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EMT = epithelial to mesenchymal transition.
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Introduction
Human breast cancer cells are generally believed to origi-
nate from the luminal epithelial lineage of terminal duct
lobular units [1]. Accordingly, the phenotype of most
breast cancer cell lines is luminal, and they express sialo-
mucin and keratin K19 [2,3] as well as other epithelial
markers. In recent years, however, there has been an
increasing appreciation of human breast carcinoma cells
being more flexible in their differentiation program. Intra-

tumor and inter-tumor heterogeneity of human breast
cancer should no longer be viewed as a consequence of
phenotypic drifting due to genetic instability, but also from
the point of view of different differentiation repertoires
available to the neoplastic cells in response to the tumor
microenvironment, including reversion to a ‘normal’ pheno-
type (for an overview, see [4]). This is important because it
allows for possible strategies to influence the breast
cancer cells towards a more differentiated state (for a
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Abstract

The human breast comprises three lineages: the luminal epithelial lineage, the myoepithelial lineage, and
the mesenchymal lineage. It has been widely accepted that human breast neoplasia pertains only to the
luminal epithelial lineage. In recent years, however, evidence has accumulated that neoplastic breast
epithelial cells may be substantially more plastic in their differentiation repertoire than previously
anticipated. Thus, along with an increasing availability of markers for the myoepithelial lineage, at least a
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review, see [5]). We recently showed that the myoepithe-
lial lineage is derived directly from the normal luminal
epithelial lineage [6]. It has been observed previously that
the luminal epithelial lineage of breast cancer was defec-
tive in its ability to differentiate along the myoepithelial dif-
ferentiation program [7]. The growing number of
myoepithelial markers is similarly providing evidence that
neoplastic breast cancer cells frequently exhibit at least a
partial myoepithelial differentiation program [8–10]. If the
normal myoepithelial differentiation program is indeed
tumor suppressive [5,11,12], then defining these traits
becomes rather important for diagnosis and therapy. Fur-
thermore, recent data based on loss of heterozygosity
suggest that the neoplastic and mesenchymal compart-
ments, of which the latter contain the myofibroblasts, are
directly evolutionarily connected [13–15]. It has also been
shown that loss of differentiation in breast cancer, invasion
and metastasis both in vivo and in culture concur with
epithelial to mesenchymal transition (EMT) of the tumor
cells [16–21]. The fact that EMT-derived tumor cells and
the myoepithelial lineage are both defined by expression of
the same mesenchymal marker (i.e. vimentin), and further-
more that the myoepithelial lineage and peritumoral myo-
fibroblasts share almost the same myodifferentiation
program, warrants a more ambitious set of markers to
define these cells and reveal the true implications of their
presence in vivo.

Myoepithelial differentiation in breast
neoplasia
Myoepithelial cells are ectodermally derived, as are luminal
epithelial cells, and they rest between the basal side of the
luminal cells and the basement membrane that they manu-
facture themselves [22]. They nevertheless express mes-
enchymal vimentin and Thy-1 along with certain ‘basal’
keratins including K5, K14 and K17 [1].

Over the years, the literature has accumulated the fact
that the myoepithelial differentiation pathway is essentially
absent in breast carcinomas. If the criteria used for identi-
fication of myoepithelial cells in breast cancer are the
expression of a complete differentiation program, then it
is correct that myoepithelial differentiation in breast
cancer is an exception. Many studies have, however,
focused exclusively on the expression of the basement
membrane molecule laminin, which is usually absent in
high-grade neoplastic breast cancer cells [23,24]. But if
we look at some of the other myoepithelial markers, the
picture changes radically. Both keratins K14 and K17 as
well as vimentin have been reported present in 20–33%
of invasive breast carcinomas and often at the epithe-
lial–stromal junction, which is also the location of myoep-
ithelial cells in the normal breast [25,26]. Remarkably,
similar numbers have been reported for the frequency of
ultrastructurally identified myoepithelial cells in breast
cancer and for the expression of other markers such as

oxytocin receptors, metallothionine, and connexin 43
[8–10,27]. This suggests that, even though breast cancer
cells first and foremost express luminal epithelial keratins
and sialomucin, some of the cells still retain their intrinsic
ability to switch to a myoepithelial differentiation program
[6], albeit expressing only partial changes towards a
myoepithelial phenotype.

What is the potential consequence of myoepithelial differ-
entiation in breast cancer? Basically, all myoepithelial-
specific proteins tested in experimental tumor assays point
in the same direction; namely, that they are tumor suppres-
sive. The genes qualify as type II tumor suppressor genes
[28], and include maspin [12], α6-integrin [29], cyto-
keratin 5 [30], connexin 43 [31], caveolin-1 [32],
α-smooth muscle actin [33], and myoepithelium-derived
serine proteinase inhibitor [34]. The soluble factors from
normal myoepithelial cells such as activin [35] and relaxin
[36] also inhibit growth of breast cancer cells and facili-
tate their differentiation. Furthermore, some factors (e.g.
myoepithelial-specific CD44) were shown to be anti-
angiogenic [37]. It has been experimentally difficult,
however, to extrapolate from expression analyses in
culture to the function of cancer-derived myoepithelial
cells in vivo. To this end, precise assays for the functional
phenotype of normal and abnormal breast myoepithelial
cells are highly warranted.

Myoepithelial cells and myofibroblasts have many traits in
common including vimentin and α-smooth muscle actin,
and occasionally smooth muscle heavy-chain myosin [1]. It
could thus be asked whether the plasticity of breast carci-
noma could ever go further to result in the formation of
true mesenchymal cells in an epithelial→myoepithelial→
mesenchymal transition process. If this were the case,
stromal myofibroblasts should occasionally express rem-
nants of the myoepithelial phenotype, such as keratins.
We have not so far been able to document such a differ-
entiation program [38]. Others have, however, reported
the occurrence of myofibroblasts with remnants of K14
expression (described as ‘converted myoepithelial cells’)
in the central acellular zone of desmoplastic reactions
[39]. Also, in a rat tumor progression series and in canine
mixed mammary tumors, one of the steps in the evolution
of mesenchymal cells involves the expression of typical
myoepithelial traits [40]. Further studies are needed to elu-
cidate how widespread this phenomenon is and to deter-
mine the possible consequences of such a conversion. It
is clear that defining all these lineages based exclusively
on mesenchymal markers such as vimentin may no longer
be sufficient (see later).

Mesenchymal differentiation
Although vimentin is distinctly a part of the myoepithelial
phenotype as already described, its presence in human
carcinoma cells has mainly been attributed to a direct EMT
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without myoepithelial intermediates (for example, see
[19]). Originally, EMT was described in morphogenic
remodelings during embryonic development (for reviews,
see [41,42]). Later, it was shown to occur in cultured
mammary epithelial cells [43] and in a bladder carcinoma
cell line, NBT-II cells [44]. In culture, the definition is
limited to the escape of single cells from epithelial sheets,
increased motility, and a modification of the differentiation
program so that the migrating cells no longer express
epithelial characteristics, but acquire a mesenchymal phe-
notype [44]. More specifically, in NBT-II cells, the mes-
enchymal phenotype is — apart from the morphological
change to spindle cells — defined by the acquisition of
vimentin, while the loss of epithelial phenotype is defined
by a decline in keratin and desmoglein expression; there is
no change in the expression of E-cadherin or catenins.
The epithelial phenotype is thus not completely lost, and a
single marker defines the mesenchymal phenotype. This
definition of EMT has been adopted in the field of breast
cancer research.

Vimentin expression was originally found in hormone-inde-
pendent cell lines [45]. This was later expanded to cell
lines that were drug resistant [46]. This transition was
monitored by a decline in keratin K19 and loss of E-cad-
herin, and a reduced expression of desmoplakins and
occludins [46]. Similar criteria have been used in other
laboratories as well as in one of ours, also with vimentin as
the only molecular marker of a mesenchymal phenotype
[16,47]. This definition of the mesenchymal phenotype is,
however, similar to the myoepithelial phenotype. The defin-
ition of EMT in breast cancer, therefore, is much more
demanding to address than in, for example, bladder
cancer or colon cancer, where the myoepithelial program
is not an option. Another possible definition of EMT in
breast epithelial cells is the spread of cells in collagen gels
[48]. We have previously shown that a subset of cells
within the luminal epithelial lineage may convert to myo-
epithelial cells, and these have been shown to be very
active in cell spread in collagen gels [6,49]. This definition
is therefore also not exclusive. These observations under-
score the general importance of further lineage characteri-
zation of spindle cells derived from cuboidal cells in the
normal breast and in breast cancer. A simple keratin profil-
ing of the mesenchymal-like cells should reveal whether
they are the product of a direct EMT from the luminal
lineage or whether they represent cells converted via the
myoepithelial lineage. In the first case, remnants of the
luminal phenotype should be present in the form of ker-
atins K7, K8, K18 and possibly K19. In the latter case,
basal keratins K5, K14 and K17 would be expected to
dominate the profile. Such distinction is important
because, as already stated, the biological and clinical
implications of direct luminal epithelial EMT is very differ-
ent from that deduced from the tumor suppressive myo-
epithelial phenotype.

Clinically, the concept of direct EMT is used to explain the
phenotype of very aggressive metastatic cells to the bone
marrow [50]. These cells express vimentin in conjunction
with luminal epithelial markers [50]. Their aggressive phe-
notype concurs well with observations that vimentin-posi-
tive luminal breast carcinoma cells are invasive in cell
culture assays [19]. For comparison, the vimentin-positive
spindle cells of pure myoepitheliomas are considered
essentially non-metastatic [51]. The complications in deci-
phering the mesenchymal phenotype become even more
compelling when focus is turned from metastatic cells in
the bone marrow to heterogeneous primary tumors that
consist of many cell types. In primary tumors, there is no
unequivocal correlation between gain of vimentin or loss
of E-cadherin expression and poor prognosis [16,52].
One explanation for this could be that some of the cases
with vimentin-positive cells and E-cadherin-negative cells
reflect myoepithelial differentiation rather than direct EMT
from luminal epithelial cells.

A stromal condition that has been overwhelmingly asso-
ciated with poor prognosis in breast cancer is the
desmoplastic reaction [53]. Desmoplasia is believed to
be the result of excessive extracellular matrix formation
as manufactured by peritumoral myofibroblasts [54]. As
seen from the aforementioned considerations, however,
the current definition of EMT does not incorporate the
complete loss of keratins or gain of other mesenchymal
markers other than vimentin (such as, for example, α-
smooth muscle actin). Indeed, we have some evidence
(Petersen et al., submitted for publication) that breast
cancer cells, given the right conditions, may convert all
the way to myofibroblasts. Also, it has been shown that
typical and presumably myofibroblastic stroma of breast
carcinomas frequently share the same loss of heterozy-
gosity, with the epithelial neoplasia indicating a common
cellular origin [13,14,55]. Stromal cells have also been
shown to share p53 mutations with the carcinoma cells
[14]. Moreover, a number of phenotypic traits such as
IGFII, several transcription factors and protein kinases in
myofibroblasts appear to be permanently overexpressed
as if they were the result of typical genomic amplifica-
tions [56,57]. A consequence of a possible evolutionary
relationship between the stroma and the neoplastic
lesion remains to be seen.

Concluding remarks
Evidence for phenotypic plasticity of luminal epithelial cells
to the other two lineages present in the normal breast is
now compelling. Understanding breast carcinoma plastic-
ity may be instrumental in attempts to take advantage of
the tumor suppressiveness of myoepithelial differentiation
or to interrupt EMT-dependent or desmoplasia-mediated
progression. Thorough characterization of the epithelial
and stromal compartments of normal breast and breast
cancer need to be continued along with further emphasis
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on development of culture model systems for epithelial–
stromal interaction and conversions.
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