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Abstract

Introduction: Clinicians use different breast cancer risk models for patients considered at average and above-average
risk, based largely on their family histories and genetic factors. We used longitudinal cohort data from women whose
breast cancer risks span the full spectrum to determine the genetic and nongenetic covariates that differentiate the
performance of two commonly used models that include nongenetic factors - BCRAT, also called Gail model, generally
used for patients with average risk and IBIS, also called Tyrer Cuzick model, generally used for patients with
above-average risk.

Methods: We evaluated the performance of the BCRAT and IBIS models as currently applied in clinical settings for
10-year absolute risk of breast cancer, using prospective data from 1,857 women over a mean follow-up length of
8.1 years, of whom 83 developed cancer. This cohort spans the continuum of breast cancer risk, with some
subjects at lower than average population risk. Therefore, the wide variation in individual risk makes it an
interesting population to examine model performance across subgroups of women. For model calibration, we
divided the cohort into quartiles of model-assigned risk and compared differences between assigned and observed
risks using the Hosmer-Lemeshow (HL) chi-squared statistic. For model discrimination, we computed the area
under the receiver operator curve (AUC) and the case risk percentiles (CRPs).

Results: The 10-year risks assigned by BCRAT and IBIS differed (range of difference 0.001 to 79.5). The mean BCRAT-
and IBIS-assigned risks of 3.18% and 5.49%, respectively, were lower than the cohort's 10-year cumulative probability of
developing breast cancer (6.25%; 95% confidence interval (Cl) = 5.0 to 7.8%). Agreement between assigned and
observed risks was better for IBIS (HL X42 =72, Pvalue 0.13) than BCRAT (HL X42 =220, P value <0.001). The IBIS model
also showed better discrimination (AUC = 69.5%, Cl = 63.8% to 75.2%) than did the BCRAT model (AUC = 63.2%,

Cl = 57.6% to 68.9%). In almost all covariate-specific subgroups, BCRAT mean risks were significantly lower than the
observed risks, while IBIS risks showed generally good agreement with observed risks, even in the subgroups of women
considered at average risk (for example, no family history of breast cancer, BRCA1/2 mutation negative).

Conclusions: Models developed using extended family history and genetic data, such as the IBIS model, also
perform well in women considered at average risk (for example, no family history of breast cancer, BRCA1/2
mutation negative). Extending such models to include additional nongenetic information may improve
performance in women across the breast cancer risk continuum.

Introduction and other preventive interventions. In the United States,

Accurate assessment of a woman’s absolute breast can-
cer risk is needed in clinical management decisions
about mammographic screening, risk-reducing surgeries
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annual screening mammography and magnetic reso-
nance imaging (MRI) beginning at age 30 years are
recommended for women with a lifetime risk of 20% or
greater [1]. In addition, the Breast Cancer Risk Assess-
ment Tool (BCRAT, also called the Gail model) is used
to determine whether a woman meets the minimum
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risk threshold of a five-year risk of at least 1.67% for
considering tamoxifen for chemoprevention [1,2].
Several statistical models have been developed for
assigning absolute risk of developing breast cancer [3-6].
Some models are based solely on family history, such as
the Claus model [7], some are based on family history,
BRCA1/2 carrier status, and polygenes such as the BOA-
DICEA model [5], whereas others incorporate nongenetic
risk factors, such as the BCRAT model [3,8-10] and the
International Breast Cancer Intervention Study model
(IBIS, also called the Tyrer Cuzick model) [6]. The
BCRAT model is the most frequently used breast cancer
risk assessment tool in the U.S. [11]. This model includes
current age, age at menarche, age at first live birth, number
of previous biopsies, history of atypical hyperplasia, race/
ethnicity and number of affected first-degree female rela-
tives. However, it does not include information on
BRCA1/2 mutation status or extended family history
(meaning breast cancers in male relatives, number and
breast cancer status/ovarian cancer status of second-degree
relatives, and age of onset of all affected relatives). In con-
trast, the IBIS model includes extended family history,
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BRCA1/2 genetic status with nongenetic risk factors such
as age, age at menarche, parity, age at first live birth, age at
menopause, history of hormone replacement therapy use,
history of hyperplasia/atypical hyperplasia, history of lobu-
lar carcinoma in situ, height and body mass index (BMI).
The BCRAT model has been evaluated in several large
cohorts [9,12-14] and has been found well calibrated for
women at average risk, its discriminatory ability is more
moderate (median c-statistic of 0.59, (reviewed in [15])
[16-18]. It is well known that the short-term and lifetime
breast cancer risks assigned to a woman by BCRAT and
IBIS vary considerably. For example, Figure 1 shows weak
correlation (r = 0.34) between the lifetime risks assigned
by BCRAT and IBIS to the 1,857 participants in the cur-
rent study. The BCRAT model tends to assign lower risks
than the IBIS model to women with a strong family his-
tory of breast cancer than does the IBIS model [19].
Indeed, the BCRAT model has not been recommended for
these women, nor for women aged under 35 years at risk
assessment or with a personal history of lobular (LCIS) or
ductile carcinoma in situ (DCIS) [20]. Consequently clini-
cians typically use models like BCRAT for women deemed
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Figure 1 Scatterplot of BCRAT and IBIS lifetime risks. The horizontal and vertical coordinates of points give the 1857 subjects’ lifetime risks
as assigned by BCRAT and IBIS, respectively. The two sets of assigned risks are only weakly correlated (Pearson’s correlation coefficient r = 0.34).
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at average risk and models like IBIS for women whose
family history and genetic information indicate above-
average risk.

Here, we compare these two models as they are applied
clinically because they capture both nongenetic and family
history data, and they are commonly used in the clinic. A
single model applicable to all women would be useful, par-
ticularly in view of the large differences apparent in Figure
1 (range of absolute difference 0.001 to 79.5). The BCRAT
and IBIS models are widely used in the United States and
currently they are the only two models that incorporate
both genetic and nongenetic factors. Comparison of these
models using prospective cohort data has been very lim-
ited; for example, one study of 1,933 women, of whom 52
developed cancer during an average follow up of 5.27
years compared both the BCRAT and IBIS models to each
other [16]. In the current cohort study, we compare the
calibration and discrimination of BCRAT and IBIS within
subgroups of women determined by the levels of their
assigned risks and by genetic and nongenetic covariates.
Our objective was to compare model performance in sub-
groups of women typically thought to be of average risk
(for example, women without a strong family history or a
BRCA1/2 mutation) versus subgroups typically classified
as above-average risk.

Materials and methods

Study population

The New York site of the Breast Cancer Family Registry
(BCFR) has recruited and followed 4,991 participants
(4,064 women and 927 men) from 1,322 families since
1995 (for details see [21-26]. Eligible subjects fulfilled the
following criteria: two or more relatives with a personal
history of breast or ovarian cancer; a woman diagnosed
with breast or ovarian cancer at a young age (<45 years),
a women with a personal history of both breast and ovar-
ian cancer; an affected male with breast cancer in the
family, or known BRCAI or BRCA2 mutation carriers
[21]. After identifying these subjects we then collected
comprehensive baseline epidemiologic, multi-genera-
tional pedigree and genetic data, and updated cancer and
vital status through active ongoing follow-up from the
eligible subjects and all available blood relatives who con-
sented to join the BCFR. All individuals completed writ-
ten informed consents and the overall study is approved
by the Institutional Review Board at Columbia University
Medical Center.

For this study, we further restricted eligibility to the
1,857 women from 938 families with at least one subse-
quent update on cancer and vital status, and who at cohort
entry were aged 20 to 70 years and had no history of bilat-
eral prophylactic mastectomy, or invasive or in situ breast
cancer (women with both DCIS and LCIS were excluded).
For this study, the family history information is defined
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based on each individual at the time they were recruited
into the study. In this cohort of 1,857 women unaffected
at baseline, 641 were without a first-degree female relative
with breast cancer and only 110 were BRCAI or BRCA2
positive. Thus, the cohort spans the continuum of risk
including women at very high risk (mutation carriers) and
those at lower risk (mutation negative and/or with more
distant relatives with cancer). Figure 1 illustrates the range
of remaining lifetime risk estimated from IBIS and
BCRAT models.

BRCA1/2 mutation testing

All self-identified Ashkenazi Jewish participants were
screened for the three founder mutations, 185delAG and
5382insC in BRCAI and 6174delT in BRCA2. In addition,
for all non-Ashkenazi Jewish families, we screened the
youngest affected individual using full sequencing meth-
ods. If the youngest affected individual had a mutation,
the remaining family members were all tested for this
family-specific mutation. In our cohort for this study, 800
women were tested for BRCA mutation, of which 110
tested positive. If the youngest affected member did not
have a mutation in either BRCAI or BRCA2, additional
testing was not performed. For the purposes of our ana-
lyses, these women were separated and labeled ‘not
tested’. However, because the youngest affected member
of these families did not have a mutation the probability
that she had a mutation would be very low and thus for
interpreation the women labeled ‘not tested’ can be inter-
preted as being ‘negative’ [27].

Risk models

We assigned each subject a 10-year breast cancer risk
using the software packages BCRAT and IBIS [3,6,9,10],
using the models exactly as they can be applied in a clini-
cal setting. The BCRAT model is based on a logistic
regression model whose regression coefficients are com-
bined with information on baseline age-specific hazard
rates and competing mortality risks [3]. In the IBIS model
the genetic risk is predicted assuming two autosomal
dominant loci - BRCA1/2 - and a hypothetical low-pene-
trance dominant gene. Nongenetic risk factors are
included via a proportional hazard model [6].

For BCRAT, we calculated 10-year risks using the latest
update (August 2011) of the Statistical Analysis Systems
(SAS) macro [28] that allows us to calculate absolute inva-
sive breast cancer risks according to the BCRAT algorithm
in batch mode. To check the reproducibility of our risk
assignments, we compared the BCRAT risks assigned by
the SAS macro to the weblink [20] for 10 randomly
selected women. To assign 10-year IBIS risks, we used an
external application provided by the orginal authors
(personal communication). The results from the external
application are exactly the same as those provided by the
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front line version available at the weblink [29] (IBIS risk
evaluator - version 6.0.0).

Statistical analysis

Women were classified into quartiles based on the pre-
dicted 10-year risk from the models. For each quartile,
we used the survival data to estimate the ‘observed’ 10-
year risk, defined as the probability 7 of developing
breast cancer within 10 years of risk assessment and
before dying of other causes. This probability is

= /010 Ip(t) exp {—/Ot [Is(u) +Ip (u)]du} d, (1)

where Iz(t) and Ip(t) denote the hazard rates for breast
cancer and death, respectively, at ¢ years from baseline
[30]. If the death rate during the 10-year period is negli-
gible and ignored, this probability reduces to

10 10
7 =1-—exp [—f IB(t)dt:| - / Ig(t)dt, where the
0 0

approximation holds since the breast cancer hazard rate
is small. We used competing risk theory as outlined in
[31] to estimate this probability in the presence of cen-
soring due to incomplete 10-year follow-up. Specifically,
we estimated 7 for each risk quartile by obtaining non-
parametric estimates of the hazard rates I3(t) and Ip(t)
and using these estimates in equation (1). In the absence
of censoring, the quartile-specific estimates gwould
reduce to the number of subjects who developed breast
cancer within 10 years of risk assignment divided by the
quartile sample size of 1857/4 = 464.25.

We assessed model calibration by comparing the
mean model-assigned risk to observed breast cancer
incidence in each of the four assigned risk quartiles,
using the Hosmer-Lemeshow (HL) chi-squared good-
ness-of-fit statistic [32]. To examine model performance
across subgroups, we partitioned the cohort into covari-
ate-specific subgroups and calculated observed risks,
mean model-assigned risks, and the ratios of the two.
Although the cohort contains pairs of first-degree rela-
tives whose breast cancer risks may be correlated due to
unmeasured genetic factors, we ignored this possible
correlation in computing test statistics and confidence
intervals (CIs), because the proportion of such pairs was
small (less than one in a thousand pairs).

We assessed the models’ abilities to discriminate the
women who did and did not develop breast cancer
within 10 years of risk assignment by estimating each
model’s area under the receiver-operator characteristic
curve (AUC). This measure ranges from 0.5 (no discri-
minative ability) to 1 (perfect discrimination). We calcu-
lated AUC estimates using the R packages ‘ROCR’ and
‘pPROC’ ignoring censored subjects, which is valid under
the assumption that the censoring mechanism is
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unrelated to the risks of breast cancer and death [33].
We also calculated a case risk percentile (CRP) for each
woman who developed breast cancer during the 10-year
risk period (a case). A case’s model-based CRP is the
percentile of her assigned risk in the distribution of
assigned risks of all women without the outcome (non-
cases). Larger CRPs for one model compared to another
indicate better discrimination. (We calculated these
CRPs ignoring censored subjects, which is valid under
the assumption that the censoring mechanism is unre-
lated to the risks of breast cancer and death [33].) The
mean CRP across all cases is the AUC [34]. We used
the Wilcoxon signed rank to formally evaluate whether
the median of the BCRAT CRP and the median of the
IBIS CRPs are statistically significant for each subgroup
that we compared. We also compared the two AUCs
within different covariate-specific subgroups, to identify
subgroups for whom one model outperforms the other.
We used Statistical Analysis Systems (SAS™) software
version 9.2 (SAS Institute, Chicago, IL, USA) to obtain
two-tailed significance levels for the Wilcoxon signed
rank test, and used the freely available software RMAP
[35] to compute the calibration and descriptive statistics.

Results

Table 1 presents characteristics of the 1,857 subjects
who met the eligibility criteria. At baseline risk assign-
ment, their median age was 44 years, 311 (17%) of them
reported a prior breast biopsy, and 388 (21%) were His-
panic. In addition, 13% reported no female blood rela-
tive with breast cancer, 35% reported no first-degree
female relative with breast cancer, and 75% reported no
relatives with ovarian cancer. Among 800 subjects tested
for BRCA mutations, 110 were positive, the remaining
nontested are assumed negative (see Methods). Among
all subjects, 83 developed breast cancer and 55 died of
other causes within 10 years of baseline, 730 were
breast-cancer-free 10 years after baseline and 989 were
last observed without breast cancer within 10 years of
baseline. The mean follow-up length was 8.1 years
(range 0.1 to 14.5). A total of 76% of the cohort were
observed for five or more years, and 4% were observed
for one year or less.

Overall assessment of BRCAT and IBIS models risks

Figure 2 shows goodness-of-fit of BCRAT and IBIS
assigned risks to the observed risks in the cohort. For
BCRAT, the mean assigned risks were signficatly lower
than the observed risks in the first three quartiles, and
fit poorly overall (HL X,* = 22.0, P value <0.001). For
IBIS, the mean assigned risks were nonsignificantly
lower than the observed risks in quartiles 1, 2, 3 and
nonsignificantly higher in quartile 4, with little evidence
of poor fit (HL X,* = 7.2, P value = 0.13). The receiver
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Table 1 Distribution of risk factors in 1857 subjects from MNYR/New York site of the BCFR.
Unaffected after 10 yrs Follow-up <10 yrs Died within 10 yrs Breast cancer within 10 yrs Total

All subjects 730 989 55 83 1857
Age (yrs) at risk assignment

20-29 17 164 0 3 284
30-39 191 208 11 16 426
40-49 190 302 12 26 530
50-59 155 192 17 25 389
60-70 77 123 15 13 228
Age (yrs) at first menarche

>14 147 251 13 16 427
12-13 415 503 29 49 996
7-1 166 225 " 18 420
Unknown 2 10 2 0 14
Age (yrs) at FLB

<20yr 27 118 8 2 155
20-24 161 227 15 18 421
25-29 148 187 10 18 363
>30 117 145 10 20 292
Nulliparous 277 312 12 25 626
Menopausal status

Pre 448 602 15 40 1105
Peri 67 104 4 6 181
Post 173 205 28 29 435
Unknown 42 78 8 8 136
HRT use

Never 583 814 32 59 1488
Previous user (more than 5 yr ago) 12 18 2 0 32
Previous user (less than 5 yr ago) 31 69 6 10 116
Current user 104 88 15 14 221
Number of breast biopsies

0 593 851 41 61 1546
1 98 101 7 16 222
> 39 37 7 6 89
Atypical hyperplasia

Absent/Unknown 727 987 55 82 1851
Present 3 2 0 1 6
First-degree female relatives with BC

0 251 336 28 26 641
1 397 544 22 40 1003
>) 82 109 5 17 213
All female relatives with BC

0 75 139 15 10 239
1 321 479 19 29 848
=y 334 371 21 44 770
Relatives with OC

0 555 752 27 61 1395
1 127 188 22 17 354
> 48 49 6 5 108
BRCA mutation status

Total mutation positive 47 45 4 14 110

BRCAT 36 22 4 8 70
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Table 1 Distribution of risk factors in 1857 subjects from MNYR/New York site of the BCFR. (Continued)

BRCA2 1 23 0 6 40
Race/Ethnicity

Non-Hispanic White 651 509 36 74 1270
Hispanic 41 332 11 4 388
African American 6 42 5 0 53
Chinese 2 35 0 1 38
Filipino 0 1 0 0 1
Other Asian 4 20 2 1 27
Other 26 50 1 3 80
(N = 1857).

BC, breast cancer; FLB, first live birth; HRT, hormone replacement therapy; OC, ovarian cancer

operating characteristic (ROC) plots in Figure 3 indicate
that IBIS also showed better discrimination between
cases and noncases, with AUC of 69.5% (CI = 63.8 to
75.2%) compared to BCRAT AUC of 63.2% (CI = 57.6
to 68.9%). As seen in Figure 3, the assigned risk cutoff
giving 80% specificity (corresponding to the value 0.20
on the horizontal axis) IBIS identified 44.6% of the
cases, compared to a sensitivity of only 30.1% for
BCRAT.

Although the cohort did not contain women with a
history of in situ breast cancer, it did contain other
women for whom BCRAT is not recommended, that is,
women aged less than 35 years at risk assignment and
women known to carry BRCA mutations. Accordingly,
we also compared the two models after excluding these
women from the cohort. We found that the superior
performance of IBIS persisted: the HL statistic showed
better calibration for IBIS (HL X,? = 6.3, P value = 0.18)

than BCRAT (HL X,* = 12.7, P value = 0.01), and better
discrimination (AUC = 63.7%, CI = 56.6 to 70.9%) than
BCRAT (AUC = 57.5%, CI = 50.4 to 64.6%).

Covariates associated with differential model
performance

Which covariates unique to IBIS explain the observed
differences in their performance? To address this ques-
tion, we omitted information on second-degree family
history from IBIS and found that the resulting ‘pruned’
risks, like those of BCRAT, were too low in the first
three quartiles (HL X,> = 15.1, P value <0.01), and that
the overall AUC estimate decreased to 67.8% (CI = 62.0
to 73.7). When BRCA status was also omitted from
IBIS, the AUC decreased further to 62.2% (CI = 56.5 to
67.9), similar to that of BCRAT. Although the differ-
ences in these AUCs are not statistically significant, they
suggest that, even when a risk model captures BRCA

The BCRAT model
20 4 HL Chisg: 22.0, P-value< 0.01
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Figure 2 Calibration of BCRAT and IBIS models. The horzontal coordinates of points represent the mean 10-year assigned risks of BCRAT (left
panel) and IBIS (right panel) within quartiles of assigned risk. Vertical coordinates represent quartile-specific estimates of 10-year breast cancer
probabilities (observed risks). Vertical bars represent 95% confidence intervals for observed risks.
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Figure 3 Receiver operating characteristic (ROC) plots for BCRAT and IBIS assigned risks. The area under the receiver operator
characteristic curve (AUC) was 63.2% (confidence interval (Cl) = 57.6% to 68.9%) for BCRAT and 69.5% (Cl = 63.8% to 75.2%) for IBIS.

mutation status, its discrimination can be improved by

including second-degree family history.

Table 2 gives observed and mean assigned risks and
their ratios for subgroups defined by nongenetic and

genetic covariates. The table shows that BCRAT risks are

significantly lower than observed risks in almost all sub-

Table 2 Ten-year breast cancer risks as observed and assigned by BCRAT and IBIS.

groups, including those containing women typically
deemed at average risk (for example, those without a

Observed risk (%) Assigned risk (%) Observed/Assigned
All subjects N Risk Cl BCRAT IBIS BCRAT IBIS
Age (yrs) at risk assignment Ratio Ratio
<35 471 191 0.91-3.98 0.58 211 329 091
35-49 769 7.03 5.06-9.68 2.96 6.13 238 1.15
50+ 617 849 6.16-11.59 543 726 1.56 117
Age (yrs) at first menarche
<14 yrs 1416 6.67 524-847 3.31 564 202 1.18
> = 14 or unknown 441 454 2.74-745 274 498 1.66 091
Age (yrs) at FLB
<25 yrs 576 498 3.15-7.79 4.05 493 1.23 1.01
> = 25 or Nulliparous 1281 6.71 523-8.58 2.79 573 241 117
Menopausal status
Pre 1190 513 3.77-6.94 2.04 451 251 1.14
Post 667 813 595-11.00 52 722 156 113
HRT use
Never 1488 559 43-724 2.79 5.07 200 1.10
Ever 369 8.56 5.74-12.60 4.74 716 1.81 1.20
Number of breast biopsies
0 1546 5.72 4.42-7.36 263 504 217 1.13
1+ 311 8.7 5.72-13.02 587 7.72 148 1.13
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Table 2 Ten-year breast cancer risks as observed and assigned by BCRAT and IBIS. (Continued)

BMI (kg/m?)

<25 1098 5.80 4.36-7.67 298 525 195 1.05
> =25 759 7.04 4.99-9.85 346 583 203 1.21
First-degree female relatives with BC

0 641 5.84 393-861 1.67 343 350 1.70
1+ 1261 648 498-8.38 397 657 163 0.99
Second/third-degree relatives with BC

0 969 5.64 4.04-7.81 341 535 1.65 1.05
1+ 888 6.83 5.10-9.09 292 564 234 1.21
All relatives with OC

0 1395 6.09 4.72-7.84 3.26 453 1.87 1.34
1+ 463 6.72 4.38-10.17 292 837 230 0.80
BRCA mutation status

Test result positive 110 16.29 9.70-26.07 3.77 338 432 048
Test result negative 690 6.24 4.53-8.54 363 366 172 1.70
Untested 1057 5 346-7.17 2.82 373 177 1.34
Race/Ethnicity

Non-Hispanic White 1270 7.09 5.65-8.85 3.52 6.15 201 1.15
Other 587 26 1.18-5.63 243 406 1.07 0.64

BC, breast cancer; FLB, first live-birth; HRT, hormone replacement therapy; OC, ovarian cancer.

breast cancer family history and those not known to carry
a BRCA mutation). The only exceptions were the sub-
groups of women with age at first birth less than 25 years,
women with at least one prior breast biopsy, and women
who are not Non-Hispanic White. Mean IBIS risks were
significantly lower than observed risks in subgroups of
women without first-degree relatives with breast cancer
and without relatives with ovarian cancer, and were signif-
icantly higher than observed risks for mutation carriers.
As noted by Pepe and Longton [34], a useful measure of
a model’s ability to discriminate for individual breast can-
cer cases is provided by the percentile of her assigned risk
in the distribution of assigned risks for all noncases, which
we call her case risk percentile (CRP). Figure 4 shows a
scatterplot of BCRAT and IBIS CRPs for the 83 women
who developed breast cancer within 10 years of risk assign-
ment. Points above the diagonal line (N = 46) represent
cases whose subsequent breast cancer occurrence was bet-
ter identified by IBIS than BCRAT, while points below the
line (N = 37) represent cases better identified by BCRAT
than IBIS. The mean CRP across cases for a model is its
AUC. Using the Wilcoxon signed-rank test, we also found
that the median IBIS CRP was statistically significantly dif-
ferent than that of BCRAT (two-tailed P value = 0.04).
Figure 4 also illustrates that there are a number of outliers
where the CRP for one model is substantially higher than
for the other. For example, the three cases in the cluster in
the upper left region of Figure 4 have appreciably larger
IBIS CRPs than BCRAT CRPs. All three cases carry BRCA
mutations, and one case has a first-degree relative with

ovarian cancer, information used by IBIS but not BCRAT.
In contrast, the outlying case in the lower right region with
higher BCRAT than IBIS CRP had a prior biopsy, informa-
tion used by BCRAT but not IBIS.

Comparison of BCRAT and IBIS AUCs within covariate-
specific subgroups is provided in Table 3. Statistically sig-
nificant differences are shown in boldface. IBIS shows
better discrimination than BRCAT in all but one of the 13
comparisons showing statistically significant differences;
the exception was the subgroup of women with at least
one prior biopsy, where the BCRAT CRP was significantly
higher than that of IBIS.

Discussion

Breast cancer risks for women in the present cohort span
the continuum of risk. Our intention was to compare
two commonly used models that include nongenetic fac-
tors, BCRAT and IBIS, as used by clinicians. We
observed better overall calibration and discrimination for
IBIS than for BCRAT, in agreement with the findings of
Amir et al [16], with the latter study spanning a narrower
range of risks. The higher performance of IBIS persisted
when we exluded women for whom BCRAT is not
recommended. We also found better performance for
IBIS in almost all covariate-specific subgroups, except for
Hispanic and nonwhite women, and women with a prior
breast biopsy. Race is an important predictor of breast
cancer risk [36], and hereditary patterns and mutation
prevalences differ by race and ethnicity [37]. The BCRAT
model was updated, in 2008, to incorporate revised
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Figure 4 Scatterplot of the case risk percentiles (CRPs). The horizontal and vertical coordinates of points give the BCRAT and IBIS CRPs,
respectively, for the 83 breast cancer cases. Points above the diagonal line represent cases better identified by IBIS than BCRAT (since their IBIS
risk percentiles are higher than their BCRAT risk percentiles). Points below the line correspond to cases better identified by BCRAT than IBIS. The
mean CRP for a model is its area under the receiver-operator characteristic curve (AUC). A Wilcoxon signed-rank test of the 83 CRP pairs
indicates that the IBIS AUC is significantly different than that of BCRAT (two-tailed P value = (0.04)).
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estimates for African American women [8] and in 2011,
to include projections for Asian and Pacific Islander
Americans. The BCRAT risks were lower than observed
risks for almost all other subgroups, most notably those
for whom the model is not recommended: BRCA1/2
mutation carriers and women under age 35 years at risk
assignment. Overall, our cohort is of higher risk than the
general U.S. population. For example, compared to SEER
rates based on the age distribution of our cohort, our
observed rates were 3.1 times that expected of an average
risk population. Thus, while the overall improved perfor-
mance of IBIS over BCRAT may not be unexpected given
our higher risk cohort, what was unexpected was that
this improved performance extended to subgroups con-
taining woman considered at average risk, such as those
with no family history and no BRCA1/2 mutations.

By comparing the performance of the full IBIS model
to a pruned version lacking second-degree family history
information, we found that this extended family informa-
tion increased the AUC estimate, despite the pruned

model’s capture of BRCA mutation status. This improve-
ment, although not statistically significant, is nevertheless
plausible, as extended family history captures all of the
many breast cancer genetic risk factors in addition to
BRCA1/2 mutations as well as nongenetic shared familiar
environmental factors not captured in the model. A prac-
tical barrier to the broad use of models incorporating
extended family history data are patients’ incomplete
knowledge about the health of their more distant blood
relatives.

Risks assigned by the IBIS model also discriminated
future cases from noncases better than did those assigned
by BCRAT, although the differences were not statistically
significant. Discrimination was better for IBIS than
BCRAT in almost all subgroups, and as expected, the dif-
ference was particularly large for BRCA1/2 mutation car-
riers. Only in women with a prior breast biospy was the
discrimination better in BCRAT. BCRAT includes num-
ber of biopsies, regardless of their outcome, while the
IBIS model only includes atypical hyperplasia diagnosed
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Table 3 Mean case risk percentiles for BCRAT and IBIS
among subgroups of subjects.

N BCRAT IBIS P value’
Age (yrs) at risk assignment
<35 7 1838 312 0.2969
35-49 38 56.9 66.9 0.0377
50+ 38 777 79.1 0.7489
Age (yrs) at first menarche
<14 yrs 67 63.6 69.7 0.0717
> = 14 or unknown 16 61.2 68.6 04637
Age (yrs) at FLB
<25 yrs 20 67.7 61.3 0.2268
> = 25 or nulliparous 63 61.8 72.1 0.0022
Menopausal status
Pre 43 51.8 619 0.0196
Post 40 754 776 0.6064
HRT use
Never 59 583 66.8 0.0149
Ever 24 75.1 76.1 09119
Number of breast biopsies
0 61 564 68.7 0.0001
1+ 22 819 717 0.0118
BMI (kg/m?)
<25 48 625 65.6 0.9919
> =25 35 64.1 74.8 0.0014
First-degree female relatives with BC
0 26 45.1 56.8 0.0967
1+ 57 714 752 0.1816
Second/third-degree relatives with BC
0 37 674 70.7 0.7617
1+ 46 59.8 68.5 0.0185
Relatives with OC
0 61 654 67.5 05412
1+ 22 570 75.1 0.0094
BRCA mutation status
Test result positive 14 614 98.1 0.0001
Test result negative 37 68.8 65.5 0.1457
Untested 32 575 61.6 0.1823
Ethnicity
Non-Hispanic White 74 65.2 72.1 0.0638
Other 9 46.6 48.1 04961

aUsing Wilcoxon signed rank test. BC, breast cancer; FLB, first live birth; HRT,
hormone replacement therapy; OC, ovarian cancer.

via biopsy. This may limit the precision of IBIS estimates,
because pathology of biopsies is incompletely obtained
from self-report, while number of biopsies can be more
readily recalled and accurately reported.

Oncologists and genetic counselors would be well
served by a single model that avoids having to choose
among several models on this basis of patient character-
istics. Our cohort spans the continuum of risk with a
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proportion of the women below population average risk
(see Figure 1); this wide variation in individual risk
makes it an interesting population with which to exam-
ine model performance across subgroups of women.
Further research is needed to develop and validate a
model that does well for all women.

Enhancing the IBIS model with additional risk factors,
such as number of breast biopsies and race/ethnicity,
may further improve its performance. In addition, the
IBIS model would need expansion to handle the risks of
women with atypical hyperplasia, since the model is not
recommended for these women due to its poor discrimi-
niation among them (AUC 0.54) [38].

Conclusions

In summary, we found that the IBIS model performed
better in this cohort whose risks span the continuum of
breast cancer risk. This was true even in subgroups con-
taining women typically considered average risk (for
example, no family history of breast cancer, BRCA1/2
mutation negative). Interestingly, the highest quartile of
BCRAT-assigned risks was the only one in which the
mean BCRAT risk did not differ signficantly from the
observed risk. Thus, not only did IBIS outperform
BCRAT in subgroups whose risks are typically consid-
ered average (the patients for whom BCRAT is used
clinically) but the BCRAT model was well calibrated
only in the risk group in which it is unlikely to be used
by clinicians, that is, the highest quartile of assigned
risk. These findings need replication in other large
cohorts spanning a broad range of risks. They suggest
the complexity of applying risk models in the clinic
based on a priori assumptions of risk defined by family
history and genetic status. Models that have been devel-
oped based on extended family history and genetic data,
such as the IBIS model, may perform well in women
considered at average risk. Extending models that
already capture extended family history and genetic
information to include a larger array of nongenetic risk
factors may help risk models play a major role in disease
prevention.
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