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Abstract
Next-generation sequencing (also known as massively parallel
sequencing) technologies are revolutionising our ability to charac-
terise cancers at the genomic, transcriptomic and epigenetic
levels. Cataloguing all mutations, copy number aberrations and
somatic rearrangements in an entire cancer genome at base pair
resolution can now be performed in a matter of weeks. Further-
more, massively parallel sequencing can be used as a means for
unbiased transcriptomic analysis of mRNAs, small RNAs and
noncoding RNAs, genome-wide methylation assays and high-
throughput chromatin immunoprecipitation assays. Here, I discuss
the potential impact of this technology on breast cancer research
and the challenges that come with this technological breakthrough.

Introduction
Since the publication of the first draft of the human genome
sequence [1,2], the field of genomics has changed dramati-
cally. Most importantly, the availability of this information has
led to a technological boom, with the development of high-
throughput methods that could be used to interrogate the
wealth of data available in the human genome and transcrip-
tome. The fields of genomic and transcriptomic science have
expanded at an unprecedented pace.

In the past decade we have witnessed the rise of microarrays,
a technology that has been extensively applied to the study of
cancer genomes and transcriptomes. Of all solid cancers,
breast cancer has been the most comprehensively studied
using these methods. Although some of the promises of
microarrays have not materialised in the time frame some of
the proponents of this technology have foreseen, the high-
throughput data generated in microarray-based experiments
have changed the way breast cancer is perceived [3,4]. The
approach has brought to the forefront of cancer research the
concepts of breast cancer heterogeneity – that distinct
molecular subtypes of breast cancer are underpinned by
distinct genetic and epigenetic aberrations, and that distinct
subtypes of breast cancer may have their prognosis and
response to therapy governed by distinct molecular pathways
and networks [5,6]. It should be noted, however, that

microarray-based expression profiling and comparative
genomic hybridisation provide data with important limitations.
For instance, microarray-based expression profiling only
provides a semiquantitative assessment of gene expression; it
is limited by the nature of the probes included in the platform
and their sensitivity and specificity. Comparative genomic
hybridisation and SNP array analysis have provided a wealth
of data on gene copy number aberrations in breast cancer
and have helped identify potential therapeutic targets for
subgroups of breast cancer patients; however, this tech-
nology does not provide any information about structural
genomic aberrations and base pair mutations [7].

An ideal tool for the genetic characterisation of cancers is
one that could provide information about copy number
aberrations, allelic information, somatic rearrangements and
base pair mutations in a single experiment [7]. Furthermore,
data generated with such technology should be presented in
such a way that the presence of cells other than cancer cells
in the samples would not constitute an insurmountable
hurdle. Such a tool, a few years ago, would belong to the
realms of science fiction.

Technology, however, has evolved at an unprecedented
pace. We are currently witnessing yet another molecular
revolution, one that will most certainly dwarf the paradigm
shifts brought about by the introduction of microarrays: the
advent of massively parallel sequencing (also known as next-
generation sequencing). This technology allows for the
accrual of qualitative and quantitative information about any
type of nucleic acid in a given sample at an incredible
throughput while incurring relatively limited costs (reviewed in
[8-13]).

What is massively parallel sequencing and
why the fuss?
For the past 15 years, Sanger sequencing and fluorescence-
based electrophoresis technologies have been extensively
used in somatic and germline genetic studies. Improvements
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in instrumentation coupled with the development of high-
performance computing and bioinformatics have reduced the
cost of sequencing. However, increases in the throughput of
Sanger DNA sequencing are achieved by the use of
additional sequencers in parallel, owing to the requirement of
gel electrophoresis or additional wells for the capillary
sequencing of each reaction.

Using different approaches, massively parallel sequencing
methods overcome the limited scalability of traditional Sanger
sequencing by either creating micro-reactors and/or attach-
ing the DNA molecules to be sequenced to solid surfaces or
beads, allowing for millions of sequencing reactions to
happen in parallel. At present, there are four technologies
commercially available and several other promising approaches
are in various stages of development and implementation
(Table 1) (reviewed in [8-13]). The current generation of
massively parallel sequencers has led to a quantum leap in
our ability to sequence genomes, so much so that 10-fold
coverage of the human genome (30 Gb DNA sequence) can
be obtained in a single run for no more than US$15,000 to
US$20,000. (Note that the Human Genome Sequencing
Consortium generated 3 Gb at the cost of approximately
US$3 billion and took 13 years!)

Perhaps more important than the sequencing throughput
provided by this technology and its relative low cost
compared with traditional sequencing methods is the type of
data it generates. Instead of long reads generated from a
PCR-amplified sample, massively parallel sequencing
methods provide much shorter reads (~21 to ~400 base
pairs), but millions of them [8-13]. Unlike previous sequen-
cing methods that required DNA amplification (that is, the
final sequence was representative of modal population of
DNA templates), sequencing can now be performed from
single DNA molecules. The short reads generated in the
sequencing of each DNA molecule can be counted and
quantified, allowing the identification of mutations in
nonmodal populations of cells (that is, identification of a
somatic mutation in a small subpopulation of cells immersed
in a modal population with wild-type sequences) and
accurate copy number assessment of each genomic region
([14] and references therein). In addition, with the recent
introduction of approaches that allow for the sequences of
both ends of a DNA molecule (that is, paired end massively
parallel sequencing or mate pair sequencing), it has become
possible to detect balanced and unbalanced somatic
rearrangements (that is, fusion genes) in a genome-wide
fashion [12,14,15].

Not surprisingly, this massive increase in throughput has
come at a cost, with the accuracy of each short read being
significantly lower than the output generated from Sanger
sequencing. Although this is circumvented by the depth of
sequencing (that is, multiple reads of the same region), it is
accepted that physical validation using traditional sequencing

methods is required. Note that each type of next generation
sequencing leads to specific types of artefacts (reviewed in
[8-13]); however, as we are writing the book on next-
generation sequencing as we go along, one should be aware
of unexpected artefacts and new findings should be inter-
preted with caution.

What can be done with massively parallel
sequencing?
Next-generation sequencing has already been applied to re-
sequencing studies, which have led to sequencing of
complete normal and cancer genomes being performed in a
matter of weeks [16-18]. Massively parallel sequencing can
be employed for the simultaneous characterisation of cancer
genomes in terms of somatic base pair and in-del mutations,
balanced and unbalanced rearrangements, and copy number
changes in a single experiment [14,18]. Apart from sequen-
cing whole genomes, massively parallel sequencing can be
coupled with DNA capturing methods for focused analysis of
specific genomic regions, specific genes or the whole exome
[19]. In fact, the Breast Cancer International Cancer Genome
Consortium has pledged to complete sequencing the
genome of 1,500 breast cancers [20]. This study will provide
a comprehensive catalogue of the genetic alterations found in
breast cancer in general and in the different subtypes of the
disease.

Massively parallel sequencing can be applied to germline
DNA for gene association studies and for the analysis of
cancer genomes [8-14], and may constitute a paradigm shift
in the way mutations that cause rare diseases can be identi-
fied. In fact, the power of this technology to unravel genes
whose germline mutations cause rare mendelian disorders is
exemplified by the identification of MYH3 germline mutations
as a cause of Freeman–Sheldon syndrome through the
targeted sequencing of all protein-coding regions (exomes) of
four individuals with this syndrome and eight unrelated
individuals [19]. Although in the interpretation of results from
target exome and whole genome sequencing studies of a
small number of subjects, investigators will have to deal with
the previously underestimated number of private SNPs and
copy number DNA polymorphisms, the 1000 Genomes
Project will provide a more complete catalogue of SNPs,
copy number polymorphisms, and short insertion and deletion
polymorphisms in the general population [21], which may
facilitate the discovery of pathogenic germline mutations.

In addition to the ability to sequence DNA, massively parallel
sequencing can be applied to sequencing RNA [22]. Four
main applications have already been developed – namely,
digital gene expression, RNA sequencing, paired end RNA
sequencing, and small and noncoding RNA sequencing. An
in-depth discussion of these methods and their impact on our
ability to perform transcriptomic analyses is beyond the
scope of this short communication, and readers are referred
to excellent reviews on this topic [13,22]. Suffice it is to say
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these approaches have already led to the identification of
multiple novel splice variants [23], novel gene rearrange-
ments [24,25] and novel fusion genes [26,27], and to the
identification of read-throughs [27], which are RNA mole-
cules resultant from the co-splicing of two genes that are
contiguous in the genome in the absence of a structural
genomic aberration. When combined with DNA massively
parallel sequencing, RNA sequencing has the potential to
unravel RNA editing events, such as the nonsynonymous
transcript editing of the COG3 and SRP9 genes in a meta-
static invasive lobular carcinoma [18]. Furthermore, massively
parallel sequencing studies of noncoding and small RNAs
coupled with the results of the ENCODE project [28] are
likely to reveal a level of transcriptional regulation way beyond
our current models.

Modifications of the protocols for massively parallel sequenc-
ing also allow for an unbiased assessment of DNA methy-
lation [29,30] and histone acetylation, and are likely to
replace microarrays in the analysis of high-throughput immuno-
chromatin precipitation assays [13,31]. Next-generation
sequencing is also replacing microarrays in high-throughput
RNA interference screens: one can perform genomewide
screens to identify genes that interfere with the viability of
cancer cells using pools of short hairpin RNAs, and the
results can be deconvoluted using next-generation sequenc-
ing [32]. This latter approach is likely to provide a wealth of
information on genes that are selectively required for cancer
cell survival and potential drug targets.

Massive parallel sequencing: opportunities
and challenges
The multiple applications and uses of massively parallel
sequencing are likely to reshape several aspects of breast
cancer research. Given the unprecedented ability to identify
mutations, copy number aberrations and somatic rearrange-
ments in cancer genomes, the information accrued by
massively parallel sequencing of breast cancers may lead to a
paradigm shift in the way breast cancers are classified. In
fact, this technology offers a unique opportunity to move from
the current descriptive and prognostic classification systems
to a functional genomic taxonomy that is based on the
molecular aberrations that drive specific subgroups of
cancers, in a way akin to the classification system currently
used for leukaemias and lymphomas. With the availability of
information of the genetic alterations required for the survival
of cells of a given cancer, tumours may be classified accord-
ing to the genetic aberrations they harbour, according to the
molecular networks activated or inactivated by these genetic
aberrations, and, importantly, according to the agents these
tumours are sensitive to.

Studies performing large-scale conventional sequencing of
breast cancers [33,34] revealed that there are a relatively low
number of genes frequently mutated and a high number of
genes rarely mutated in breast cancer. It should be noted,

however, that the number of mutations found in oestrogen
receptor-negative breast cancer cell lines [34] was higher
than that found in an oestrogen receptor-positive breast
cancer [18]. It is therefore plausible that different types of
breast cancer are driven by distinct constellations of genetic
aberrations. It should be noted, however, that even tumours
from the same type may be characterised by mutations of
distinct genes in the same or complementary molecular
networks, which would result in a similar phenotype.

Recent whole-genome characterisation of M1 leukaemias
[35,36] and of a metastatic deposit of an invasive lobular
carcinoma of the breast [18] has demonstrated the power of
this technology for the identification of novel potential
mutations that drive specific subtypes of complex and
heterogeneous diseases such as leukaemias and breast
cancer, and has demonstrated how the mutational spectrum
of a cancer evolves over time. Furthermore, next-generation
sequencing analysis of cancer types whose tumours are
rather homogeneous in terms of their molecular makeup, such
as some special types of breast cancer [37-41], may lead to
the identification of pathognomonic genomic alterations, in a
way akin to C134Y FOXL2 mutations in granulosa cell
tumours of the ovary [42]. These driver genetic alterations
(for example, mutations, amplifications and fusion genes)
have the potential of being exploited as therapeutic targets.

Although the presence of non-neoplastic tissues (that is,
stroma, inflammatory infiltrate and entrapped normal tissues)
represents a challenge for the analysis of the genomes of
preinvasive lesions, primary breast cancers and their meta-
static deposits, there is evidence to suggest that if a tumour
is sequenced at a sufficient depth then accurate sequences
at base pair resolution can be obtained and somatic
mutations identified [18].

Another important application of massively parallel sequenc-
ing due to its ability to deep sequence specific genomic
regions is the identification of secondary mutations as
mechanisms of resistance to specific agents [43,44]. There
are several lines of evidence to demonstrate that de novo and
acquired resistance to some targeted therapies is driven by
secondary mutations in the target genes (for example, the
T790M mutation in the EGFR gene causing resistance to
anti-epidermal growth factor receptor agents [45], and
secondary KIT mutations leading to resistance to imatinib
mesylate and sorafenib [46]) or in genes whose inactivation
is synthetically lethal in the presence of the targeted therapy
(for example, BRCA2 and BRCA1 revertant mutations as a
mechanism of resistance to platinum salts and poly(ADP-
ribose) polymerase inhibitors [47-49]).

It should be noted, however, that the deluge of data derived
from next-generation sequencing studies might take a
relatively long time to be translated into information that is
clinically relevant. Given that each cancer genome may have
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an excess of 10,000 somatic mutations, it is unclear how
much validation through the identification of recurrent muta-
tions [14] or by laborious functional studies will be required
to separate driver mutations (that is, those that either confer
growth/survival advantage for a tumour or are required for the
cancer cells for the maintenance of their malignant behaviour)
from passenger alterations (that is, genomic noise). Further-
more, next-generation sequencing is likely to unravel a much
greater complexity of the normal human genome in terms of
SNPs and copy number polymorphisms [50], some of which
may be confined to some somatic tissues in the same
individual [51,52]. Massively parallel sequencing will require
an availability of high-performance computing and bioinfor-
matic support that is way beyond that of most research
laboratories. Furthermore, quality control and standardisation
of the massively parallel sequencing experiments and data
reporting are important issues to consider. Finally, the ethical
aspects of next-generation sequencing are by no means
trivial, and the readers are referred to excellent reviews
covering these aspects [9,11].

Conclusion
One could argue that massively parallel sequencing is not
only an end, but also a means for performing experiments that
may answer questions that could not even be asked
previously. The revolution that is likely to be brought about by
massively parallel sequencing methods is akin to the
revolution fostered by the introduction of the PCR in the
1980s. It is undeniable that this technology will constitute a
quantum leap in breast cancer basic and translational
research; however, numerous challenges lie ahead. We
ought to learn from our recent experience with microarrays,
and avoid any sort of unjustified overoptimism. The greatest
danger of using this revolutionary technology is that it comes
with new problems; if we move too quickly, the lessons we
are beginning to learn from previous high-throughput studies
may be forgotten when massively parallel sequencing is
applied to clinical and translational questions.
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