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Abstract

Introduction We have previously identified a rare subpopulation
of variant human mammary epithelial cells (vHMEC) with
repressed p16INK4A that exist in disease-free women yet display
premalignant properties, suggesting that they have engaged the
process of malignant transformation. In order to gain insight into
the molecular alterations required for vHMEC to progress to
malignancy, and to characterize the epigenetic events
associated with early progression, we examined the effect of
oncogenic stress on the behavior of these cells.

Methods HMEC that express p16INK4A and vHMEC that do not,
were transduced with constitutively active Ha-rasV12 and
subsequently exposed to serum to determine whether signals
from the cellular microenvironment could cooperate with ras to
promote the malignant transformation of vHMEC. Epigenetic
alterations were assessed using methylation-specific
polymerase chain reaction (PCR).

Results vHMEC expressing Ha-rasV12 (vHMEC-ras) bypassed
the classic proliferative arrest that has been previously

documented in normal fibroblasts following oncogenic stress,
and that we also observe here in normal HMEC. Moreover,
vHMEC-ras cells exhibited many additional alterations that are
observed during progression to malignancy such as the
generation of chromosomal abnormalities, upregulation of
telomerase activity, immortalization following exposure to serum,
and anchorage-independent growth, but they did not form
tumors following orthotopic injection in vivo. Associated with
their early progression to malignancy was an increase in the
number of genes methylated, two of which (RASSF1A and
SFRP1) were also methylated in other immortalized mammary
cell lines as well as in breast cancer cells and tissues.

Conclusions We have characterized a mammary progression
model that recapitulates molecular and methylation alterations
observed in many breast cancers. Our data suggest that
concomitant methylation of RASSF1A and SFRP1 marks an
early event in mammary transformation and may thus have
prognostic potential.
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tion-specific PCR; PBS: phosphate-buffered saline; TBS-T: tris-buffered saline containing tween; vHMEC: variant HMEC with repressed p16INK4A.
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Introduction
Oncogenic transformation arises from the accumulation of
both genetic and epigenetic alterations that result in the acti-
vation of oncogenes and inactivation of tumor suppressor
genes. Of the many oncogenes activated in human cancers,
ras is one of the genes that has been the most extensively
studied. Although mutation of ras genes is rare in human
breast cancers [1], over 50% of human breast carcinomas
express elevated levels of normal Ha-ras protein [2-4]. In addi-
tion, higher levels of ras protein have been observed in hyper-
plasias from patients who subsequently develop cancer, than
in hyperplasias from patients who do not [5]. This suggests
that alterations in ras expression can occur early in the trans-
formation process, and thus contribute to the initiation of tum-
origenesis. Likewise, epigenetic alterations, including DNA
methylation and chromatin structure changes, are among the
earliest molecular abnormalities to occur during tumorigene-
sis. Included among the genes epigenetically silenced in
breast cancer are genes involved in cell cycle regulation
(p16INK4A, CCND2, RASSF1A), cell signaling (SFRP1,
SFRP5), differentiation (HOXA9), immortalization (p57), and
DNA repair (MGMT, BRCA1) [6-12]. A recent survey of CpG
island methylation using an array-based mapping technique
revealed that one-third of CpG islands methylated in premalig-
nant lesions are associated with members of various home-
obox gene superfamilies, suggesting that methylation of
homeobox genes is a frequent and early event in breast cancer
[13].

Consistent with this, we have previously identified a rare sub-
population of variant human mammary epithelial cells
(vHMEC) that exhibit p16INK4A and HOXA9 promoter hyper-
methylation, centrosome dysfunction, genomic instability, and
COX-2 overexpression [14-17]. We found evidence that cells
with these characteristics exist in morphologically normal tis-
sue of disease-free women [18], as well as in ductal carci-
noma in situ (DCIS) lesions [19], suggesting that these cells
may be precursors to cancer.

In order to gain insight into the molecular alterations required
for vHMEC to progress to malignancy, and the epigenetic
events associated with that progression, we examined the
effect of oncogenic stress on the behavior of HMEC that
express p16INK4A, and vHMEC that do not, by expressing con-
stitutively active Ha-rasV12 in these cells. Since vHMEC dis-
play some characteristics of tumor cells, suggesting that the
process of malignant transformation is initiated in these cells,
we hypothesized that vHMEC would be resistant to ras-
induced growth arrest, but that HMEC, like normal fibroblasts
which have been shown to senesce in response to oncogenic
ras [20], would not. Indeed, as expected, vHMEC continued to
proliferate following ras expression while HMEC arrested.
Moreover, when cultured in a serum-containing environment,
vHMEC expressing oncogenic ras spontaneously immortal

ized, acquired the capacity for anchorage-independent
growth, and exhibited de novo DNA methylation at several
gene loci frequently methylated in breast cancer. Among the
genes methylated, we identified a panel of four genes, two of
which (RASSF1A and SFRP1), were also methylated in other
immortalized mammary cell lines, suggesting that programs of
epigenetic alterations mark early steps in the transformation
process. Thus, these early epigenetic alterations may prove
useful as biomarkers for early detection of breast cancer.

Materials and methods
Cell culture and breast tissue specimens
HMEC were isolated from reduction mammoplasty tissue as
previously described [21]. HMEC were grown in MEGM
(Lonza, Walkersville, MD, USA) supplemented with or without
0.5% fetal bovine serum. Initial experiments examining the
effect of oncogenic ras on HMEC and vHMEC proliferation
were conducted in cells isolated from five different individuals:
RM48 (kindly provided by Martha Stampfer, Lawrence Berke-
ley National Laboratory, Berkeley, CA), RM13, RM15, RM18,
and RM21 (cells derived in our laboratory). All subsequent
experiments in which cells were exposed to serum were con-
ducted with RM48. All cell cultures were maintained as previ-
ously described [21]. vHMEC clones were isolated using
standard ring cloning procedures.

Breast specimens originated from biopsies, mastectomies,
and reduction mammoplasties. Donors included both breast
cancer patients and women with no breast cancer history.
Specimens were acquired as either fresh tissues, frozen tis-
sues, which had been stored at -80°C, or as DNA that had
already been extracted from frozen tissues archived in the Brit-
ish Columbia Cancer Agency frozen breast tumor bank and
Cooperative Human Tissue Network. Protocols for the acqui-
sition of human specimens were approved by the institutional
review boards of the institutions providing the specimens (Uni-
versity of British Columbia, British Columbia Cancer Agency
Research Ethics Board, Canada, and the Committee for the
Protection of Human Subjects, University of California, Berke-
ley, CA, USA).

Retroviral gene transfer
The pLXSP3 and pLXSP3-Ha-rasV12 retroviral constructs
were a gift from Dr. Frank McCormick (UCSF Comprehensive
Cancer Center, University of California San Francisco, San
Francisco, CA, USA). Amphotropic retrovirus was produced
by transfecting Phoenix-A packaging cells using Lipo-
fectamine 2000 (Invitrogen, Carlsbad, CA, USA). Forty-eight
to 72 hours post-transfection, virus-containing culture medium
was collected and filtered through 0.45-μm syringe filters.
Cells were infected by exposing them to virus-containing
medium in the presence of 4 μg/mL Polybrene (Sigma-Aldrich,
St. Louis, MO, USA). Forty-eight hours following infection,
transduced cells were selected for four to six days in medium
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containing 2 μg/mL puromycin. Experiments were conducted
four to six days following exposure to puromycin to allow
selection of cells that exhibit puromycin resistance.

Immunoblot analysis
Cells were washed twice with ice-cold phosphate buffered
saline (PBS) and lysed with 50 mM Tris, 150 mM NaCl buffer
containing 1% Nonidet P-40, 0.25% deoxycholate, 1 mM
EDTA, 20 mM sodium fluoride, 1 mM sodium orthovanadate,
and 1× cocktail of Complete protease inhibitors (Roche
Applied Science, Indianapolis, IN, USA). Protein content was
quantitated utilizing the BCA protein assay reagent (Pierce,
Rockford, IL, USA). Protein extracts were separated by SDS-
PAGE using 4-20% gradient polyacrylamide gels (Cambrex,
East Rutherford, NJ, USA), and transferred onto Hybond-P
membranes (GE Healthcare Bio, Piscataway, NJ, USA) at 100
volts for two hours. Membranes were blocked with 5% nonfat
dry milk in Tris-buffered saline containing Tween (TBS-T) (20
mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.1% Tween 20 (v/v)) for
one hour at room temperature and incubated with the primary
antibodies diluted in blocking buffer overnight at 4°C. The rab-
bit polyclonal antibody against Ha-ras (#SC520) was
obtained from Santa Cruz Biotechnology (Santa Cruz, CA,
USA). The mouse monoclonal antibody against β-actin
(#5441) was obtained from Sigma-Aldrich (St. Louis, MO,
USA). Following incubation with primary antibodies, the mem-
branes were washed three times for 10 minutes with TBS-T,
incubated with horseradish peroxidase-conjugated secondary
antibodies for one hour at room temperature, and rewashed
three times for 10 minutes with TBS-T. Immunoreactive bands
were visualized by chemiluminescence using the SuperSignal
West Pico Chemiluminescent Substrate System (Pierce,
Rockford, IL, USA).

Cell cycle analysis
Cells were metabolically labeled with 10 μmol/L bromodeoxy-
uridine for four hours, trypsinized, and fixed with ice-cold 70%
ethanol. Nuclei were isolated and stained with propidium
iodide and FITC-conjugated anti-bromodeoxyuridine antibod-
ies (Becton Dickinson, San Jose, CA, USA) and analyzed by
flow cytometry using a FACS-Sorter (Becton Dickinson, San
Jose, CA, USA) and the CellQuest software (Becton Dickin-
son, San Jose, CA, USA).

Chromosomal analysis
Metaphase spreads were prepared from cells treated with
100 ng/ml Colcemid (KaryoMAX, GibcoBRL) for six hours.
Standard G-banding karyotypic analysis was performed on at
least 50 metaphase spreads for each cell population.

Centrosome analysis
Centrosomes were stained and analyzed as previously
described [17]. Briefly, cells were grown on coverslips, fixed
in methanol at -20°C for five minutes and stained using a
standard immunocytochemistry protocol with a primary mono-

clonal antibody that recognizes γ-tubulin (1 μg/mL; clone
GTU-88, Sigma) and a secondary fluorescein isothiocyanate
(FITC) conjugated sheep F(AB')2 fragment to mouse IgG
(whole molecule) (ICN Pharmaceuticals, Inc., Costa Mesa,
CA, USA). Samples were analyzed on a Zeiss 510 LSM Con-
focal Microscope (Carl Zeiss AG, Oberkochen, Germany).
Statistical significance was determined by the two-sided
Fisher exact test (95% confidence interval).

Telomerase activity assay
Telomerase activity was measured using the Quantitative Tel-
omerase Detection Kit from Allied Biotech (Vallejo, CA, USA)
following the manufacturer's directions. Briefly, 1 × 106 cells
were harvested, snap frozen in liquid nitrogen, and subse-
quently lysed using the provided lysis buffer. Protein content in
the lysates was determined utilizing the BCA protein assay
reagent (Pierce, Rockford, IL, USA). The amount of telomerase
activity in 1 μg of lysate was compared to the standard pro-
vided in the kit. Each sample was analyzed in triplicate. A no
template control, heat inactivated sample, and cell lysates from
telomerase positive (MDA-MB-231) and telomerase negative
(U2OS) cells were included in each experiment.

Soft agar colony assay
Cells were harvested, counted, and resuspended in media
containing 0.6% agarose, 5% serum and 10 mM Hepes. Cell
suspensions were then plated on top of a bottom layer of aga-
rose in 35 mm dishes at a concentration of 50,000 cells per
dish, in triplicate. After 14 days, colonies were counted manu-
ally in eight different fields. The data are presented as the aver-
age of the sum of eight different fields counted.

In vivo tumor studies
An IRES-based bicistronic lentiviral vector encoding green flu-
orescent protein (GFP) and firefly luciferase was obtained
from Dr. Sanjiv Sam Gambhir (Stanford University, Palo Alto,
CA, USA) and utilized to generate the cells used for the in vivo
tumor studies. Briefly, virus was produced by co-transfecting
293T cells with the CSCMV-FLuc-EGFP vector along with a
defective packaging vector encoding the HIV gal, pol, rev, and
tat genes, and a plasmid coding for the VSVG envelope pro-
tein. Clones isolated from a pool of immortalized vHMEC-
ras0.5 cells were transduced with lentiviral particles. Twenty-
four hours following transduction, the cells were split, allowed
to expand for one week, and then FACS sorted to collect GFP-
expressing cells. Expression of GFP-luciferase did not alter the
growth characteristics of these cells (see Additional file 1).
One, four, or ten million cells expressing GFP-luciferase were
injected directly into the surgically exposed #4 mammary fat
pads of six to eight week old female SCID-Beige mice. Cell
growth and survival were monitored weekly by biolumines-
cence imaging utilizing the Xenogen IVIS imaging system (Cal-
iper Life Sciences, Hopkinton, MA, USA). Quantitation of
photon emission from the bioluminescent signal was per-
formed utilizing the acquisition and analysis software Living
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Image (Xenogen). All experiments involving animals were
conducted in compliance with the Institutional Animal Care
and Use Committee guidelines.

Methylation-specific PCR
Genomic DNA was isolated from cells using the Wizard
Genomic DNA Isolation kit (Promega, Madison, WI, USA).
Approximately 750 ng of DNA was bisulfite-treated with the
EZ DNA Methylation Gold kit according to the manufacturer's
protocol (Zymo Research, Orange, CA, USA). Methylation-
specific PCR (MSP) was performed on bisulfite-modified DNA
using previously described primer pairs and PCR cycle condi-
tions for p16INK4A [22], HOXA9 [16], CCND2 [12],
RASSF1A [23], SFRP1 [24], p57, MGMT [25], and THBS1
[26]. Control templates from human genomic lymphocyte
DNA either treated with SssI methylase (methylated control)
or untreated (unmethylated control) and a no template (water)
control were included in each experiment. PCR products were
electrophoresed on 3% agarose gels, stained with ethidium
bromide, and visualized under UV illumination.

Real-time quantitative PCR
Total RNA was isolated from cells and cDNA synthesized
using standard methods. Quantitative PCR (Taqman, Applied
Biosystems, Inc., Foster City, CA, USA) was performed on
cDNA using the standard curve method with primer/probe
sets (Applied Biosystems, Inc.) for SFRP1
(Hs00610060_m1), RASSF1A (Hs00200394_m1), and
MGMT (Hs01037698_m1). The expression of GUSB (IDT),
an external control, was used to normalize for variances in
input cDNA. The forward and reverse primer sequences for
GUSB were: 5'-CTCATTTGGAATTTTGCCGATT-3', 5'-
CCGAGGAAGATCCCCTTTTTA-3', 5' FAM-TGAACAGT-
CACCGACGAGAGTGCTGGTA-TAM 3', respectively. Each
experiment was performed at least in triplicate. Error bars rep-
resent the standard deviation in a representative experiment.

Results
vHMEC are resistant to Ha-ras-induced proliferative 
arrest and display chromosomal abnormalities
To test the effect of oncogenic stress on normal HMEC and
vHMEC with repressed p16INK4A, cells were retrovirally trans-
duced with constitutively active Ha-rasV12. Expression of Ha-
rasV12 was confirmed by immunoblot analysis (Figure 1a).
Despite oncogenic ras expression, vHMEC failed to undergo
the classic proliferative arrest that has been previously docu-
mented in normal fibroblasts [20], and that we also observe
here in normal HMEC (Figure 1b). Instead, they continued to
proliferate at the same rate as vHMEC expressing the control
vector (vHMEC-vector). The percentage of cells in S phase
was not affected by expression of oncogenic ras in vHMEC,
but was significantly reduced in HMEC (Figure 1c). These
data demonstrate that vHMEC are resistant to Ha-rasV12-
induced proliferative arrest.

Progression to malignancy is often associated with an
increase in genomic instability. Since vHMEC expressing
oncogenic ras (vHMEC-ras) were capable of bypassing the
proliferative barrier normally induced by oncogenic stress, we
examined whether these cells displayed any alterations in
genomic integrity beyond those previously detected in
vHMEC [15,17]. This analysis could not be performed in
HMEC expressing oncogenic ras since the cells arrested. In
vHMEC, no increases in the frequency of centrosome abnor-
malities were detected between the vHMEC vector control
and vHMEC ras-expressing cell populations (data not shown).
However, karyotypic analysis revealed a number of chromo-
somal abnormalities, including structural abnormalities, telom-
eric associations, and alterations in ploidy (Figure 1d). Thus,
upon continued propagation, vHMEC-ras cells become
increasingly genomically unstable, manifesting genomic
changes at an earlier passage and an increased frequency
than detected in cultured vHMEC.

Signals from the extracellular environment can 
cooperate with oncogenic ras to immortalize vHMEC and 
upregulate telomerase activity
While oncogenic ras can cooperate with a number of viral and
cellular genes to transform cells [27,28], whether it can do so
in concert with signals from the extracellular milieu has not
been examined. Since signals from the microenvironment can
promote mammary tumorigenesis [29], we examined whether
changes in the cellular environment could influence the effect
of ras in vHMEC, and facilitate their progression to malig-
nancy. Studies have shown that the gene expression pattern
of cultured primary fibroblasts in response to serum exposure
resembles that of a wounding response, and that this wound-
response signature is strongly predictive of metastasis and
progression for a variety of carcinomas [30]. Therefore, we
exposed both vHMEC-vector and vHMEC-ras cells at several
points in their growth curve to media containing 0.5% serum.
Addition of serum while the cells were still in the exponential
growth phase induced a proliferative arrest in both cell popu-
lations (data not shown). In contrast, addition of serum while
the cells were in a highly mutagenic phase (agonescence) was
sufficient to cause immortalization of vHMEC-ras (vHMEC-
ras0.5) but not control vHMEC (Figure 2A). This suggests that
an additional event, likely conferred by the genomic instability
that is exhibited at agonescence (growth plateau) [15], is
required for serum to cooperate with ras in immortalizing
vHMEC.

To address whether constitutive extracellular stimulation
resulting from the exposure to serum was required for the con-
tinued proliferation, vHMEC-ras0.5 cells were cultured in
mammary epithelial growth medium without serum (vHMEC-
ras0.5->0). We found that the cells were capable of continued
proliferation in the absence of serum, indicating that once
immortalization is initiated by extracellular serum stimulation,
proliferation is no longer dependent on the initial signals
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provided by the serum (Figure 2a). Consistent with this,
immortalized vHMEC-ras0.5 cells displayed an increase in tel-
omerase activity relative to the parental, vector control, and
vHMEC-ras cells (Figure 2b). In addition, two clones (cl-1 and
cl-2) isolated from the vHMEC-ras0.5 cell population also dis-
played an increase in telomerase activity (Figure 2b).

Immortalized vHMEC expressing oncogenic ras are 
capable of anchorage-independent growth but are not 
tumorigenic in vivo
Since vHMEC expressing oncogenic ras exhibited many char-
acteristics observed during the progression to malignancy,
including increased genomic instability, upregulation of telom-
erase activity, and unlimited proliferative capacity, we then
asked if the accumulation of these molecular alterations had

Figure 1

vHMEC expressing Ha-ras are resistant to proliferative arrest and display increased numbers of chromosomal abnormalitiesvHMEC expressing Ha-ras are resistant to proliferative arrest and display increased numbers of chromosomal abnormalities. (a) Immunob-
lot analysis demonstrating Ha-rasV12 expression in HMEC and vHMEC following retroviral transduction with pLXSP3-Ha-rasV12 (r) or the control 
pLXSP3 vector (v). Constructs were expressed in HMEC and vHMEC derived from five different individuals. A representative blot is shown along 
with actin as a loading control. (b) Growth curves demonstrating that HMEC underwent a proliferative arrest in response to oncogenic ras (orange 
line, left graph), while vHMEC continued to proliferate (orange line, right graph). (c) Cell cycle analysis of HMEC and vHMEC expressing Ha-rasV12 
or control vector demonstrating that the number of cells in S-phase dropped from 33.8% to 8.8% following Ha-rasV12 expression in HMEC, but 
remained the same in vHMEC (37.9% and 37.6%, respectively). (d) Chromosomal analysis of vHMEC-vector and vHMEC-ras cells. Control vHMEC 
(vector) and vHMEC expressing oncogenic Ha-RasV12 (ras) were harvested at different passages (P+1, P+5, and P+8), as indicated, and proc-
essed for metaphase analysis. Standard G-banding karyotypic analysis was performed on at least fifty metaphase spreads for each cell population. 
Aneuploidy refers to additions or deletions of whole chromosomes. Structural abnormalities include all deletions, duplications, rings, marker chromo-
somes, chromatid exchanges and translocations. The total number of abnormalities includes all structural abnormalities and telomeric associations, 
not including numerical abnormalities.
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rendered these cells tumorigenic. Since anchorage-independ-
ent growth is a requirement for tumorigenicity, we first exam-
ined whether vHMEC expressing oncogenic ras could grow in
soft agar. As shown in Figure 3a, the parental, vector control,
and non-immortalized vHMEC-ras cells failed to grow in soft
agar. In contrast, the immortalized vHMEC-ras0.5 as well as
two clones isolated from vHMEC-ras0.5 cells (cl-1 and cl-2),
displayed some, albeit weak, capacity for anchorage-inde-
pendent growth, suggesting that they may have some tumori-
genic potential.

Since clone 1 exhibited the highest capacity for anchorage-
independent growth in the soft agar assay, we decided to
examine whether this clone could grow following orthotopic
injection into the mammary glands of immunocompromised
mice. In order to facilitate the monitoring of its growth in vivo,
clone 1 was engineered to express firefly luciferase. The light
emitted by the clone following administration of the luciferin
substrate allowed us to directly visualize the cells in live ani-
mals by bioluminescence imaging.

For these experiments, we injected either 1 × 106 (n = 6), 4 ×
106 (n = 12) or 10 × 106 (n = 11) clone 1 cells expressing luci-
ferase directly into the surgically exposed #4 mammary fat
pads of six to eight week old female Scid/beige mice. In all the
glands injected with either 1 × 106 or 4 × 106 clone 1 cells, the
luminescent signal faded within three weeks following injec-
tion, suggesting that the majority of cells were not surviving in
vivo (Figure 3b). Likewise, in the majority of the glands injected
with 10 × 106 clone 1 cells, the luminescent signal faded
within three to four weeks, while in one gland, the biolumines-
cent signal persisted up to eight weeks (Figure 3b and data
not shown). No palpable tumors ever formed in any of these
mice. Histological and whole mount analyses of their mammary
glands did not reveal any signs of tumor growth or hyperplasia
(data not shown). Thus, under the experimental conditions
tested, these cells were not tumorigenic, suggesting that addi-
tional alterations/mutations are required for complete transfor-
mation.

Progression to malignancy is associated with DNA 
methylation at several gene loci
In order to determine whether the accumulation of alterations
observed in our progression model was also accompanied by
additional epigenetic alterations, we used methylation-specific
PCR (MSP) to determine whether genes that are commonly
epigenetically silenced in breast cancer, were also silenced in
our cell model. A list of the MSP primers used, along with their
location relative to the transcription start site of each gene, is
presented in Table 1. Coincident with the p16INK4A and
HOXA9 promoter hypermethylation we have previously docu-
mented in vHMEC [16], we observed methylation of the
CCND2 promoter in these same cells (Figure 4, Table 2, Addi-
tional file 2). As the cells progressed further towards malig-
nancy and became immortalized, DNA methylation was
observed at several additional gene loci including, RASSF1A,
SFRP1, p57, and MGMT. In order to determine whether this
panel of four genes represented a program of epigenetic alter-
ations important for the immortalization of mammary epithelial
cells, we examined whether these genes were methylated in
the immortalized, but non-tumorigenic 184-A1 and MCF-10A
mammary cells, as well as in the MCF-7 and MDA-231 breast
cancer cell lines. DNA methylation of the RASSF1A gene, and
of one of the CpG islands of the SFRP1 gene (SFRP1-exon1),
was observed in all four of the cell lines examined, while meth-
ylation of the p57 gene was observed in two of the four cell

Figure 2

Signals from the extracellular environment cooperate with ras to immor-talize vHMEC and upregulate telomerase activitySignals from the extracellular environment cooperate with ras to 
immortalize vHMEC and upregulate telomerase activity. (a) Growth 
curves of HMEC (red line), vHMEC expressing control vector (blue 
line), and vHMEC expressing Ha-rasV12 (orange line). Arrow indicates 
time at which vHMEC-ras cells were exposed to serum (day 220). 
These cells demonstrated increased population doublings within two 
passages (day 243) in serum-containing media, and are referred to as 
vHMEC-ras0.5 cells. Their growth curve is depicted in green. After 560 
days, the vHMEC-ras0.5 cells were cultured in the absence of serum 
and continued to proliferate. These cells are referred to as vHMEC-
ras0.5- >0 and their growth curve is depicted in black. (b) Telomerase 
activity assay depicting the amount of telomerase activity in lysates pre-
pared from parental vHMEC (par), vHMEC-vector (vec), vHMEC-ras 
(ras), and vHMEC-ras0.5 (ras0.5) cells, as well as two clones isolated 
from the ras0.5 cell population (cl-1 and cl-2).
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lines (MCF-10A and MCF-7), and methylation of the MGMT
gene was observed only in the MDA-231 cell line (Figure 4,
Table 2). The gene encoding thrombospondin (THBS1),
which is also frequently methylated in breast cancer, remained
unmethylated in all the cells. These data suggest that concom-
itant DNA methylation of the RASSF1A and SFRP1 (exon 1)

genes may play a role in the early steps of mammary
transformation.

In order to address this question further, we examined whether
methylation of the RASSF1A and SFRP1 genes led to their
silencing. As shown in Figure 5, qPCR analysis revealed that

Figure 3

Immortalized variant human mammary epithelialcells expressing oncogenic ras are capable of anchorage-independent growth but are not tumori-genic in vivoImmortalized variant human mammary epithelialcells expressing oncogenic ras are capable of anchorage-independent growth but are not 
tumorigenic in vivo. (a) Soft agar colony assay. Parental vHMEC (par), vHMEC-vector (vec), vHMEC-ras (ras), vHMEC-ras0.5 (ras0.5), clone 1 (cl-
1), and clone 2 (cl-2), which were isolated from the vHMEC-ras0.5 cells, were plated in 35 mm dishes at a concentration of 50,000 cells per dish, in 
triplicate. After 14 days, colonies were counted manually in eight different fields. The data are presented as the average of the sum of eight different 
fields counted. (b) Bioluminescence imaging of SCID-Beige mice following orthotopic injection of 1 × 106 (top panel), 4 × 106 (middle panel), or 10 
× 106 (bottom panel) vHMEC-ras clone 1 cells expressing GFP-luciferase into the left and right #4 mammary fat pad. Cell growth and survival was 
monitored weekly by bioluminescence imaging utilizing the Xenogen IVIS imaging system. Representative images of each experiment are shown.
Page 7 of 17
(page number not for citation purposes)



Breast Cancer Research    Vol 11 No 6    Dumont et al.
the expression of RASSF1A was reduced in all the cells that
exhibited DNA methylation at the RASSF1A gene locus. Sim-
ilarly, SFRP1 expression also correlated with DNA methylation
in all the cell lines except the MCF-10A cells, where methyla-
tion was observed in the CpG island located in the 3' promoter
region that extends into the first exon, but not in the CpG
island located in the 5' promoter region (Figure 4), suggesting
that methylation in the 5' promoter region may be required for
silencing. Upon careful examination, we observed that the
degree to which RASSF1A and SFRP1 expression was
repressed, corresponded, for the most part, to the extent of
DNA methylation, that is, in cells where complete methylation
was observed (labeled as "M"), mRNA expression was signif-
icantly repressed (except in 184-A1 cells where approximately
50% of RASSF1A expression was retained). In contrast, in
cells where both methylated and unmethylated products were
observed (labeled as "U/M"), mRNA expression was reduced,
but still present. This was also true for MGMT expression,
which we examined for comparison (Figure 5c).

Concomitant DNA methylation of RASSF1A and SFRP1 
occurs in malignant and premalignant breast lesions
If concomitant DNA methylation of the RASSF1A and SFRP1
genes observed in vitro is biologically relevant in vivo, we rea-
soned that DNA methylation of these genes would also be
present in breast cancer tissues, but not in normal breast cells
or tissues. Therefore, we examined the methylation status of
RASSF1A and SFRP1 in DNA isolated from 12 invasive duc-
tal breast carcinomas (IDC), seven normal breast tissues, and
three vHMEC populations isolated from disease-free reduc-
tion mammoplasties. As illustrated in Figure 6a and 6b, and
summarized in Table 3, this analysis revealed that the
RASSF1A locus was methylated in 10 out of 12 IDC, none of
the vHMECs, and only one of the seven normal tissues (N3,
where methylation was very faint). Similarly, the SFRP1 locus
was methylated in all 12 IDC, none of the vHMECs, and only
one of the seven normal tissues. Notably, the normal tissue in
which DNA methylation was detected at the SFRP1 locus,
was also the one in which faint DNA methylation at the
RASSF1A locus was detected (N3), suggesting that the
transformation process may already be initiated in these cells,
despite their normal histological appearance. Concomitant
methylation of RASSF1A and SFRP1 appears to be targeted
and specific as the p57 and MGMT gene loci were methylated
in none or only one of the IDC analyzed, respectively, and in
none of the vHMECs or normal tissues (Figure 6a). These data
demonstrate that the concomitant DNA methylation of the
RASSF1A and SFRP1 genes observed upon immortalization
of mammary epithelial cells in vitro, is biologically relevant in
that it can also be detected in both breast cancer cell lines and
in breast cancer tissues in vivo.

In order to determine whether concomitant DNA methylation
of the RASSF1A and SFRP1 genes marks an early event in
mammary transformation, we analyzed the methylation status

of these two genes in DNA obtained from early lesions. This
analysis was performed on two cases of hyperplasia without
atypia (H1 and H2), one case of hyperplasia with atypia (H3),
and 11 cases of DCIS obtained from women with IDC (see
Table 3 for a more detailed description of the samples ana-
lyzed). As shown in Figure 6b, DNA methylation was not
detected in the hyperplasias without atypia at either gene
locus (H1 and H2). In contrast, concomitant DNA methylation
of RASSF1A and SFRP1 was detected in the atypical ductal
hyperplasia (H3), which unlike the hyperplasias without atypia,
is a premalignant lesion associated with risk for progression to
cancer. In the DCIS samples, DNA methylation at the
RASSF1A locus was observed in 9 of the 11 cases, and meth-
ylation of SFRP1 was observed in all 11 cases (Figure 6c and
Table 3). These data demonstrate that concomitant DNA
methylation of RASSF1A and SFRP1 occurs in premalignant
lesions and may mark an early event in mammary
transformation.

Discussion
Malignant progression involves an accumulation of multiple
alterations in cellular growth control over an extended period
of time. Many studies have shown that oncogenic ras can
cooperate with other oncogenic alterations as well as viral
oncoproteins to transform primary human cells [28,31]. How-
ever, whether oncogenic ras can cooperate with alterations in
the extracellular environment to transform primary cells is
unknown. Having observed that, unlike HMEC, vHMEC were
resistant to the proliferative arrest induced by oncogenic ras
and displayed an increase in genomic instability, we sought to
determine whether signaling induced by the microenvironment
could cooperate with oncogenic stress to transform vHMEC.

In cells isolated from one out of three individuals tested, extra-
cellular stimulation with 0.5% serum at agonescence (which is
a highly mutagenic growth plateau), led to the immortalization
of vHMEC expressing oncogenic ras. In contrast, stimulation
with serum during the exponential phase of growth (prior to
agonescence) led to proliferative arrest in these cells. This
suggests that an additional mutation, likely conferred by the
genomic instability that is exhibited at agonescence [15], is
required for serum to cooperate with ras in immortalizing
vHMEC.

Altering the cellular microenvironment by simply changing cul-
ture conditions can have profound effects on cell behavior.
Consistent with this, Shay and colleagues have demonstrated
that HMEC expressing the catalytic subunit of telomerase can
achieve immortality when grown on fibroblast feeder layers in
the presence of 1% serum [32]. In addition, extended cultiva-
tion of mammary cells isolated from fibrocystic mammary tis-
sue in growth media containing low concentrations of calcium
is what led to the immortalization of the widely used non-tum-
origenic MCF-10A mammary epithelial cell line [33]. These
data highlight the importance of signals from the microenviron-
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ment in modulating cellular behaviors that can influence
tumorigenesis.

Interestingly, transient alterations in the cellular environment
can permanently alter cell behavior. For example, studies have
shown that the non-tumorigenic BPH-1 prostatic epithelial
cells can be induced to form tumors in nude mice when recom-
bined with carcinoma-associated fibroblasts or when exposed
to carcinogenic doses of steroid hormones. That newly
acquired tumorigenicity is maintained in subsequent re-graft-
ing of cells even in the absence of carcinoma-associated
fibroblasts or steroid hormones [34]. Likewise, once immortal-
ized, our vHMEC-ras0.5 cells no longer required sustained
serum stimulation for continued proliferation, suggesting that
signaling induced by serum led to additional alterations suffi-
cient to maintain growth.

Among the alterations we observed in the immortalized
vHMEC-ras0.5 cells were an upregulation in telomerase activ-
ity as well as DNA methylation at several gene loci, including

the RASSF1A, SFRP1, p57, and MGMT gene loci. Two of
these four genes, RASSF1A and SFRP1, were also methyl-
ated in four other immortalized mammary cell lines we exam-
ined, two of which were non-tumorigenic (184-A1 and MCF-
10A), and two of which were tumorigenic (MCF-7 and MDA-
231). In addition, concomitant DNA methylation of both genes
was also observed in malignant (10 out of 12 IDC) and prema-
lignant (1 ADH and 9 out of 11 DCIS) breast lesions. Interest-
ingly, in the reduction mammoplasty tissues in which some
hyperplasia without atypia was diagnosed (H1 and H2), no
DNA methylation was detected. In contrast, in the reduction
mammoplasty tissue with documented atypical ductal hyper-
plasia (H3), we observed concomitant methylation of
RASSF1A and SFRP1 (Figure 6 and Table 3). While hyper-
plasias without atypia are not associated with any increased
risk for developing breast cancer, atypical ductal hyperplasia
(ADH) has been associated with a four- to five-fold increased
risk of developing cancer [35], and is thus considered a pre-
malignant lesion. Hence, we have analyzed 12 premalignant
lesions (1 ADH and 11 DCIS) and found concomitant methyl-

Figure 4

Progression to malignancy is associated with DNA hypermethylation at several gene lociProgression to malignancy is associated with DNA hypermethylation at several gene loci. MSP analysis of CCND2, RASSF1A, SFRP1, p57, 
MGMT, and THBS1 in the cells indicated using primer sets listed in Table 1 that specifically amplify either methylated (m) or unmethylated (u) DNA. 
Positive (+) and (-) controls for the methylated product, as well as a H2O negative control, were included in all experiments. All MSP experiments 
were performed on at least two independent cell populations. The data presented for the SFRP1-exon1 MSP are from two different experiments. 
Analysis of the primary cells (HMEC, vHMEC, vector, ras, and ras0.5) and the cell lines (184A1, MCF10A, MCF7, and MDA231) was done sepa-
rately and merged. The data presented for all the other genes were obtained in the same experiment. Replicate experiments are available online in 
Additional file 2.
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Table 1

MSP primers

Gene Name Forward Primer (5'-3') Reverse Primer (5'-3') Product size (bp) Primer location relative to 
TSS (bp)

Ref

p16INK4A-U TTA TTA GAG GGT GGG GTG 
GAT TGT

CAA CCC CAA ACC ACA ACC 
ATA A

151 +132 to 283 [22]

p16INK4A-M TTA TTA GAG GGT GGG GCG 
GAT CGC

GAC CCC GAA CCG CGA 
CCG TAA

150 +132 to 282

HOXA9-U TTG GGG TTA GAT AGG GAG 
TTG GGA

AAA AAT AAA AAC AAA AAA 
CAA ACA AA

167 -4453 to -4286 [16]

HOXA9-M TCG GGG TTA GAT AGG GAG 
TCG GGA

AAA ATA AAA ACG AAA AAC 
AAA CGA A

166 -4453 to -4287

CCND2-U AGA GTA TGT GTT AGG GTT 
GAT T

ACA TCC TCA CCA ACC CTC 
CA

108 -1167 to -1059 [12]

CCND2-M CGG CGA TTT TAT CGT AGT 
CG

CTC CAC GCT CGA TCC TTC 
G

101 -1138 to -1037

RASSF1A-U TTT GGT TGG AGT GTG TTA 
ATG TG

CAA ACC CCA CAA ACT AAA 
AAC AA

108 +201 to +309 [23]

RASSF1A-M GTG TTA ACG CGT TGC GTA 
TC

AAC CCC GCG AAC TAA AAA 
CGA

94 +213 to +307

SFRP1-U* GTT TTG TAG TTT TTG GAG 
TTA GTG TTG TGT

CTC AAC CTA CAA TCA AAA 
ACA ACA CAA ACA

135 -2 to +133 [24]

SFRP1-M TGT AGT TTT CGG AGT TAG 
TGT CGC GC

CCT ACG ATC GAA AAC GAC 
GCG AAC G

126 +2 to +128

SFRP1-U** TTT TAG TAA ATT GAA TTT 
GTT TGT GA

TAA AAT ACA CAA AAC TGG 
TAG AAC

149 -151 to -2 [40]

SFRP1-M TTT AGT AAA TCG AAT TCG 
AAT TCG TTC GC

TAA AAT ACG CGA AAC TCC 
TAC G

148 -150 to -2

p57-U GTT GTT TGT GTT TGT GTA 
GTT TT

AAA AAT CCC ACA AAC AAC 
AAA ACA

91 +248 to +339

p57-M TTG TTC GCG TTT GCG TAG 
TTT C

AAA TCC CAC GAA CGA CAA 
AAC G

88 +249 to +337

MGMT-U TTT GTG TTT TGA TGT TTG 
TAG GTT TTT GT

AAC TCC ACA CTC TTC CAA 
AAA CAA AAC A

93 +30 to +123 [25]

MGMT-M TTT CGA CGT TCG TAG GTT 
TTC GC

GCA CTC TTC CGA AAA CGA 
AAC G

81 +36 to +117

THBS1-U TTG AGT TTG TGT GGT GTA 
AGA GTA T

CCC CAC TAC CTA ACA CAC 
AAC T

156 -280 to -124 [26]

THBS1-M GTT CGC GTG GCG TAA GAG 
TAC

CGC TAC CTA ACG CGC AAC 
T

149 -276 to -127

*exon 1
**promoter
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ation of RASSF1A and SFRP1 in 10 of these 12 samples.
Although these data need to be confirmed in a larger sample
set, they strongly suggest that concomitant methylation of
RASSF1A and SFRP1 marks an early event in mammary
transformation and may thus have diagnostic and/or prognos-
tic potential.

The concomitant methylation of RASSF1A and SFRP1 also
provides possible insights into the biology of early transforma-
tion. The RASSF1A gene encodes ras association domain
family member 1, and the SFRP1 gene encodes the Wnt sig-
naling antagonist, secreted frizzled-related protein 1, both of
which play an important role in cell proliferation [24,36,37].
Consistent with its role in regulating cell proliferation,
RASSF1A has been reported to be the most frequently meth-
ylated gene in SV40- and hTERT-immortalized prostate epi-
thelial cells [38]. Similarly, we have observed that RASSF1A
is methylated in the SV40-immortalized human skin fibroblast
cell line, GM847 (data not shown). These data suggest that
epigenetic alterations in RASSF1A occur early in several cell
types, not just mammary cells. This is further supported by the
fact that RASSF1A-deficient mice display increased suscepti-
bility to spontaneous tumor development in multiple organs,
including breast, lung, and skin [39]. Compelling evidence
suggests that activation of Wnt signaling plays an important
role in breast cancer, and that loss of SFRP1 function is a key
mechanism by which Wnt signaling is activated under such
circumstances [24]. Like RASSF1A, SFRP1 has also been
shown to be silenced through promoter methylation in breast
cancer [12,24,40]. We now observe concomitant methylation
of RASSF1A and SFRP1 in three immortalized but non-tumor-
igenic mammary cell lines as well as in premalignant breast
lesions (ADH and DCIS), suggesting that these epigenetic
alterations occur early in the transformation process.

Interestingly, we observed a correlation between SFRP1 DNA
methylation and repression of its expression in all the cell lines
we examined except the MCF-10A cells where both methyl-
ated and unmethylated DNA products were detected by MSP.
While moderate levels of gene expression are expected under
circumstances where only partial methylation is observed at a
gene locus, the robust expression of SFRP1 in MCF-10A cells
was not anticipated. Although we detected DNA methylation
in the first exon of SFRP1 in MCF-10A cells, previous studies
by Lo et al., have demonstrated that the promoter region of
SFRP1 is unmethylated in these cells [40]. We therefore per-
formed additional experiments with MSP primers designed to
survey the methylation status of CpG islands located in the
promoter region of SFRP1, as described in Lo et al., and con-
firmed the unmethylated status in that specific region (Figure
4). This supports the well established concept that the loca-
tion of the CpG dinucleotides subjected to methylation plays
an important role in determining whether genes are silenced or
not. Consistent with this, CST6, which encodes the cysteine
protease inhibitor, cystatin M, has been shown to be silenced
following DNA methylation of CpG islands located within the
promoter region, but not within exon 1 [41]. Of particular note,
in MCF-7 and MDA-231 cells where SFRP1 expression is
completely abrogated, we observed complete methylation in
CpG islands located in the first exon and in the promoter
region of SFRP1 in these cells. Interestingly, the frequency of
DNA methylation in the promoter region and first exon seems
to differ. While we observed DNA methylation in exon 1 of the
SFRP1 gene in 100% of the DCIS and IDC samples we exam-
ined, methylation in the promoter region of SFRP1 has been
reported to occur in approximately 68% of high-grade DCIS
and invasive breast cancers [7,40]. These data suggest that
there may be different functional consequences to DNA meth-
ylation at different CpG islands and that methylation events
within a single gene can occur at different frequencies.

Table 2

Methylation-specific PCR analysis of genes methylated in the human mammary epithelial cell progression model and in mammary 
cell lines

HMEC vHMEC vector ras ras0.5 184-A1 MCF-10A MCF-7 MDA-231

p16INK4A U M M M M M M M M

HOXA9 U M M M M M M M M

CCND2 U M M M M M M M M

RASSF1A U U U U U/M M M M M

SFRP1* U U U U M U/M U/M M M

p57 U U U U M U M M U

MGMT U U U U U/M U U U U/M

THBS1 U U U U U U U U U

SFRP1* Methylation status of the CpG island located in exon 1 is shown.
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Figure 5

DNA methylation correlates with reduced gene expressionDNA methylation correlates with reduced gene expression. Quantitative RT-PCR for (a) RASSF1A; (b) SFRP1; and (c) MGMT. Methylation sta-
tus as evaluated by MSP is indicated as follows: Unmethylated (U), partially methylated (U/M), or methylated (M). For SFRP1, the U/M labels refer to 
the methylation status of the CpG island that extends into exon 1.
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While DNA methylation is often associated with gene silenc-
ing, methylation marks that are not associated with gene
silencing are nonetheless significant. For example, promoter
methylation of TWIST1, an anti-apoptotic and pro-metastatic
transcription factor, is significantly more prevalent in malignant
breast tissue than in healthy breast tissue [42], and even more
prevalent in metastatic lesions relative to matched primary
cancers [43]. However, there is no correlation between
TWIST1 promoter methylation and TWIST1 mRNA or protein
expression [42]. Methylation of the TWIST1 promoter may
lead to the recruitment of chromatin remodeling proteins that

can alter the function and/or expression of neighboring genes.
Alternatively, TWIST1 expression may be regulated by a bal-
ance between promoter and intragenic CpG methylation as
there is evidence that intragenic CpG methylation can pro-
mote gene expression [44]. Thus, even though TWIST1
expression is not repressed by methylation, the compelling
association between TWIST1 CpG methylation and malig-
nancy makes it a useful biomarker for breast cancer diagnosis
and prognosis. Likewise, SFRP1 methylation in the first exon
may be of significance despite the lack of methylation in the 5'
promoter region, and the absence of gene silencing. In sup-

Figure 6

Concomitant methylation of RASSF1A and SFRP1 in malignant and premalignant breast tissuesConcomitant methylation of RASSF1A and SFRP1 in malignant and premalignant breast tissues. (a) MSP analysis of RASSF1A, SFRP1-
exon1, p57, and MGMT in normal and malignant (invasive ductal carcinoma) breast tissues using primer sets that specifically amplify either methyl-
ated (m) or unmethylated (u) DNA, as in Figure 4 B and C. MSP analysis of RASSF1A and SFRP1 in normal, hyperplasia without atypia (H1 and 
H2), atypical ductal hyperplasia (ADH, H3), invasive ductal carcinoma (b), and ductal carcinomas in situ (c) tissues. Additional diagnostic informa-
tion about these samples is available in Table 3.
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Table 3

Description of normal, premalignant, and malignant breast tissues utilized for MSP analysis along with methylation status of 
RASSF1A and SFRP1 in each tissue

Sample Description RASSF1A SFRP1

N1 Normal reduction mammoplasty tissue U U

N2 Normal reduction mammoplasty tissue U U

N3 Normal reduction mammoplasty tissue M M

N4 Normal reduction mammoplasty tissue U U

N5 Normal reduction mammoplasty tissue U U

N6 Normal reduction mammoplasty tissue U U

N7 Normal reduction mammoplasty tissue U U

Total Normal
Methylated

1/7 1/7

H1 Lobular hyperplasia (85% of mammary cells), blunt duct hyperplasia (15% of mammary cells) U U

H2 Normal (80%), intraductal hyperplasia (10%), cystic hyperplasia (10%) U U

Total Hyperplasia
Methylated

0/2 0/2

H3 Focal atypical terminal duct hyperplasia (single focus); fibrocystic disease M M

Total ADH
Methylated

1/1 1/1

D1 CCL, DCIS M M

D2 DCIS M M

D3 DCIS, cysts, normal breast tissue M M

D4 DCIS and normal tissue U M

D5 Extensive comedo DCIS, calcifications M M

D6 Extensive DCIS M M

D7 Extensive DCIS and normal tissue M M

D8 DCIS, calcifications U M

D9 Extensive DCIS M M

D10 DCIS with calcifications M M

D11 Extensive comedo DCIS M M

Total DCIS
Methylated

9/11 11/11

C1 IDC, grade 2, node-, ER+ M M

C2 IDC, grade 3, node+, ER- M M

C3 IDC, grade 3, node+, ER- U M

C4 IDC, grade 3, node-, ER- M M

C5 IDC, grade 3, node+, ER+ M M

C6 IDC, grade 1, node+, ER+ M M

C7 IDC, grade 3, node+, ER- M M

C8 IDC, DCIS, CCL, normal breast M M

C9 IDC, DCIS M M

C10 IDC, DCIS, normal breast U M

C11 IDC and extensive DCIS M M

C12 IDC and extensive comedo DCIS with calcifications M M

Total IDC
Methylated

10/12 12/12

ADH = atypical ductal hyperplasia; CCL = columnar cell lesion; DCIS = ductal carcinoma in situ; IDC = invasive ductal carcinoma; ER = estrogen 
receptor; U = unmethylated; M = methylated. For SFRP1, methylation status of the CpG island located in exon 1 is shown.
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port of this, recent studies have demonstrated that more than
half of the methylated CpG islands in normal genomes fall
within the body of the genes or in downstream regions [45]. In
addition, numerous CpG islands mapping to intragenic or
downstream regions of genes have been reported to be heav-
ily methylated in DCIS, highlighting the significance of intra-
genic CpG island methylation in the early stages of breast
cancer [13].

Conclusions
Cells without p16 function are resistant to arrest induced by
ras-associated oncogenic stress. The accelerated accumula-
tion of genetic and epigenetic events dictate their ability to
bypass additional arrest signals allowing rare emergent sub-
populations to immortalize, and grow in soft agar. We have
identified a multigene methylation pattern acquired during this
in vitro progression to malignancy that is detected in vivo in
both premalignant and malignant lesions. This model will thus
allow further study of the mechanisms underlying the accumu-
lation of epigenetic alterations that occur during progression
to malignancy. By characterizing the methylation profiles that
manifest at different stages of transformation, biomarkers with
diagnostic and/or prognostic value could eventually be
identified.
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