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Abstract

Introduction Germline mutations in the BRCA1 and BRCA2
genes account for a considerable fraction of familial
predisposition to breast cancer. Somatic mutations in BRCA1
and BRCA2 have not been found and the involvement of these
genes in sporadic tumour development therefore remains
unclear.

Methods The study group consisted of 67 primary breast
tumours with and without BRCA1 or BRCA2 abnormalities.
Genomic alterations were profiled by high-resolution (~7 kbp)
comparative genome hybridisation (CGH) microarrays. Tumour
phenotypes were analysed by immunohistochemistry on tissue
microarrays using selected biomarkers (ER, PR, HER-2, EGFR,
CK5/6, CK8, CK18).

Results Classification of genomic profiles through cluster
analysis revealed four subgroups, three of which displayed high
genomic instability indices (GII). Two of these GII-high
subgroups were enriched with either BRCA1- or BRCA2-
related tumours whereas the third was not BRCA-related. The
BRCA1-related subgroup mostly displayed non-luminal
phenotypes, of which basal-like were most prominent, whereas
the other two genomic instability subgroups BRCA2- and GII-
high-III (non-BRCA), were almost entirely of luminal phenotype.
Analysis of genome architecture patterns revealed similarities
between the BRCA1- and BRCA2 subgroups, with long

deletions being prominent. This contrasts with the third
instability subgroup, not BRCA-related, where small gains were
more prominent.

Conclusions The results suggest that BRCA1- and BRCA2-
related tumours develop largely through distinct genetic
pathways in terms of the regions altered while also displaying
distinct phenotypes. Importantly, we show that the development
of a subset of sporadic tumours is similar to that of either familial
BRCA1- or BRCA2 tumours. Despite their differences, we
observed clear similarities between the BRCA1- and BRCA2-
related subgroups reflected in the type of genomic alterations
acquired with deletions of long DNA segments being prominent.
This suggests similarities in the mechanisms promoting
genomic instability for BRCA1- and BRCA2-associated
tumours, possibly relating to deficiency in DNA repair through
homologous recombination. Indeed, this feature characterized
both familial and sporadic tumours displaying BRCA1- or
BRCA2-like spectrums of genomic alterations. The importance
of these findings lies in the potential benefit from targeted
therapy, through the use of agents leading to DNA double-
strand breaks such as PARP inhibitors (olaparib) and cisplatin,
for a much larger group of patients than the few BRCA1 and
BRCA2 germline mutation carriers.
Page 1 of 14
(page number not for citation purposes)

CBS: circular binary segmentation; CGH: comparative genomic hybridisation; CK: cytokeratin; EGFR: epidermal growth factor receptor; ER: oestro-
gen receptor; FISH: fluorescence in situ hybridiaation; GII: genomic instability index; HER: human epidermal growth factor receptor; IHC: immuno-
histochemisty; MSP: methylation-specific PCR; PCA: principal component analysis; PR: progesterone receptor; TMA: tissue microarrays.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19589159
http://breast-cancer-research.com/content/11/4/R47
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/info/about/charter/


Breast Cancer Research    Vol 11 No 4    Stefansson et al.
Introduction
Germline mutations in the BRCA1 or BRCA2 genes signifi-
cantly increase the risk of developing early-onset breast can-
cer [1]. Tumours derived from BRCA1 or BRCA2 germline
mutation carriers have generally lost the wild-type BRCA1 or
BRCA2 alleles, respectively [2,3]. These observations sug-
gest important roles for the BRCA1 and BRCA2 genes as
tumour suppressors. The BRCA1 and BRCA2 gene products
are both phosphorylated by ATR (ataxia telangiectasia and
Rad3 related) which, in turn, is activated by DNA damage and
stalled replication forks [4,5]. BRCA1 is important in recruit-
ment of various DNA repair proteins, including BRCA2, to
sites of DNA damage, whereas BRCA2 is crucial for catalys-
ing the formation of RAD51 filaments on single-stranded DNA
at the damaged sites [6,7]. The BRCA1 and BRCA2 proteins
are linked within a network of protein interactions having a
common objective of responding to DNA damage and stalled
replication forks [8]. Disruption of key elements within this net-
work might explain why cells defective in either BRCA1 or
BRCA2 display genomic instability and are sensitive to DNA
damage that involves double-strand breaks [4]. This has sug-
gested potential therapeutic applications through the use of
agents that lead to double-stranded DNA breaks such as
PARP inhibitors, mitomycin C and platinum salts [9].

The involvement of the BRCA1 and BRCA2 genes in sporadic
breast tumour development has been questioned because
somatic mutations in BRCA1 or BRCA2 have not been found
[10,11]. However, methylation of the BRCA1 gene promoter
and loss of BRCA1 gene expression are significantly associ-
ated and occur frequently in sporadic breast tumours [12]. We
have previously reported on epigenetic silencing of the
BRCA1 gene through promoter methylation in about 10% of
an unselected set of sporadic breast cancers [13]. These
observations suggest that epigenetic silencing of the BRCA1
gene might be an alternative to somatic mutations as a mech-
anism of BRCA1 inactivation in sporadic cases of breast can-
cer. In addition, it has been demonstrated that the BRCA2
gene is negatively regulated by protein interactions with gene
products of the EMSY gene which, in turn, is frequently ampli-
fied in sporadic breast tumours [14]. This suggests an impor-
tant link between the BRCA2 gene and sporadic tumour
development.

Analyses of genomic and gene expression profiles in unse-
lected sets of breast tumours have revealed subgroups of bio-
logical and clinical relevance [15,16]. These studies have
shown that the expression profiles of tumours derived from
BRCA1 germline mutation carriers strongly resemble those of
sporadic basal-like tumours [17]. This has suggested that
underlying BRCA1 abnormalities could promote sporadic
basal-like tumour development. Supporting this notion is the
finding that sporadic basal-like tumours frequently display a
significantly reduced expression of the BRCA1 gene and 

genomic instability [18,19]. However, a subset of sporadic
basal-like tumours do not display large-scale genomic instabil-
ity which have been proposed to represent a novel subtype of
breast cancers [20]. Here, we have profiled and examined the
patterns of genomic alterations in familial BRCA1 and BRCA2
tumours in the context of sporadic tumours with and without
epigenetic silencing of the BRCA1 gene. The results were
coupled with analysis of tumour phenotypes using a selected
set of biomarkers on tissue microarrays. We then specifically
addressed the question of whether the BRCA1 and BRCA2
genes are involved in sporadic breast tumour development.

Materials and methods
Study group
The study group was derived from a well-defined population
with respect to the local BRCA1 5193G-> A and BRCA2
999del5 germline mutations [21,22]. All patients within the
study group had previously been screened for these BRCA1
and BRCA2 germline mutations. Sporadic tumours were
defined as those derived from patients that were negative for
the local BRCA germline mutations with no known family his-
tory of the disease.

The study group consisted of a selected set of primary infiltrat-
ing female breast tumour samples (n = 67). The samples were
selected from tumours derived from BRCA1 and BRCA2
germline mutation carriers along with sporadic tumours with
and without epigenetic silencing of the BRCA1 gene. At least
one sporadic tumour (n = 38) without BRCA abnormalities
was selected for each of the BRCA abnormal tumours (n =
29), that is, familial BRCA1 (n = 3) and BRCA2 (n = 18)
tumours along with sporadic tumours displaying epigenetic
silencing of the BRCA1 gene (n = 8). All tumours, sporadic
and familial BRCA1 and BRCA2, were selected by their
patient age at diagnosis of 61 years or younger. The DNA sam-
ples had previously been isolated from freshly frozen tumour
tissue and these samples were obtained from the Biological
Specimen Bank of the Icelandic Cancer Society. The tumour
samples were macroscopically examined prior to DNA isola-
tion and portions showing viable tumour tissue were identified.
These portions were then selected for DNA isolation, which
was performed using a standard phenol-chloroform plus pro-
teinase K protocol. Data on clinical parameters were obtained
from the Department of Pathology and Department of Oncol-
ogy, Landspitali Hospital, Reykjavik, Iceland. Time to relapse
refers to the time from surgical removal of the primary tumour
to diagnosis of recurrence or metastasis. This work was car-
ried out according to permits from the Icelandic Data Protec-
tion Commission (2006050307) and Bioethics Committee
(VSNb2006050001/03-16). Informed consent was obtained
from all patients.
Page 2 of 14
(page number not for citation purposes)



Available online http://breast-cancer-research.com/content/11/4/R47
Array comparative genomic hybridisation
Comparative genomic hybridisation (CGH) was performed
using high-resolution oligonuclueotide microarrays (Roche
NimbleGen, Inc., Reykjavik, Iceland) [23]. The arrays used,
"2006_11_01 HG17_WG_CGH" (n = 46) and "080101
HG18_WG_CGH_v2_X1" (n = 21), were of a standard
design developed by Roche NimbleGen, Inc. (Reykjavik, Ice-
land) covering the human genome in about 7 kbp median
resolution. Sample preparations and hybridisations were car-
ried out according to manufacturer's protocols (NimbleGen
Arrays User's Guide-CGH Analysis, Roche NimbleGen, Inc.,
Reykjavik, Iceland). Cy3 and Cy5 signal intensity distributions
were then normalized using the qspline method (affy package
in Bioconductor for R) [24]. The array CGH data are available
in the ArrayExpress repository (E-TABM-712).

Methylation specific PCR and allelic imbalance
Methylation at the BRCA1 promoter region was assessed in
all tumours within the study group by methylation-specific
PCR (MSP) as previously described [13]. Allelic imbalance by
microsatellite analysis at the BRCA1 and BRCA2 loci had
previously been performed [13].

Tissue microarrays and expression analysis
Core samples were removed (1.0 mm diameter) from each
tumour and rearranged on empty paraffin-blocks using a man-
ual tissue microarray device (BEECHER MTA II; Beecher
Instruments, Inc., Sun Prairie, Wisconsin, USA).

Immunohistochemistry (IHC) was applied to 4 m thick tissue
microarray (TMA) sections mounted on superfrosted slides
(Menzel, Germany). The slides were dewaxed and immerged
in Tris-EDTA, pH 9, (HIER) in microwave oven at 99°C. Endog-
enous peroxidase activity was inactivated by incubation in
blocking solution and the slides then incubated with primary
antibody (30 minutes). Polymer conjugate was used as Visual-
ization System (K4061, EnVision+ Dual Link, DAKO, DK-
2600, Glostrup, Denmark) (30 minutes) and DAB (K-3468,
DAKO, DK-2600, Glostrup, Denmark) used as chromogen
(10 minutes).

Expression analysis by IHC on TMA sections was performed
for oestrogen receptor (ER), progesterone receptor (PR),
human epidermal growth factor receptor (HER)-2, epidermal
growth factor receptor (EGFR), cytokeratin (CK) 5/6, CK8,
CK18 and BRCA1 [see Additional data file 1]. Expression lev-
els were estimated blindfolded to previously established
tumour characteristics and BRCA abnormalities. Expression
of ER and PR were scored on a discontinuous scale of 0+, 1+,
2+ and 3+ with the addition of hyper-intense staining (> 3+)
being remarked for those tumours displaying extremely intense
and concentrated nuclear staining. Positive nuclear ER and
PR immunostaining was defined as any visible staining in more
than 1% of tumour cell nuclei. Information obtained from Land-
spitali Hospital, Department of Pathology (ligand binding

assay) was used to complement missing data on ER and PR
expression thereby allowing ER and PR positivity/negativity to
be established for all tumours within the study group. HER-2
positivity was defined as staining of tumour cellular mem-
branes displaying a score of 3+ according to criteria provided
by the manufacturer (DAKO, DK-2600, Glostrup, Denmark).
EGFR was scored on a discontinuous scale of 0+, 1+, 2+ and
3+ which was estimated by the staining intensity of tumour
cellular membranes following descriptions provided by the
manufacturer (DAKO, Glostrup, Denmark). EGFR positivity
was defined as tumours displaying any, weak or strong, stain-
ing of the cellular membrane whereas a score of 2+ or higher
was defined as high EGFR expression. Expression of BRCA1
was estimated by nuclear staining where loss of BRCA1
expression was defined as no visible nuclear staining whereas
positive expression was defined as any visible, weak or strong,
nuclear staining. The CK5/6 marker was scored as positive
when weak or strong cytoplasmic and/or membranous stain-
ing was visible and otherwise scored as negative. CK8 and
CK18 were scored on a scale of 0+, 1+, 2+ and 3+ according
to descriptions provided by the manufacturer (DAKO, Glos-
trup, Denmark).

Definition of tumour phenotypes and BRCA 
abnormalities
Luminal phenotype was defined as positivity for either ER or
PR whereas non-luminal phenotype was defined as negativity
for both ER and PR. The five biomarker classification scheme
given in Cheang and colleagues was used to further subdivide
these two phenotypic categories into luminal, luminal-HER2,
5NP (five-marker negative phenotype), non-luminal HER2 and
basal-like phenotypes [25].

Tumours derived from BRCA1 and BRCA2 germline mutation
carriers were defined as BRCA1 and BRCA2 abnormal,
respectively. Additionally, tumours displaying epigenetic
silencing of the BRCA1 gene were defined as BRCA1 abnor-
mal in those cases where BRCA1 promoter methylation was
coupled with complete absence of nuclear BRCA1 protein
expression.

Fluorescence in situ hybridisation
Fluorescence in situ hybridisation (FISH) was performed on
paraffin-embedded and formalin-fixed tumour tissue sections
(4 m). DNA probe specific for the EMSY gene (BAC human
CTD 2501F13, Invitrogen, Carlsbad, CA, USA) was labelled
with SpectrumOrange-dUTP (Vysis, Des Plaines, IL, USA) by
nick translation, and pRB11 clone for the centromere of chro-
mosome 11 labelled with fluorescein-12-dUTP (Enzo Life Sci-
ences, Farmingdale, NY, USA). Slides were deparaffinised
and pretreated, probes and cotI DNA denatured in t-DenHyb-
2 hybridisation buffer (Insitus Biotechnologies, Albuquerque,
NM, USA) and hybridised to the tumour sections overnight.
Stringency wash was performed at 72°C in solution containing
2 × SSC/0.3% NP-40. Analysis was performed in a Leica
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DMRXA2 fluorescence microscope with at least 100 cell
nuclei counted in each experiment. Thresholds for copy gains
were set at gene/centromere ratio of more than 1.5 and high-
level amplification at a ratio of more than 2.5.

Statistical analysis and data mining of array-CGH data
The Cy3/Cy5 ratio signal intensities were log2 transformed
following normalisation of each array CGH experiment. The
data were then represented by the median of log2 ratios within
a window of five probes resulting in a median resolution of
about 37.5 kb. Copy number alterations were identified by the
Circular Binary Segmentation (CBS) algorithm implemented in
DNAcopy (Bioconductor for R) with an alpha of 0.01 to iden-
tify change points while cancelling splits having less than 1.0
standard deviation units in difference through the sd.undo pro-
cedure [24,26]. The threshold for determining copy number
alterations was fixed at ± 0.08, which was selected to capture
the level of plateaus above and below the baseline as
observed within the examined tumour genomes [26]. To fur-
ther refine these thresholds we obtained estimates of probe
noise levels for each of the arrays as described in Fridlyand
and colleagues [27] to subsequently categorise the arrays by
their noise levels with the discriminators being the lower and
upper quartiles of the distribution. The thresholds for arrays
displaying high and low noise levels were then modified to ±
0.10 and ± 0.06, respectively. The assigned thresholds were
then validated by examining the association between immu-
nostaining scores of the HER-2 gene (HercepTest, DAKO,
DK-2600, Glostrup, Denmark) and copy number states, that
is, gains, no change and deletions, which was found to be
highly significant (Pearson's correlation, r = 0.53, P = 3.2 ×
10-5). Additionally, we found the frequency of copy number
gains at the HER-2 gene locus to be 27% (18 of 67), which is
in line with previous reports [20]. High-level amplifications
were defined as segment means that exceed 2SD units above
the mean of log2 ratios derived from segments gained in copy
number. These thresholds were validated by examining the
association between HER-2 overexpression (HercepTest,
Score 3+) and high-level amplification of the HER-2 gene
(Pearson's correlation, r = 0.64, P = 1.3 × 10-7).

The CBS output was then used to represent each of the
tumour genomes as segmented profiles in terms of copy
number states, that is, +1 for copy gains, 0 for no change and
-1 for deletions. Copy number alterations often cover large
genomic regions within which a subset of one or more genes
may be targeted [28]. Thus, classification of genomic profiles
is subject to a large degree of inherent biological noise. This
was addressed by projecting the data to lower dimensions
through principal component analysis (PCA) prior to cluster
analysis making use of only the first few components. This was
performed in R 2.7.2 where the prcomp function was used to
obtain the components. The first three principal components
explained about 40% of the variability in the genomic data [see
Additional data file 2]. Each of the other components

explained less than 5% of the variability and were ignored in
the subsequent steps. Cluster analysis was performed on the
lower-dimensional data using the k-means cluster algorithm in
R 2.7.2. This was carried out in an iterative procedure where
the silhouette information was estimated using the silhouette
function in R 2.7.2 (cluster package) to establish strong and
reproducible results. Average silhouette information was used
to identify the number of clusters in the data with 1000 itera-
tions for each k = {2, 3, ..., 10}. Tumours with a low silhouette
information (silhouette < 0.20) were considered borderline
instances and were classified by first filtering the data in a
Kruskal-Wallis hypothesis test (P < 0.01) while leaving out all
such borderline tumours and then determining their member-
ship position by re-applying the cluster procedure. A final
model was then derived through the same procedure resulting
in all tumours being assigned a cluster membership indicator.

To compensate for the few samples derived from BRCA1
germline mutation carriers in our study we obtained previously
published array CGH data available online through ArrayEx-
press (E-TABM-170). This dataset included genomic profiles
derived from five familial BRCA1 tumours, which were com-
bined with our dataset. These five familial BRCA1 tumours
were analysed by first identifying copy number alterations as
described in Fridlyand and colleagues [27]. The output was
then used to represent each of the tumour genomes as seg-
mented profiles in terms of copy number states as described
above. These segmentation profiles were then combined with
our dataset by obtaining copy number states from each of the
tumour genomes analysed in this study representing the near-
est genomic region to those represented on the CGH arrays
used in the Fridlyand and colleagues study [27]. This was per-
formed by determining the difference in genomic length for
each location between the two array platforms and then
selecting the minimal distance. This procedure reduces the
median array resolution from about 7 kb to about 765 kb, that
is, from the NimbleGen high-resolution design to that used in
Fridlyand and colleagues [27].

The degree of genomic instability for each tumour was esti-
mated by determining the fraction of the genome altered. This
was computed by obtaining copy number states for each of
the windowed probes and determining the number of those
assigned as altered in copy number against the total number
of windowed probes. This measure, referred to as the genomic
instability index (GII), has been described previously [20].

Genomic alterations characterising each of the subgroups
were identified by using a conservative modification of the
Fisher's exact test with P  0.001, which was applied on the
filtered dataset. This conservative modification of the Fisher's
exact test has the advantage of penalising low P-values based
on few counts [29].
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Results
Copy number alterations in breast tumour genomes
Genomic alterations present within the study group were vis-
ualised by generating a frequency plot displaying the propor-
tion of tumours with copy number gains and deletions at each
genomic location analysed (Figure 1a). Examination of the fre-
quency plot reveals that regions frequently gained are infre-
quently deleted and vice versa. It can also be seen that sites
of recurrent high-level amplification events occur within
genomic regions that are frequently gained in copy numbers
(Figure 1b). These observations show that copy number alter-
ations are not randomly distributed throughout the tumour
genomes.

Classification of genomic profiles
Variability present in the spectrum of genomic alterations
within the study group was examined by unsupervised classi-
fication of the genomic profiles through cluster analysis. The
purpose was to examine the resulting tumour subgroups in
terms of their prevalence for BRCA1 and BRCA2 abnormali-
ties.

Cluster analysis revealed four distinct subgroups within the set
of tumours constituting the whole study group (Figure 2a; see
Additional data files 3 and 4). Three of the identified sub-

groups displayed high levels of genomic instability as meas-
ured by the GII, whereas one subgroup was characterised by
low instability levels clearly seen in the distribution of GII within
this subgroup in comparison with that of the others combined
(Wilcoxon rank sum test, P < 10-11; Figure 2b). One of the GII-
high subgroups (n = 11) was enriched with tumours displaying
BRCA1 abnormalities (6 of 11) defined as an instance of a
BRCA1 germline mutation or epigenetic silencing of the
BRCA1 gene (Fisher's exact test, P = 0.006). This subgroup
will hereafter be referred to as the BRCA1-related subgroup.
Tumours displaying epigenetic silencing of the BRCA1 gene
were also highly enriched within this subgroup when sporadic
cases were considered exclusively (Fisher's exact test P =
0.007). Additionally, two other sporadic tumours within this
subgroup displayed loss of BRCA1 protein expression without
detectable hypermethylation of the BRCA1 gene promoter
and both of these tumours were CK5/6 positive. All tumours
within this subgroup analysed for loss of heterozygosity at the
BRCA1 locus displayed allelic imbalance (Fisher's exact test,
P = 0.003). To validate the relationship with BRCA1 abnor-
malities we obtained previously published CGH array data in
which five familial BRCA1 breast tumour samples were ana-
lysed [27]. The five familial BRCA1 tumours were combined
with all the samples in our study group to subsequently re-
apply the clustering procedure [see additional data file 5]. All

Figure 1

Genomic alterations within the study groupGenomic alterations within the study group. (a) The proportion of tumours with copy gains (positive) or deletions (negative) plotted along each chro-
mosome. (b) The proportion of tumours with high-level amplifications plotted along each chromosome.
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of the five familial BRCA1 tumours clustered among the
tumours that constituted the previously defined subgroup of
tumours enriched with BRCA1 abnormalities. Combining the
two different platforms involves reduction in array resolution
for which reasons the five familial BRCA1 tumours were not
included in subsequent analysis. A total of five blood-derived
DNA samples from individuals with sporadic tumours display-
ing BRCA1-like genomic patterns were fully screened for
germline mutations in the BRCA1 gene and none were found.
Another GII-high subgroup (n = 9) was highly enriched of
tumours derived from BRCA2 germline mutation carriers (8 of
9; Fisher's exact test P < 10-4; Figures 2a and 2b). We will
hereafter refer to this subgroup as the BRCA2-related sub-
group. The third GII-high subgroup (n = 14) was not related to
abnormalities in the BRCA genes and will hereafter be
referred to as the GII-high-III subgroup (Figures 2a and 2b).

Genomic alterations characterising the distinct genomic 
subgroups
The genomic alterations that characterised the BRCA1-
related subgroup, when compared with the rest of the cohort,
were deletions at chromosomes 4p, 4q, 5p/q, Xp, Xq along
with copy number gains at 10p and 16q (Fisher's exact test
modified, P < 0.001) [See Additional data files 6 and 7].
Genomic regions characterising the BRCA2-related sub-
group were deletions at chromosomes 1p, 3p, 6q, 8p, 11q,
13q, 14q, 16q, 17p and Xp along with copy number gains at
3p, 8q and 17q as compared with the rest of the cohort
(Fisher's exact test modified, P < 0.001) [see Additional data

files 6 and 7]. High-level amplifications at 1q43–q44 and
8q24 were prominent (> 20% of samples) within the BRCA2-
related subgroup (Fisher's exact test, P < 0.05). The one spo-
radic tumour that clustered among the BRCA2-related sub-
group displayed gains in copy numbers of the EMSY gene
located at 11q13.5, which was confirmed by FISH analysis for
two different regions of the tumour showing gene/centromere
ratios of 1.9 and 3.0, respectively [see Additional data file 8].
Full sequencing of the BRCA2 gene was carried out on blood-
derived DNA from this individual and no germline mutations
were found.

The genomic alterations that characterised the GII-high-III sub-
group were mostly small regions of copy number gains [see
Additional data files 6 and 7]. High-level amplifications at
11q13.2–q13.3 were prominent (> 20% of samples) within
this subgroup (Fisher's exact test, P < 0.05). All but two sam-
ples (12 of 14; 86%) within this subgroup displayed high- or
low-level copy number gains at the 11q13.2–q13.3 genomic
region (Fisher's exact test modified, P = 0.0003). The high-
level amplifications at 11q13.2–q13.3 included two regions at
which the level of significance peaks. One of these two
regions covered a very small region, about 92 kb, and included
a single gene, the FADD gene whereas the second region
covered about 556 kb and included four genes, that is,
MYEOV, CCND1, ORAOV1 and FGF19.

The subgroup characterised by tumours with low GIIs was not
associated with any specific genomic alterations. Some of

Figure 2

Classification of breast tumours by their genomic profiles through cluster analysis identified four distinct subgroupsClassification of breast tumours by their genomic profiles through cluster analysis identified four distinct subgroups. (a) Cluster membership out-
comes are visualised in terms of BRCA abnormalities through principal component analysis (PCA). Two of the four identified subgroups were 
enriched for either BRCA1 or BRCA2 abnormalities referred to as the BRCA1-related (n = 11) and BRCA2-related subgroups (n = 9), respectively. 
The characters represent cluster memberships of each tumour with BRCA1 and BRCA2 abnormaliti
nt two reflects their similarities, see further in Additional data file 3. (b) The distribution of genomic instability indices (GII) differed considerably 
between the identified subgroups in that one of the subgroups displayed low genomic instability whereas the other three displayed high instability 
levels.
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these tumours displayed copy number gains at 1q, 8q and
16p and deletions at 8p and 16q. These genomic alterations
do not all occur within the same tumour but different combina-
tions of them describe the observed variation in genomic pro-
files found within this subgroup. It is important to note that we
did observe tumours that did not display any of these com-
monly observed alterations with some having very few copy
number alterations. We propose here that these tumours may
represent biologically important disease entities of breast
cancers.

Genome architecture patterns
Visual examination of the segmentation profiles revealed clear
differences in alteration patterns between each of the identi-
fied subgroups, that is, their genome architecture patterns
(Figure 3). Tumour genomes within the BRCA1- and BRCA2-
related subgroups were characterised by relatively long
stretches of genomic alterations, deletions and copy gains
along with occasional high-level amplifications (Figures 3a and
3b). Tumours within the simple-profile subgroup appear similar
to the BRCA1 and BRCA2 subgroups in terms of altered seg-

ment lengths but differ in that they display considerably less
complex genomes (Figure 3c). The tumours within the GII-
high-III subgroup were characterised by numerous closely
packed and small copy number alterations throughout their
genomes with occasional high-level amplification events (Fig-
ure 3d). This is similar to the complex-firestorm patterns
described by Hicks and colleagues or the amplification pheno-
type described by Fridlyand and colleagues whereas the
BRCA1 and BRCA2-related subgroups are more similar to
the complex-sawtooth patterns [30,31].

The observed phenotypic features of the tumour genomes
were quantitatively analysed by examining the segment
lengths within each subgroup. This analysis demonstrates that
the distribution of segment lengths within the GII-high-III sub-
group is shifted towards smaller segments, whereas the
tumours within the BRCA1-related subgroup display a shift
towards longer segments (Figure 4a). Examining the segment
lengths of deletions and gains separately shows that the
BRCA1- and BRCA2-related subgroups are characterised by
large deletions whereas the GII-high-III subgroup is character-

Figure 3

Differences in genome architecture patterns were observed between the identified subgroupsDifferences in genome architecture patterns were observed between the identified subgroups. Two tumour genomes are shown for each of the four 
subgroups. (a) The BRCA1- and (b) BRCA2-related subgroups are characterised by relatively long segments of deletions with occasional high-level 
amplifications. (c) The simple-profile subgroup resembled the BRCA1- and BRCA2-related subgroups but displayed considerably less complex 
genomes. (d) The GII-high-III subgroup was characterised by small and closely spaced segments of genomic alterations throughout their tumour 
genomes along with occasional high-level amplifications. GII = genomic instability index.
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ised by small copy number gains rather than deletions (Figures
4b and 4c). Pair-wise comparisons for the distributions in
deleted segment lengths between subgroups demonstrates
that each of the BRCA1- and BRCA2-related subgroups are
significantly different from the simple- and/or GII-high-III sub-
groups (Wilcoxon rank sum test, P < 10-11).

Tumour phenotypes and their relation with genomic 
profiles
The relation between the identified genomic subgroups and
tumour phenotypes was examined using a selected panel of
biomarkers analysed on TMAs. Tumour phenotypes were
established as described in Cheang and colleagues by
expression analysis of five biomarkers, ER, PR, HER-2, EGFR
and CK5/6 on TMA sections [25]. Additionally, we examined
the expression of CK8 and CK18 on these TMAs.

Clear trends for particular phenotypic properties were
observed for the three genomic instability groups (GII-high;
Figures 5a and 5b) [see Additional data files 3 and 9]. The
BRCA1-related subgroup was enriched for tumours display-
ing non-luminal phenotypes (9 of 11, 82%; Fisher's exact test,
P = 0.0049) and grade 3+ (8 of 11, 73%). Of the nine non-
luminal tumours within this subgroup a total of eight were fully
interpretable for all the five biomarkers and were thus further
subdivided into basal-like (4 of 8, 50%), non-luminal HER-2 (2
of 8, 25%) and tumours negative for all five biomarkers, 5NP,
(2 of 8, 25%; Figure 5a). The two luminal tumours within this
subgroup displayed high ER expression (3+) and negativity for
HER-2 amplification. The BRCA2-related subgroup was
entirely composed of luminal tumours (9 of 9, 100%). All but

one of the tumours within this subgroup displayed high expres-
sion of ER ( 2+; 8 of 9, 89%) and almost all were of grade 3+
(4 of 5, 80%). Four of the seven tumours displaying hyper-
intense ER staining (> 3+) were found within this subgroup (4
of 7, 57%; Fisher's exact test P = 0.0049). All of the nine
tumours within this subgroup were HER-2 negative (9 of 9,
100%; Figure 5a). The GII-high-III subgroup was almost
entirely composed of luminal tumours (12 of 14, 86%). This
group of tumours displayed an unusually high frequency of
high PR expression with IHC score 3+ (7 of 14, 50%; Fisher's
exact test P = 0.034) and with IHC score  2+ (9 of 14, 64%;
Fisher's exact test P = 0.0072; Figure 5b). Supporting this
observation is the finding that two of the three tumours within
the entire study group displaying hyper-intense staining of the
PR gene (> 3+) were found within the GII-high-III subgroup. It
can be hypothesised here that the third component shown in
Figure 5b reflects differences in luminal vs. non-luminal pheno-
types whereas the second component splits up two popula-
tions of luminal tumours that are different in terms of PR
expression (Figure 5b) [see Additional data file 3].

The simple-profiles subgroup was found to represent a heter-
ogeneous group of tumours in terms of their phenotypes. An
important observation is that the luminal tumours within this
subgroup displayed a trend towards lower tumour grade as
compared with the luminal tumours within the more complex
GII-high subgroups (Chi-squared test for trend, P = 0.032).
However, non-luminal tumours within the simple-profile sub-
group displayed a trend towards high tumour grade as com-
pared with the luminal tumours within the same subgroup (Chi-
squared test for trend, P = 0.0015).

Figure 4

Quantitative analysis of the observed genome architecture patternsQuantitative analysis of the observed genome architecture patterns. Empirical cumulative distribution curves for segment lengths within each of the 
four identified subgroups were examined. The distribution of segment lengths for each of the identified subgroups are shown for all segments (a) 
altered in copy number, (b) gained in copy number and (c) deleted in copy number. The P-values in each of these comparisons were highly signifi-
cant (P < 10-15) determined through a Kruskal-Wallis hypothesis test.
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Tumours displaying low genomic instability indices
The observed heterogeneity within the simple-profile sub-
group was further examined by hierarchical cluster analysis on
the genomic profiles found within this subgroup. This analysis
revealed a cluster of tumours (n = 11) characterised by very
low genomic instability indices (mean of 0.029 ± 0.026) as
compared with the other simple-profile tumours (Wilcoxon
rank sum test, P < 10-5) and the rest of the cohort (Wilcoxon
rank sum test, P < 10-6). This cluster of tumours displaying
mostly 'flat' genomes included high frequency of non-luminal
phenotypes (9 of 11, 82%) of which most were basal-like (7 of
9, 78%) and grade 3+ (Figure 6). Although they are character-
ised by silent or flat genomes, these tumours occasionally
show small spikes of alterations, including focal high-level
amplifications and very small deletions. We observed that this
cluster of silent-tumours (n = 11), referred to hereafter using
the 'silent' prefix, more frequently displayed high expression of
EGFR ( 2+) gene products as compared with the rest of the
cohort (Fisher's exact test, P = 0.0069). Two of these five
tumours with high EGFR expression displayed high-level
amplification of the EGFR gene, which was not found in any
other tumour within the study group [see Additional data file
10]. Importantly, the non-luminal tumours with silent genomes
displayed an aggressive phenotype in terms of disease out-
come (Figure 6). By contrast, the luminal tumours within the
simple-profile subgroup displayed low tumour grade and few

of these patients experienced relapse within 5 years suggest-
ing non-aggressive disease (Figure 6).

Tumours derived from BRCA1 germline mutation carriers
were not found within the cluster of 11 tumours displaying
silent genomes. However, two familial BRCA2 tumours were
found within this cluster, neither of which displayed deletion or
allelic imbalance at the BRCA2 locus and both had an
extremely low GII, that is less than 0.034, and were of basal-
like phenotype.

Discussion
The results presented here portray detailed views of genomic
alterations in breast cancers and their relation with BRCA
abnormalities and tumour phenotypes. The purpose of this
study was to examine the potential involvement of the BRCA1
and BRCA2 genes in sporadic breast tumour development.

A subset of sporadic tumours develop either BRCA1- or 
BRCA2-like patterns of genomic alterations
Classification of genomic profiles through cluster analysis
revealed four distinct subgroups of which two displayed high
prevalence of tumours having either BRCA1- or BRCA2
abnormalities. These two subgroups, referred to as the
BRCA1- and BRCA2-related subgroups respectively, dis-
played distinct patterns of genomic alterations and high insta-
bility indices. Importantly, our results show that sporadic

Figure 5

Tumour phenotypes in relation to the identified genomic subgroupsTumour phenotypes in relation to the identified genomic subgroups. (a) Expression of oestrogen-receptor (ER), progesterone receptor (PR) and 
human epidermal growth factor receptor (HER)-2 was available in all cases enabling classification of all tumours as luminal or non-luminal. The 
tumours were then further subdivided using the five biomarker scheme based on expression analysis of ER, PR, HER-2, epidermal growth factor 
receptor (EGFR) and cytokeratin (CK) 5/6. The left part of each rectangle represents the proportion of luminal phenotypes within each of the four 
subgroups, as indicated, whereas the right part represents the proportion of non-luminal tumours. Sub-categories of these phenotypes are repre-
sented there within as proportions of either luminal or non-luminal phenotypes, see bottom of the figure. (b) Projection of all tumours through princi-
pal component analysis (PCA) is shown with cluster outcomes, BRCA status and the assigned tumour phenotypes indicated. Colours indicate 
tumour phenotypes matching those given at the bottom left panel with the addition of high PR expression immunohistochemistry scores 2+ and  3+ 
indicated by dark and light orange character outlines, respectively. Cluster memberships and BRCA status are indicated as shown at the bottom of 
the figure. In terms of tumour phenotypes, it can be hypothesised that component three reflects differences in luminal vs. non-luminal phenotypes 
whereas component two separates two populations of luminal tumours, which relate to differential PR expression.
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tumours with epigenetic silencing of the BRCA1 gene
develop similar patterns of genomic alterations as tumours
derived from BRCA1 germline mutation carriers. This sug-
gests that inactivation of the BRCA1 gene through epigenetic
silencing is an important event in sporadic breast tumour
development. We found two tumours within this genomic sub-
group displaying loss of BRCA1 expression without promoter
methylation of the BRCA1 gene and both of these tumours
expressed the basal marker CK5/6. Given the observations
described above, it is reasonable to speculate that sporadic
tumours displaying BRCA1-like genomic alterations are pro-
moted by defects linked with the BRCA1 gene function in
genomic maintenance.

Interestingly, one sporadic tumour classified among the
BRCA2-related subgroup, which was otherwise exclusively
comprised of tumours derived from BRCA2 germline mutation
carriers. This tumour displayed a deletion at the BRCA2 gene
locus and gains in EMSY gene copy numbers. EMSY gene
products are known to interact with and negatively regulate
BRCA2 proteins and this may link the BRCA2 gene with spo-
radic breast tumour development. Obviously, further research
is needed to examine the relation between EMSY amplification
and BRCA2-like patterns of genomic alterations.

BRCA-like genomic instability
Although BRCA1- and BRCA2-related tumours develop
through alterations affecting different regions in their genomes
they showed similarities in their genomic architecture patterns
with large segments of deletions being prominent. This sug-
gests a similar mechanism by which these tumours acquire
instability and we propose here that this might relate to the
involvement of the BRCA1 and BRCA2 genes in error-free
DNA repair of double-strand breaks through HR (homologous
recombination). Inactivation of either BRCA1 or BRCA2 is
generally thought to lead to the repair of double-strand breaks
by error-prone mechanisms via non-homologous end joining
[32,33]. DNA repair of double-strand breaks by non-homolo-
gous end joining can lead to errors leading to gains or losses
of large segments of genomic material. This mechanism could
underlie the characteristic type of genomic instability observed
within the BRCA1- and BRCA2-related subgroups. Alterna-
tive but not mutually exclusive interpretations relate to the pro-
posed roles of the BRCA genes in telomere maintenance and
centrosome division [4,34,35]. By contrast, the third instability
subgroup, GII-high-III, was found to display increased propen-
sity to acquire small copy number gains which might relate to
the previously proposed 'amplifier phenotypes' and possibly
'complex-firestorm patterns' in breast tumours [27,31]. The 7
kbp high-resolution array CGH analysis used in this study is
crucial for distinguishing between tumour genomes character-
ised by small copy gains from those displaying large-scale
instability patterns. This provided increased clarity in classifi-
cation of breast tumours by their genomic profiles.

Genomic alterations characterizing BRCA1- and BRCA2-
related tumour development
The genomic regions on chromosomes 4, 5 and 10 reported
here to characterise the BRCA1-related subgroup overlap
with those previously reported to distinguish tumours derived
from BRCA1 germline mutation carriers [36,37]. Because
familial BRCA1 tumours resemble basal-like tumours in terms
of their phenotype it is of interest to note here that the genomic
alterations that characterise the BRCA1-related subgroup
overlap with those associated with basal-like tumours [19].

The genomic alterations that were found to characterise
BRCA2-related tumour development overlap with those previ-
ously described in relation with familial BRCA2 tumours

Figure 6

Hierarchical cluster analysis of genomic profiles within the simple-pro-files subgroupHierarchical cluster analysis of genomic profiles within the simple-pro-
files subgroup. This analysis revealed a cluster of tumours (n = 11), 
purple bar and rectangle, characterised by very low genomic instability 
indices. This cluster was highly enriched with tumours of basal-like phe-
notypes with high expression of epidermal growth factor receptor 
(EGFR) being a prominent feature. These tumours generally displayed 
high tumour grade and an aggressive phenotype in terms of time to 
relapse.
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[36,38]. In addition, we found high-level amplifications at
1q43–q44 and deletions at chromosome 14q, which have not
been described before in relation with familial BRCA2 tumour
development. The detailed information on the locations of
genomic alterations provided by the high-resolution CGH
arrays used here allowed us to more clearly delineate the dis-
tinct genetic pathways undertaken by breast tumours display-
ing either BRCA1 or BRCA2 abnormalities.

Further research will be needed to examine the potential of the
data presented here to predict BRCA1 or BRCA2 abnormal-
ities in an independent population of breast tumours or cell
lines. The importance of establishing a simple and effective
classification scheme to identify such tumours lies in the
potential benefit of targeted therapy (PARP inhibitors, plati-
num drugs) for a much larger group of patients than the rela-
tively few BRCA1 and BRCA2 germline mutation carriers.

Tumour phenotypes in BRCA-related tumour 
development
Tumours derived from BRCA1 germline mutation carriers have
previously been shown to predominantly display basal-like
phenotypes [17,39]. In line with this we observed that tumours
within the BRCA1-related subgroup primarily display non-
luminal phenotypes of which basal-like phenotypes were the
most prominent. However, we did identify a cluster of tumours
characterised by low genomic instability indices and non-lumi-
nal phenotypes. These tumours were mostly of basal-like phe-
notypes and displayed an aggressive phenotype in terms of
disease outcome. This observation demonstrates that a sub-
set of non-luminal breast tumours do not develop towards
large-scale genomic alterations supporting the hypothesis that
these tumours represent biologically important disease enti-
ties [20]. Tumours derived from BRCA2 germline mutation
carriers have previously been shown to primarily display lumi-
nal phenotypes and rarely overexpress HER-2 gene products
and these findings were confirmed here [40]. Interestingly, we
observed two familial-BRCA2 tumours without deletion or
allelic imbalance at the BRCA2 locus and these tumours did
not display large-scale genomic instability. This raises the pos-
sibility that the natural history of some familial BRCA2 tumours
does not involve loss of the wild-type BRCA2 allele or at least
only partial loss as has been suggested before [41]. In this
relation, it has been shown that cells heterozygous for a
BRCA2 mutation are associated with a phenotype [42,43].
Taken together, this suggests that a small subset of BRCA2
tumours could be promoted by haploinsufficiency for the
BRCA2 gene.

The combined analysis of genomic alterations and tumour
phenotypes, presented here, show that BRCA1- and BRCA2-
related tumours develop largely through different genetic path-
ways in terms of the regions altered, while also displaying dis-
tinct phenotypes. In light of the common roles for BRCA1 and
BRCA2 in genomic maintenance, this suggests that the

observed phenotypic differences impose selective advan-
tages for genomic alterations at distinct regions in the context
of instability generated by BRCA-deficiency. This is in agree-
ment with the results described by Melchor and colleagues
showing the importance of ER status in familial and sporadic
breast tumours [44]. However, we found two genomically dis-
tinct populations of luminal tumours that clearly differed in
terms of PR expression. This finding is novel and demonstrates
the importance of this factor in breast tumour development.

Conclusions
We have demonstrated using high-resolution genomic profil-
ing coupled with analysis of tumour phenotypes that the devel-
opment of a subset of sporadic breast tumours is similar to
that of tumours derived from BRCA1- or BRCA2 germline
mutation carriers. Tumours that develop BRCA1-like patterns
of genomic alterations predominantly displayed high-grade,
non-luminal phenotypes and high genomic instability. How-
ever, we also found a subset of high grade non-luminal
tumours, mostly basal-like, that displayed very silent genomes
characerised by low genomic instability indices supporting the
notion of a novel subgroup of ER-negative breast tumours
[20,45].

Tumours within the BRCA1- and BRCA2-related genomic
subgroups were found to acquire genomic alterations affect-
ing distinct regions of their genomes while also displaying dis-
tinct tumour phenotypes. Given the common roles of the
BRCA gene products in genomic maintenance, this suggests
that phenotypic differences between BRCA1- and BRCA2-
associated tumours impose selective advantages for distinct
genomic alterations in the context of instability generated by
BRCA-deficiency. Despite these differences, the BRCA1 and
BRCA2 genomic subgroups displayed clear similarities in
their genome architecture patterns where large deletions were
prominent suggesting a similar mechanism by which genomic
instability is brought about, possibly relating to defects in DNA
repair through HR. This genomic feature was observed in both
familial and sporadic tumours displaying a BRCA1- or
BRCA2-like spectrum of genomic alterations. In this respect,
it has been shown that cells with defective DNA repair by HR,
including BRCA-deficient cells, are sensitive to agents that
lead to DNA double-strand breaks such as PARP inhibitors
and platinum agents [9]. The importance of the results pre-
sented here involve the potential benefits of targeted therapy
through the use of agents that lead to double-strand breaks for
a larger group of patients than the relatively few BRCA germ-
line mutation carriers [46,47].

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
OAS contributed to the study design and performed the MSP
and CGH analysis along with statistical analysis, data mining
Page 11 of 14
(page number not for citation purposes)



Breast Cancer Research    Vol 11 No 4    Stefansson et al.
and writing of the manuscript. KO constructed the tissue
microarrays and performed the IHC analysis. JGJ and OAS
scored the IHC results. JGJ analysed tumour grade and OTJ
contributed to clinical data analysis. MS performed the FISH
analysis. SV contributed to the CGH analysis. JE conceived of
the study, was in charge of its design and coordination and
writing of the manuscript. All authors read and approved of the
manuscript.

Additional files

The following Additional files are available online:

Additional file 1
An Excel file containing a table that lists antibodies used 
in the study for immunohistochemistry analysis on tissue 
microarray sections.
See http://www.biomedcentral.com/content/
supplementary/bcr2334-S1.xls

Additional file 2
A TIF file containing a figure that lists the proportion of 
the variance in the genomic data explained by each of the 
components derived from the principal component 
analysis (PCA).
See http://www.biomedcentral.com/content/
supplementary/bcr2334-S2.tiff

Additional file 3
A TIF file containing a figure that lists the projection of all 
tumours on components 1, 2 and 3 through principal 
component analysis (PCA) is shown with cluster 
outcomes, BRCA status and tumour phenotypes 
indicated.
See http://www.biomedcentral.com/content/
supplementary/bcr2334-S3.tiff

Additional file 4
An Excel file containing a sample annotation table 
describing the cluster outcomes in terms of BRCA 
status, AI at the BRCA1 and BRCA2 loci, genomic 
instability index along with tumour phenotypes.
See http://www.biomedcentral.com/content/
supplementary/bcr2334-S4.xls

Additional file 5
A TIF file containing a figure that shows genomic profiles 
derived from an independent set of five familial BRCA1 
tumours were combined with the study group. All of 
these five familial BRCA1 tumours, indicated in grey 
colour, clustered among the tumours that constituted the 
previously defined BRCA1-related subgroup. The 
character codes represent cluster memberships with the 
five familial BRCA1 tumours included whereas the colour 
codes represent previously defined cluster memberships 
as shown on Figure 2a in the manuscript. Tumours 
derived from BRCA1 and BRCA2 germline mutation 
carriers are indicated, see bottom of the figure.
See http://www.biomedcentral.com/content/
supplementary/bcr2334-S5.tiff

Additional file 6
An Excel file containing a table that lists genomic 
alterations characterising the distinct genetic pathways 
that were identified through cluster analysis of genomic 
profiles.
See http://www.biomedcentral.com/content/
supplementary/bcr2334-S6.xls

Additional file 7
A TIF file containing a figure that lists genomic alterations 
characterising each of the identified genetic pathways 
visualised using a frequency plot. The proportion of 
tumours showing gains (positive) and deletions 
(negative) are shown for each of the genomic regions 
examined. Additionally, the level of statistical significance 
is shown as determined through the modified Fisher's 
exact test comparing each genomic subgroup with the 
rest of the cohort.
See http://www.biomedcentral.com/content/
supplementary/bcr2334-S7.tiff

Additional file 8
A TIF file containing a figure that shows (upper panel) 
gains in copy numbers of the EMSY gene (11q13.5) 
observed in one sporadic tumour displaying BRCA2-like 
patterns of genomic alterations. (lower panel) 
fluorescence in situ hybridisation (FISH) analysis was 
performed for the EMSY gene region (RED) and 
centromere 11 (GREEN) verifying amplification of the 
EMSY gene in this tumour.
See http://www.biomedcentral.com/content/
supplementary/bcr2334-S8.tiff
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