Skip to main content
Figure 3 | Breast Cancer Research

Figure 3

From: Autocrine WNT signaling contributes to breast cancer cell proliferation via the canonical WNT pathway and EGFR transactivation

Figure 3

Short interfering RNA (siRNA)-mediated knockdown of Dishevelled (DVL) homologues results in decreased canonical wingless and integration site growth factor (WNT) signaling, a reduction in basal epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase 1/2 (ERK1/2) activation, and the induction of apoptosis in human breast cancer cells. (a) The indicated human breast cancer cell lines were transfected with pan-DVL siRNA. Two thousand to 5,000 cells were seeded in triplicate in 12-well plates the day after the transfection, and the cell number was counted after 7 days using a Vi-Cell XR cell viability analyzer. DVL knockdown was verified by SDS-PAGE/immunoblotting (only DVL3 is shown). The levels of act. β-catenin, total β-catenin, the WNT target c-MYC, and poly(ADP-ribose)polymerase (PARP) were analyzed by SDS-PAGE/immunoblotting. The lower band (80 kDa) in the blot probed for PARP represents the cleavage product upon induction of apoptosis. α-Tubulin was used as a loading control. For quantification, act. β-catenin levels were normalized to total β-catenin and c-MYC was normalized to α-Tubulin expression. (b) The indicated human breast cancer cell lines were transfected with pan-DVL siRNA and analyzed by SDS-PAGE/immunoblotting for p-ERK1/2 and EGFR Y845 phosphorylation. DVL2 levels are shown to monitor efficient knockdown of DVL, and α-Tubulin was used as loading control. For quantification, p-ERK1/2 was normalized to total ERK1/2 and p-EGFR Y845 was normalized to total EGFR expression.

Back to article page