated with clioquinol (CQ) and pyrrolidine dithiocarbamate (PDTC)Induction of apoptosis in premalignant-MCF10 breast cells and proteasome inhibition and apoptosis induction in breast cancer MDA-MB-231 cells 
cultured to contain elevated copper and post-treated with clioquinol (CQ) and pyrrolidine dithiocarbamate (PDTC). (a,c) Premalignant-MCF10 
(KCL2) cells were cultured in media containing 25 µM copper for two weeks. (b,d,e) MDA-MB-231 cells were cultured in 25 µM copper for 48 h. 
After culturing, cells were washed with PBS and treated with media containing: (a) 1, 10, or 50 µM CQ; (b-e) 25 µM CQ; 25 µM tetrathiomolybdate 
(TM); or (b,d,e) 10 µM PDTC. An equivalent volume of DMSO (DM) was used as control. KCL2 and MDA-MB-231 cells were examined for (a,b) 
apoptotic morphology and (c,e) PARP cleavage. (d) MDA-MB-231 cells were also examined by western blot for accumulation of ubiquitinated pro-
teins. (a,c) KCL2 cells containing clinically relevant levels of copper were sensitive to treatment by CQ alone, which induced apoptosis. (c) KCL2 
cells cultured under standard conditions were resistant to treatment by 25 µM CQ. Similarly, MDA-MB-231 cells cultured to contain elevated copper 
were sensitive to CQ or PDTC and underwent proteasome inhibition as measured by accumulation of (d) ubiquitinated (Ub) proteins and apoptosis 
as evidenced by morphology and (b,e) poly (ADP ribose) polymerase (PARP) cleavage. These data suggest that KCL2 and MDA-MB-231 cells cul-
tured to contain clinically relevant levels of copper are sensitive to treatment with CQ or PDTC alone, but not TM.
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compound when mixed with copper becomes toxic, and the
toxicity is limited to cancer cells and is associated with protea-
some inhibition.

As these complexes have minimal to no effect on our normal
cell line and seem to inhibit tumor cellular proteasome activity,
we surmise that their toxicity to cancer cells stems from their
proteasome inhibitory activity, to which normal cells are resist-
ant. This was verified by examining proteasome activity in
breast normal MCF10 cells compared to malignant-MCF10
cells (Fig. 6). We found that normal-MCF 10 cells did not suf-
fer proteasome inhibition when treated with CQ or PDTC in
complex with copper, although the concentrations tested
inhibited the proteasome activity in malignant-MCF10 cells
(Fig. 6), further supporting the argument that these complexes
may be non-toxic to normal cells but are toxic to cancer cells
through the mechanism of tumor-specific proteasome
inhibition.

In a living organism, cancer cells and tissues accumulate high
concentrations of copper [13,18,21,62-64]. To simulate this
in vivo situation, premalignant-MCF10 and cancer MDA-MB-
231 breast cells were cultured in copper-enriched media for
either 2 weeks (premalignant-MCF10) or 72 h (MDA-MB-
231). Afterwards, premalignant-MCF10 cells were collected
and subjected to graphite furnace analysis to determine
copper content. We found that premalignant-MCF10 cells
were capable of accumulating concentrations of copper simi-
lar to those found in patient tissues (Table 1) and contained at
least 16 fold more copper than cells cultured in standard
media.

Once we had established cultures of premalignant-MCF10
cells enriched with copper, we then treated those cells with
CQ or PDTC alone. Both CQ (25 µM) and PDTC (1 µM)
induced apoptosis after treatment (Fig. 7a, c; data not shown).
In cells cultured in enriched copper conditions, the com-
pounds at similar concentrations had no effect (Figs 5 and 3c).
Similarly, the breast cancer cell line MDA-MB-231, when cul-
tured in elevated copper, is sensitized to apoptosis induction
associated with proteasome inhibition with CQ and PDTC
alone (Fig. 7b, d, e). This further supports our proposal that the
compounds studied can use the increased copper load in can-
cer cells to form a proteasome inhibitor and an apoptosis
inducer, whereas in the absence of this copper load these
compounds have minimal to no effect at these concentrations.

The data presented here supports the novel concept of using
accumulated copper in breast cancer cells and tissues as a
selection method for chemotherapy. Non-toxic organic com-
pounds such as CQ or PDTC can spontaneously bind with
copper and form a proteasome inhibitor and an apoptosis
inducer that has no effect on normal cells. Cancer cells,
containing elevated copper, are sensitive to treatment with
these organic compounds. Normal cells, containing trace

amounts of copper, are resistant to these effects (Fig. 2). Both
CQ and PDTC have been previously explored for use in other
diseases and we believe these data support further investiga-
tion of these and other similar compounds in an anticopper/
anticancer strategy. Most recently, another group also
reported the anticancer activity of CQ [52]. Our data pre-
sented here may have provided a mechanistic interpretation
for their findings.

The exact mechanisms of the copper-ligand combination are
unclear at this time. However, it is apparent that cells cultured
to contain elevated copper become sensitive to treatment with
the ligands alone. We have future plans to work with the APS
at Argonne National Laboratory to determine the final state of
the ligand-copper complexes in cells. This should assist in fur-
ther understanding why copper-enriched cells are sensitive to
treatment with ligands that bind copper to form proteasome-
inhibiting complexes. It should be noted that the system we
have presented in this report is limited by looking at immortal-
ized breast cancer cells rather than true normal primary cell
lines. Future experiments should examine not only normal pri-
mary lymphocytes in culture but also animal studies to further
confirm the effect on normal cells and tissues. Additional stud-
ies on cells that naturally contain elevated copper such as kid-
ney, liver, and hematopoietic cells are also warranted.

Conclusion
A unique feature of cancer cells is to accumulate high concen-
trations of copper [13,18,21,62-64]. We believe a potential
strategy for cancer chemotherapy could involve the use of
organic ligands that act as copper sensors and bind with the
elevated copper in cancer cells and tissues. These complexes
would act as proteasome inhibitors and apoptosis inducers to
tumor cells. Because normal cells contain only trace amounts
of copper, the organic ligands should form far fewer com-
plexes with copper in them, thus exposing the normal cells to
a minimal dose and reducing toxicity. We propose that
treatment with copper-binding compounds such as CQ and
PDTC will result in these compounds behaving as tumor 'sen-
sors' using copper as a selection criterion. Therefore, this
approach may convert the proangiogenic co-factor copper
into a cancer-specific killing agent.
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