Skip to main content
Fig. 2 | Breast Cancer Research

Fig. 2

From: p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer

Fig. 2

p53 silencing increases bioluminescence in metastatic sites. BC3-p53WT and BC3-p53KD were implanted into mouse mammary fat pads. Frequency and magnitude of metastasis were assessed with bioluminescence imaging (BLI). a Animals were euthanized when declining health was observed. The time post tumor-engraftment to euthanasia of animals implanted with BC3-p53WT or BC3-p53KD was quantified. Each data point represents one mouse. p = 0.002, Wilcoxon rank sum test. b Lungs, livers, long bones, and brains of mice implanted with BC3-p53WT or BC3-p53KD were imaged with BLI ex vivo at necropsy. Representative images are shown. Scale applies to each image in the panel, and magnitude of scale is indicated below each image. c Mammary tumors and lungs were harvested from mice implanted with BC3-p53KD. Tissues were sectioned and stained with cytokeratin 18 (CK18) to assess regions of human epithelial tumor (positive) and surrounding mouse tissue (negative). Objectives used were: 20 × composite (top panels), 10 × (middle panels), and 20 × (bottom panels). d Frequency of metastasis to the indicated organs was quantified with ex vivo BLI 19–40 weeks post-engraftment. e Lungs were extracted, and total photon flux was assessed with BLI, quantified, and plotted vs. time post-engraftment to study end point. p = 0.03, linear regression analysis of the slopes. f Lungs, livers, bones, and brains were extracted and assessed with BLI. Total photon flux was quantified and normalized to time post tumor-engraftment to euthanasia. n = 21, p53WT; n = 14, p53KD. p <0.001 (lung); p = 0.001 (liver); p = 0.002 (bone); p = 0.01 (brain), Wilcoxon rank sum tests. Each data point represents one organ from one mouse. All error bars represent standard error of the mean (SEM)

Back to article page