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Abstract

Introduction Epstein-Barr virus (EBV) is present in over 90% of
the world's population. This infection is considered benign, even
though in limited cases EBV is associated with infectious and
neoplastic conditions. Over the past decade, the EBV
association with breast cancer has been constantly debated.
Adding to this clinical and biological uncertainty, different
techniques gave contradictory results for the presence of EBV
in breast carcinoma specimens. In this study, minor groove
binding (MGB)-TaqMan real time PCR was used to detect the
presence of EBV DNA in both peripheral blood and tumor
samples of selected patients.

Methods Peripheral blood and breast carcinoma specimens
from 24 patients were collected. DNA was extracted and then
amplified by MGB-TaqMan real time PCR.

Results Of 24 breast tumor specimens, 11 (46%) were positive
for EBV DNA. Of these 11 breast tumor specimens, 7 (64%)
were also positive for EBV DNA in the peripheral blood, while 4
(36%) were positive for EBV DNA in the tumor, but negative in
the blood.

Conclusion EBV was found at extremely low levels, with a mean
of 0.00004 EBV genomes per cell (range 0.00014 to 0.00001
EBV genomes per cell). Furthermore, our finding of the
presence of EBV in the tumor specimens coupled to the
absence of detection of EBV genomic DNA in the peripheral
blood is consistent with the epithelial nature of the virus.
Because of the low levels of viral DNA in tumor tissue, further
studies are needed to assess the biological input of EBV in
breast cancer.

Introduction
Pathogenic Epstein-Barr virus (EBV) is present in over 90% of
the world's population [1,2] and is traditionally associated with
relatively benign diseases. However, it is also found in neo-
plastic diseases, associated with highly aggressive tumor pro-
gression and poor patient survival. Endemic Burkitt lymphoma,
a subtype of non-Hodgkin lymphoma, is perhaps the best-
known example of EBV-associated tumorigenesis. Different
models for the emergence of these lymphomas have been
hypothesized and some have been verified, although all involve

a unique viral-host interaction [3]. Other subtypes of non-
Hodgkin and Hodgkin lymphomas are also associated with
EBV infections. Perhaps more germane to breast cancer, EBV
infection has been associated with other epithelial cancers, for
example nasopharyngeal carcinoma and gastric cancer.

In the US, over 200,000 new breast cancer cases are diag-
nosed per year [4], with approximately 1,000,000 cases diag-
nosed worldwide [5]. Thus, the association of EBV with breast
cancer could profoundly shape clinical diagnosis, disease
management and, potentially, patient outcome. As
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significantly, since EBV is classified as a primary carcinogen in
human [6], the potential for EBV carcinogenesis in breast can-
cer currently concerns the cancer community. Over the past
decade, the presence of the virus in breast cancer cells has
been controversial. However, when the results were reana-
lyzed, it was clear that the initial observations were reproduci-
ble, verifiable by different laboratories and valid [7]. This
conclusion was based on: the overall positive results found in
larger studies; the greater sensitivity and specificity of the
newer PCR techniques; the attribution of artifacts to the pro-
tein reagents used; and the presence of EBV in a subset of
other epithelial tumor cells. Other types of problems [7-11]
also occurred and were resolved. A major controversy that
remains is the interpretation of the negative results obtained
when measuring the EBV specific and highly abundant tran-
scripts Epstein-Barr virus encoded small RNAs (EBER I and II)
[10]. Unlike the majority of other negative results, this inability
to detect EBER transcripts held considerable weight in the
diagnostic community. This was attributed to the fact that
EBER detection is a standard and has been used diagnosti-
cally for a long time. Indeed, it is the method of choice to
detect the presence of EBV in putative lymphoma specimens.
The answer to this question has been slow to emerge, but a
framework is now in place to resolve it [12-14]. One compo-
nent of the answer is the differential transcription of the genes
encoding the EBER transcripts in cells of diverse tissue ori-
gins. Another alteration in EBER transcription was docu-
mented during lytic cycle expression [12]. These biological
concerns, coupled with inherent technical difficulties may, in
part, explain some of the discrepancies in measuring EBER.

Since the study of Labrecque and colleagues in 1995 [15],
significant efforts have been made to confirm, validate and
interpret the EBV findings. With the recent implementation of
real time PCR, the emphasis of the initial studies
[12,14,16,17] on detecting EBV now includes determination
of viral load. Indeed, the emphasis shifted from the percentage
of EBV positive specimens to the number of genomes present
per cell in those specimens. The remaining question for the
future is the biological significance of the low-levels of EBV
genomes found. In the current study, quantitative real time
PCR (QPCR) was used to detect and quantify the concentra-
tion of EBV. The first internal repeat region (IR1) continained
in the BamHI W fragment includes from 6 to 12 copies of the
repeat as identified in different EBV isolates [18]. The EBV IR1
PCR primers used amplify a 76 base-pair product correspond-
ing to nucleotides 14,649 to 14,722 of the EBV B95-8 strain
(NC 001345). We examined both neoplastic breast tissue (n
= 24) and matched peripheral blood. Comparison of the
amounts of EBV DNA in B cell rich peripheral blood with the
viral load in the tumor specimens may further help to determine
whether EBV is a potentially causal agent or a mere bystander.
Using minor groove binding (MGB)-TaqMan probes as
opposed to conventional TaqMan probes, we were able to
increase the amount of DNA screened per reaction. This facil-

itated the ability to detect scarce numbers of viral genomes in
overwhelming amounts of cellular DNA. Additionally, we deter-
mined if there was a correlation between the EBV concentra-
tion found in the blood and that found in the biopsy specimens.
We propose that the detectable levels of EBV DNA found in
the tumor and the absence or lower amounts of viral DNA
found in matched peripheral blood supports a relationship
between Epstein-Barr virus and breast carcinoma.

Materials and methods
Patients and tissue samples
Twenty-four patients with invasive breast carcinoma, meeting
the criteria for inclusion as approved by the Institutional
Review Board, were enrolled into the study. The demograph-
ics of the patient population were collected from the medical
records and are summarized in the Results section of this
paper. A sequential series of patients were consented and
enrolled in the study. A split sample of the specimen from the
newly diagnosed carcinoma was taken and examined by a
pathologist after hematoxylin-eosin staining. Additionally, the
diagnosis of the specimen was determined. Only samples with
≥60% cancer cells were included in the study in accordance
with the Internal Review Board approval. Lymphocytes in the
tumor were also measured by high-power light microscopy
and the counts corrected for volume using the standard cor-
rection for microscopic depth of field. We counted 10 fields
for each specimen (n = 21). Tumor samples were immediately
placed in RNAlater™ (Ambion, Austin, TX, USA) in the operat-
ing room. The samples were subsequently stored at -20°C.
Fourteen breast cancer lines (MDA-MB231, MDA-MB157,
BC3, MDA-MB361, BT20, MDA-MB468, BT474, SKBR3,
T47D, MCF-7, MDA-MB-435S, MCF10A, MDA-MB-134-VI
and ZR75-1) were included as additional samples.

Extraction of DNA
DNA was extracted from peripheral blood, cell lines and tissue
samples using the QIAamp™ and DNeasy™ Protocols (Qia-
gen, Valencia, CA, USA). Blood was taken at the time of the
initial diagnostic biopsy before instituting therapy. High molec-
ular weight DNA was extracted from the Namalwa cell line
(ATCC CRL-1432), breast cancer lines or EDTA-treated
blood using QIAamp DNA purification columns (Qiagen) as
indicated by the manufacturer. In brief, DNA was isolated from
whole blood as follows: a volume of 0.2 ml of blood was
treated with 20 units of RNAse ONE (Promega, Madison, WI,
USA) at room temperature for 5 minutes. The aliquot was then
exposed to protease digestion in the presence of Buffer AL at
56°C for 10 minutes and applied to the column (Qiagen). Each
column was sequentially washed with Buffer AW1, Buffer
AW2 and finally eluted with 0.2 ml of Buffer AE (Qiagen).
Namalwa is a human cell line that contains two copies of the
EBV genome in a head to head orientation integrated into the
cellular DNA [19]. Namalwa DNA was extracted from 5 × 106

cells. Calf thymus DNA (Sigma-Aldrich, St. Louis, MO, USA)
was purified as described (50 μg/column) and used as a
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carrier in the construction of the standards for real time PCR.
DNA concentrations were determined by comparison to
standard curves generated using PicoGreen (Molecular
Probes, Eugene, OR, USA) and measured on a Cytofluor
Series 400 (Perkin Elmer, Wellesley, MA, USA) at an excita-
tion of 480 nm and an emission of 520 nm.

The tumor tissue was split and added to RNAlater™ immedi-
ately at biopsy. For the tissue, DNA extraction of the initial
diagnostic biopsy was performed after the RNAlater™ fixative
was removed by washing the tissue. The tissue was then rehy-
drated in buffer. This technique can be used to rehydrate pro-
tein and DNA, but not RNA. Tumor tissue was obtained from
the subjects, handled as described by the manufacturer and
diluted in a 10-fold excess of RNAlater™ and stored at -20°C.
Samples were stored in RNAlater™ for subsequent studies
requiring stabilized RNA. For the isolation of DNA from
extracted tissue, 30 mg of individually cut and pulverized tis-
sue samples were placed in 1.5 ml microcentrifuge tubes and
washed twice with normal saline to remove the RNAlater™.
The samples then had 180 μl of buffer ATL added, followed by
20 μL of proteinase K, and were incubated at 55°C overnight.
This was performed to improve tissue lysis in the samples that
were lysis-resistant. Then, 4 μl of RNAse A were added to the
samples, which were incubated at 70°C for 10 minutes after
adding 200 μl of buffer AL. We then added 230 μl of ethanol
(modification of the protocol suggested by the manufacturer to
optimize viral nucleic acid recovery), followed by transfer of the
samples to the DNeasy mini columns. Buffer AW1 (500 μl)
was added and the samples centrifuged at 6000 × g for 1
minute. This was followed by the addition of 500 μl of buffer
AW2 and centrifugation at full speed for 3 minutes. A 200 μl
aliquot of buffer AE was added to the DNeasy membrane, fol-
lowed by incubation at room temperature for 1 minute and
centrifugation at 6000 × g for 1 minute. DNA was concen-
trated using Pellet Paint (Novagen, San Diego, CA, USA) as
per the instructions of the manufacturer. The concentrated pel-
lets were air-dried overnight and resuspended in 40 μl of dis-
tilled water. Sample DNA was quantified using PicoGreen
DNA dye (Molecular Probes) as described by the manufac-
turer. The PicoGreen reagent was prepared in a 1:200 dilution
(50 μl of PicoGreen per 10 ml 1× TE Buffer). The PicoGreen
reagent was then added in 100 μl aliquots to each well and
mixed. The plate was read with the CytoFluor system (excita-
tion 485/20, emission 530/25, 3 reads/well, 1 cycle, 4 scans/
cycle, gain 50; Turner Biosystems (Sunnyvale, CA, USA); the
R-value was found to be 0.9983.

Amplification of DNA using MGB-TaqMan PCR
DNA amplification was accomplished by real time monitoring
of fluorescence intensity during PCR using MGB-TaqMan
probes. We prepared 1.1 μg of DNA per reaction and reac-
tions were run in triplicate for samples, standards and controls
(with the exception of two tumors for which insufficient tumor
sample was available). Amplification was performed in a total

of 20 μl containing 2× Universal TaqMan PCR master mix
(Applied Biosystems, Foster City, CA, USA) 900 nM of BAM-
HIW (forward primer, 5'-CCC AAC ACT CCA CCA CAC C-
3'; reverse primers, 5'-TCT TAG GAG CTG TCC GAG GG-
3'), 250 nM of Probe LIR-1MGB2 (FAM-ACACTA-
CACACACCCACC-MGBNFQ) and 1.75 μl of water.
Namalwa DNA [19] was used to prepare the standards (using
20, 200, 2,000, and 20,000 EBV copies per reaction; calcu-
lated using 2 EBV genomes per 7 pg of Namalwa DNA), and
Daudi cells were used as an additional positive control. The
7900 Sequence Detection System program (Applied Biosys-
tems) used was 95°C for 10 minutes followed by 40 cycles of
95°C for 15 seconds, 60°C for 1 minute. Fluorescent meas-
urements were obtained throughout the amplification process.

Statistics
Real time PCR was performed and the absolute quantity of
each amplicon was calculated using the algorithm provided in
SDS version 2.1 as described in User Bulletin #2, (Applied
Biosystems). Calculations of the mean polymerase chain cycle
number at which the intensity of the amplicon was greater than
10× the standard deviation of the threshold (CT-value), stand-
ard deviation and mean EBV genomes per reaction were per-
formed using SDS version 2.1. A two-sided t-test was
performed for the lymphocytes present in the blood [20] and
quantified in the tumor specimens (see above). Additional sta-
tistical analyses were calculated using SPSS software version
11 (Chicago, IL, USA).

Results
Patient population
Of the 24 breast carcinoma specimens studied, demographic
data were obtainable for 23 female patients (Table 1). The age
distribution was: <45 years, 3 (13%); 45 to 55 years, 8 (35%);
and >55 years, 12 (52%). Tumor size ranged from <2 cm,
(52%) to ≥2 cm, (48%). With regard to axillary nodal status,
11 (48%) did not have nodal metastasis; 2 (9%) had microme-
tastasis to the axillary lymph nodes and 9 (39%) had positive
lymph nodes. There were 16 (70%) pre-menopausal patients
and the remaining ones were post-menopausal. There were 6
(27%) estrogen receptor positive specimens, while 16 (73%)
were negative and one undetermined; and 8 (36%) were pro-
gesterone receptor (PR) positive with 14 (64%) negative and
1 specimen unknown. Twenty (95%) patients were positive for
the Her2/Neu oncoprotein, with the results from two patients
undetermined. Concerning histology, specimens were classi-
fied using the WHO classifications. We found that 16 (80%)
patients had an infiltrating mixed carcinoma (mixed ductal and
lobular carcinoma or infiltrating carcinoma with mixed ductal
and lobular features or mixed ductal and lobular differentia-
tion). One patient (5%) had a ductal carcinoma in situ, one
(5%) had an infiltrating mixed carcinoma; while an additional
patient (5%) had a mucinous and one (5%) had an infiltrating
lobular carcinoma; results for four patients were unknown. The
distribution of tumor stage was as follows: stage I, 9 (45%);
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stage IIA, 5 (25%); stage IIB, 4 (20%); and stage IIIA, 2 (10%);
and the results for four patients were unknown. Patients with
stage IIIB or stage IV tumors were not seen and, therefore,
patients with these stages were not enrolled in the study.

EBV load measurements
Real time PCR using MGB-TaqMan technology was used to
determine whether DNA isolated from blood and breast can-
cer specimens contained EBV DNA (Figure 1a). To quantify
the amount of EBV DNA in the unknown specimens, EBV
standards were prepared using Namalwa DNA (two copies of
EBV per cell) in the presence of 1,100 ng of total calf thymus
carrier DNA and the appropriate amount of Namalwa DNA.
This assured that the complexity of the experimental determi-
nations, the total DNA concentration in the reactions, were
similar to that of the standards. The standards were linear over
several magnitudes of changes in the EBV concentration (Fig-
ure 1b). In the amplification study, we used a ribosomal DNA
probe/primer set (Applied Biosystems) to identify either the
total absence of amplification or inhibition of the PCR reaction
caused by the quality of the extracted DNA. Of the 24 breast
tumor specimens, 11 (46%) were positive for EBV DNA. Of
these 11, 7 (64%) were also EBV positive in the peripheral
blood and the other 4 negative positive tumor samples were
negative in the paired blood specimens. Conversely, 3 of 10
(30%) patients were positive for EBV DNA in the peripheral
blood but this was undetected in the tumor. Overall, 10 of the
24 (42%) patients' peripheral blood specimens were positive
for EBV DNA while 11 (46%) were positive for EBV in the
tumor DNA. These results include seven patients that were
positive in both the blood and the tumor (Table 2). Using as the
diploid standard 7 pg of DNA per human genome, cell equiv-
alence was calculated in the blood and tumor DNA. No correc-
tion was made for the potential variation in aneuploidy/
polyploidy of the tumor population. The mean concentrations
of EBV in these positive patient specimens were 8.0 per
160,000 cell equivalents of DNA isolated from peripheral
blood. In the tumor, 5.0 EBV genomes per 160,000 cell equiv-
alents of DNA were documented. No demographic trends
were observed but there were too few cases for formal statis-
tical analysis. Additionally, none of the 14 cell lines used as
controls was positive for EBV DNA.

Discussion
A current concern of the cancer community has been the
potential of viral mediated cancer [2]. Over the past decade,
the detection of EBV in a high percentage of breast cancer
patients has driven efforts to verify the presence of the virus in
epithelial cells and their tumors, to quantify the amount of virus
present and to identify the role that EBV might be playing in the
initiation and dissemination of breast cancer as well as other
solid tumors. Previous reviews have focused on the technical
difficulties and disparities obtained when different approaches
for measuring EBV [9,12,21,22] were used. In addition, exten-
sive studies of breast cancer cells [23] and this report show

Table 1

Demographics of the breast cancer population

Variable Number

Age, years (N = 23)

<45 3

45–55 8

>55 12

Menopausal status (N = 23)

Pre-/peri-menopausal 16

Post-menopausal 7

Tumor size (cm) (N = 23)

<2 12

≥2 11

Nodal status (N = 22)

Negative 11

Positive 11 (2 micrometasis)

Unknown 1

Tumor grade (SBR) (N = 20)

I 9

II 9

III 2

Histology (N = 20)

Ductal 16

Lobular 1

Other 3

ER status (N = 22)

Positive 6

Negative 16

Unknown 1

PR status (N = 22)

Positive 8

Negative 14

Unknown 1

HER-2 status (N = 21)

Positive 20

Negative 1

Unknown 2

N = the number of specimens available for evaluation. ER, estrogen 
receptor; PR, progesterone receptor; SBR, Scarff, Blum, and 
Richardson.
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that EBV viral DNA was undetectable in these established cell
lines. After reviewing the previous studies, we found that five
showed consistently negative results. Those studies used
immunohistochemistry or in situ hybridization to detect EBER
l, EBER ll, EBNA-2, or EBV latent membrane protein-1 (LMP-
1) [24-28]. In contrast, most studies showing greater than
50% positivity for EBV employed PCR [13,29-31]. In addition,
the two largest studies showed the presence of EBV in 162
out of 509 and 51 out of 100 specimens [29,31]. Only 1 of 12
studies that used real time PCR had a negative result for the
presence of EBV DNA. In that study [8], EBV was measured
after performing LCM on the tumor samples; the authors had
originally found 21% positivity by QPCR and interpreted the
laser capture microscopy (LCM) results to suggest that EBV
could not be derived from tumor cells since, after LCM, none
of the samples was positive for EBV DNA [8]. This interpreta-
tion might be limited, for example, if only a very small subset of

cells within the tumor was EBV positive. The dissection itself,
therefore, would significantly limit the ability to detect an EBV
positive cell. On the other hand, two other studies performed
QPCR of tumor samples and showed that the homogenous
breast cancer cells were heterogenous with respect to the
number of EBV genomes detected per cell and also showed
cells containing multiple EBV genomes [31,32]. These results
ultimately led to the general acceptance that breast cancer
cells harbor EBV. Thus, the detection of EBV in breast cancer
biopsies supports a potential role for this human carcinogen in
this malignancy.

The role of EBV in breast neoplasms is also supported by the
ability of the virus to infect epithelial cells and to synthesize
epithelial-specific viral transcripts [12,33-37]. Various
research groups were able to infect established human trans-
formed epithelial cell lines, as well as primary epithelial cells

Figure 1

Amplification of Epstein-Barr virus (EBV) from DNA isolated from breast cancer and blood specimensAmplification of Epstein-Barr virus (EBV) from DNA isolated from breast cancer and blood specimens. Real time PCR using minor groove binding 
(MGB)-TaqMan technology was used to quantify the viral load contained in the samples. Internal repeat region (IR)1 target sequences showed that 
this probe amplified its respective target over a broad range and detected low levels (2.3 EBV genomes per reaction; unpublished observation). (a) 
A characteristic amplification plot showing the change in fluorescence (ΔRn) as a function of amplification cycle. The horizontal red line indicates the 
fluorescence at 10× the standard deviation of the control. The upper left arrow indicates the fluorescence detected from Daudi, an EBV-associated 
endemic Burkitt lymphoma. The lower arrow indicates the fluorescence of a negative control (water). The amplification, in triplicate, of the DNA from 
each of the patient tumor samples is indicated. (b) The standard was constructed to contain from 2 to 200,000 copies of EBV genome. The graph 
shows the linear regression of the Cts (the PCR cycle number when the amplification fluorescence value reaches and exceeds the predetermined 
background threshold value) using each of the standards. This characteristic standard line had an r2 = 0.995 with a slope of -3.2.
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[12,33-38]. It is now apparent that infection occurs more read-
ily through cell-to-cell co-culture with infected B cell lines [34-
36] than by free-viral particle infection [12,38]. In addition, it
was demonstrated that the lower efficiency of direct viral infec-
tion could be compensated using G418 antibiotic selection
[12]. The susceptibility of these cells to EBV was initially sur-
prising because the cells lacked the classic B cell CD21 EBV
receptor. The absence of this receptor suggests the presence
of a different cell mediated uptake mechanism for EBV.
Although CD21-mediated viral uptake is seen in some epithe-
lial cells, EBV infection in these cells is mediated by the gp25-
gp85 complex [39-42]. Taken together, these studies suggest
that EBV infects epithelial cells through a mechanism different
from B-cells.

Lastly, the finding of a unique set of viral transcripts in epithelial
cells reinforces the support for the role of EBV in breast carci-
noma. This set, while overlapping several B-cell transcripts,
differs from those found in B cells in major ways. For example,
Xue and colleagues [13] evaluated 15 breast cancer speci-
mens obtained by mastectomy and showed that the 2 small
viral RNAs, EBER I and II, could not be detected. This result
strongly suggested that breast cancers showed an altered
pattern of EBV transcripts. Recently, Arbach and colleagues
[32] confirmed the previous results [13] and showed that
EBNA-1, an early transcript derived from an open reading
frame encoding a 26- to 33-kilodalton protein that is recog-
nized by anti-EA serum (BARF-1), and LMP-1 transcripts were
present in 77%, 57% and 20% of the breast cancer cases
analyzed, respectively. Significantly, these results also under-
scored the potential mechanism for the negative EBER stain-
ing previously shown in other breast cancer studies.
Heretofore, EBER staining was the gold standard for the diag-
nosis of EBV infection. At present, it is clear that application of
this diagnostic should be considered for cell types showing
classic EBER positivity, for example, B cell, T cell and T/NK
cell lymphomas, nasopharyngeal carcinoma, and gastric can-
cer. Additionally, seven EBV transcripts found in B-cells
(EBER l and ll, EBNA-1 transcribed from either the Cp or Wp
promoters, the BamHI rightward reading frame 1), a viral mem-
ber of the Bcl-2 family of apoptosis-regulating proteins
(BHRF-1), LMP-1 and LMP-2 were negative in the breast can-

cer biopsies. In addition, the promoter for a family of alterna-
tively spliced BamHI-A rightward transcripts CST (BARTs)
and the IR4/F3 (leftwardreading frame 3) a replication-associ-
ated transcript containing the IR4 (PstI restriction enzyme
repeats) are usually found in carcinomas. The DNA sequence
of the IR4 transcript from a nasopharyngeal carcinoma tumor,
C15, shows sequence variation that is different from those
reported for B cells or from an established Burkitt cell line
(Raji). Additionally, EBNA1 transcripts from the Qp promoter
were found in the majority of breast cancer biopsies positive
for EBV [13]. Huang and colleagues [12] extended the study
described above through the use of an in vitro model system.
The results of this study clearly demonstrated a transcript pro-
file in the infected breast cancer cells characteristic of EBV-
induced latency II. In a small percentage of cells, a transcrip-
tional pattern associated with active lytic infection was also
found. These results were further extended to ten snap frozen
samples of late stage invasive breast carcinoma biopsies and
confirmed the presence of lytic infection. The positive findings
showed that the EBV lytic population was not specific to their
model system, but also occurred in vivo in breast cancer.

We were able to detect EBV in freshly obtained breast cancer
biopsies using QPCR. Our data confirm previous studies
using both endpoint and real time PCR analyses. We show
that a high percentage of breast cancer biopsies (46%) were
EBV positive. Unexpectedly, we found that the EBV positive
tumor biopsies contained an extremely low viral load. If each
genome represents an infected cell, the average incidence of
infection in the EBV-associated population was 0.00004
(ranging from 0.00014 to 0.00001) in blood. In the breast
tumor biopsies positive for EBV, the average was 0.00002
EBV genomes per cell (ranging from 0.00009 to 0.00001).
This confirms a recently reported similarly low EBV load
[8,12,14,16]. This is especially significant in that the samples
used here and by Huang and colleagues [12] were fresh
biopsies. In contrast, the results described by the study of
Ryan and colleagues [14] used archival material extracted
from paraffin-embedded tissues. Additionally, the heterogene-
ity of EBV genomes per cell must be considered. Here, we
found very low levels of EBV genomes per cell and Murray and
colleagues [8] found levels intermediate to these, while the

Table 2

Analysis of the concentration of EBV in matched blood and tumor specimens

Category Peripheral 
blood-/tumor-

Peripheral 
blood+/tumor+

Peripheral 
blood+/tumor-

Peripheral 
blood-/tumor+

Number (percentage of total)a 10 (42) 7 (29) 3 (12) 4 (17)

Ratio of EBV genomesb in blood versus tumor (range of EBV levels in 
peripheral blood)

0.0 5.0 (0.6–22.0) Undefined Undefined

Range of EBV levelsc in peripheral blood 0.0 8.0 (2.0–22.0) 4 (1.0–8.0) 0.0

Range of EBV levelsc in tumor specimens 0.0 5.0 (1–14) 0.0 1.0 (1.0–2.0)

aN = 24. bThe number of Epstein-Barr virus (EBV) genomes was determined in 160,000 cell equivalents of DNA isolated from peripheral blood 
and tumor specimens. cRange (highest level to lowest level of EBV genomes in the peripheral blood).
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EBV genomes per epithelial cell found by Arbach and col-
leagues [32] overlapped the studies. Arbach and colleagues
measured EBV genome levels in EBV positive breast cancer
specimens (n = 44) and found that EBV DNA was present in
23% of them at a level of ≤0.1 genomes per 1,000 cells, in
45% at a level of ≤1.0 genomes per 1,000 cells and in 32% at
a level of >1.0 genome per 1,000 cells.

Another aspect of this study [32] investigated the likelihood of
inflammatory, virally infected B cells contaminating the breast
cancer biopsy and, therefore, being responsible for the pres-
ence of the EBV viral DNA. Previous investigators proposed
that bystander lymphocytes might account for the measured
percentage of EBV positive breast cancers [13,24,43,44].
Huang and colleagues [12] demonstrated that the levels of
EBV were similar between tumor epithelial specimens and
control specimens. In their study, however, the control material
was taken from the same tissue and may not be considered
normal. To further investigate the bystander phenomenon, we
used real time PCR to show that the EBV load in the blood of
these breast cancer patients was also extremely low (3
genomes ± 5 per 1.57 × 105 cells per reaction, 42% of spec-
imens positive). These low blood titers make it extremely
unlikely that the 11 tumors were positive as a result of a pas-
sive bystander effect (Table 2), especially considering the
increased lymphocyte count in the blood versus the tumor (p
≤ 0.05). Additionally, positive EBV levels in the tumor material
with undetectable titers in the blood also support this hypo-
thesis. In the same manner, tumors with viral titers greater in
the tumor than in the blood reinforce the previous observa-
tions. Taken together, our data continue to support the epithe-
lial nature of the virus found. Additionally, the carcinogenic
impact of a limited EBV infection remains relevant if one con-
siders either 'hit-and-run' infection [45], or stem cell infection
[46,47]. In the case of the stem cell, differentiation of the
infected stem cell could developmentally kick the virus out,
thereby leaving an uninfected cancer. Determination of the
impact of a limited EBV infection on breast epithelial cells
awaits future research.

Conclusion
Our data support that EBV infection, albeit at low viral titer per
cell, is present in approximately half of all breast cancer
biopsies.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions
RSP, KS, NJP, IMB, SPD and LJK were involved in all aspects
of this work, including the planning stages and its perform-
ance. They were also involved in discussions and interpreta-
tion of the data, as well as manuscript preparation. PS and
VMA were involved in aspects of the breast cancer cell work
and interpretation, discussion and manuscript preparation.

CM was responsible for the MGB-TaqMan experiments and
the formulation of the data for manuscript presentation. MM
was responsible for the pathological evaluation and staining of
the appropriate slides for interpretation. MM was involved in
discussions on the lack of correlation and its meaning with
respect to the demographic data. DD-W and GRP were
involved in the original design and IRB proposal for this work.
They continued their efforts throughout the course of this
work.

Acknowledgements
The authors wish to thank Valerie Sampson, PhD, and Ilsa Gomez-Curet, 
PhD, for careful review of the manuscript. Their suggestions were timely 
and led to a focused and clearer manuscript. The project described was 
supported by the Nemours Foundation and by NIH Grant Number 2 P20 
RR016472-04 under the INBRE Program of the National Center for 
Research Resources. Its contents are solely the responsibility of the 
authors and do not necessarily represent the official views of NIH.

References
1. Schooley RT: Epstein-Barr Virus (Infectious Mononucleosis).

In Mandell, Douglas and Bennett's Principles and Practice of
Infectious Diseases Volume 2. 4th edition. Edited by: Mandell GL,
Bennett JE, Dolin R. New York, NY: Churchill Livingstone;
1995:1364-1377. 

2. Magrath I, Bhatia K: Breast cancer: a new Epstein-Barr virus-
associated disease?  J Natl Cancer Inst 1999, 91:1349-1350.

3. Niller HH, Salamon D, Ilg K, Koroknai A, Banati F, Schwarzmann F,
Wolf H, Minarovits J: EBV-associated neoplasms: alternative
pathogenetic pathways.  Med Hypotheses 2004, 62:387-391.

4. Surveillance Epidemiology and End Results   [http://
www.seer.cancer.gov]

5. Parkin DM, Bray FI, Devesa SS: Cancer burden in the year 2000.
The global picture.  Eur J Cancer 2001, 37(Suppl 8):S4-66.

6. IARC Working Group on the Evaluation of Carcinogenic Risks to
Humans: Human immunodeficiency viruses and human T-cell
lymphotropic viruses. Lyon, France, 1–18 June 1996.  IARC
Monogr Eval Carcinog Risks Hum 1996, 67:1-424.

7. Glaser SL, Hsu JL, Gulley ML: Epstein-Barr virus and breast
cancer: state of the evidence for viral carcinogenesis.  Cancer
Epidemiol Biomarkers Prev 2004, 13:688-697.

8. Murray PG, Lissauer D, Junying J, Davies G, Moore S, Bell A,
Timms J, Rowlands D, McConkey C, Reynolds , et al.: Reactivity
with A monoclonal antibody to Epstein-Barr virus (EBV)
nuclear antigen 1 defines a subset of aggressive breast can-
cers in the absence of the EBV genome.  Cancer Res 2003,
63:2338-2343.

9. Herrmann K, Niedobitek G: Lack of evidence for an association
of Epstein-Barr virus infection with breast carcinoma.  Breast
Cancer Res 2003, 5:R13-R17.

10. Deshpande CG, Badve S, Kidwai N, Longnecker R: Lack of
expression of the Epstein-Barr Virus (EBV) gene products,
EBERs, EBNA1, LMP1, and LMP2A, in breast cancer cells.  Lab
Invest 2002, 82:1193-1199.

11. Lau SK, Chen YY, Berry GJ, Yousem SA, Weiss LM: Epstein-Barr
virus infection is not associated with fibroadenomas of the
breast in immunosuppressed patients after organ
transplantation.  Mod Pathol 2003, 16:1242-1247.

12. Huang J, Chen H, Hutt-Fletcher L, Ambinder RF, Hayward SD:
Lytic viral replication as a contributor to the detection of
Epstein-Barr virus in breast cancer.  J Virol 2003,
77:13267-13274.

13. Xue SA, Lampert IA, Haldane JS, Bridger JE, Griffin BE: Epstein-
Barr virus gene expression in human breast cancer: protago-
nist or passenger?  Br J Cancer 2003, 89:113-119.

14. Ryan JL, Fan H, Glaser SL, Schichman SA, Raab-Traub N, Gulley
ML: Epstein-Barr virus quantitation by real-time PCR targeting
multiple gene segments: a novel approach to screen for the
virus in paraffin-embedded tissue and plasma.  J Mol Diagn
2004, 6:378-385.
Page 7 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10451431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10451431
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14975509
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14975509
http://www.seer.cancer.gov
http://www.seer.cancer.gov
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11602373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11602373
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9190379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9190379
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12727860
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12559053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12559053
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12218080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12218080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12218080
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14681325
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14645583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14645583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14645583
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12838311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12838311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12838311
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15507678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15507678
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15507678


Breast Cancer Research    Vol 8 No 6    Perkins et al.
15. Labrecque LG, Barnes DM, Fentiman IS, Griffin BE: Epstein-Barr
virus in epithelial cell tumors: a breast cancer study.  Cancer
Res 1995, 55:39-45.

16. Thorne LB, Ryan JL, Elmore SH, Glaser SL, Gulley ML: Real-time
PCR measures Epstein-Barr Virus DNA in archival breast
adenocarcinomas.  Diagn Mol Pathol 2005, 14:29-33.

17. Perrigoue JG, den Boon JA, Friedl A, Newton MA, Ahlquist P, Sug-
den B: Lack of association between EBV and breast
carcinoma.  Cancer Epidemiol Biomarkers Prev 2005,
14:809-814.

18. Kieff E: Epstein Barr virus and its replication.  In Fields Virology
Philadelphia: Lippincott Williams and Wilkins; 2001:1889-1920. 

19. Lawrence JB, Villnave CA, Singer RH: Sensitive, high-resolution
chromatin and chromosome mapping in situ: presence and
orientation of two closely integrated copies of EBV in a lym-
phoma line.  Cell 1988, 52:51-61.

20. Bisset LR, Lung TL, Kaelin M, Ludwig E, Dubs RW: Reference val-
ues for peripheral blood lymphocyte phenotypes applicable to
the healthy adult population in Switzerland.  Eur J Haematol
2004, 72:203-212.

21. Griffin BE, Xue SA: Epstein-Barr virus infections and their asso-
ciation with human malignancies: some key questions.  Ann
Med 1998, 30:249-259.

22. Glaser SL, Hsu JL, Gulley ML: Epstein-Barr virus and breast
cancer: state of the evidence for viral carcinogenesis.  Cancer
Epidemiol Biomarkers Prev 2004, 13:688-697.

23. Speck P, Callen DF, Longnecker R: Absence of the Epstein-Barr
virus genome in breast cancer-derived cell lines.  J Natl Cancer
Inst 2003, 95:1253-1254.

24. Chu PG, Chang KL, Chen YY, Chen WG, Weiss LM: No signifi-
cant association of Epstein-Barr virus infection with invasive
breast carcinoma.  Am J Pathol 2001, 159:571-578.

25. Horiuchi K, Mishima K, Ohsawa M, Aozasa K: Carcinoma of stom-
ach and breast with lymphoid stroma: localisation of Epstein-
Barr virus.  J Clin Pathol 1994, 47:538-540.

26. Glaser SL, Ambinder RF, DiGiuseppe JA, Horn-Ross PL, Hsu JL:
Absence of Epstein-Barr virus EBER-1 transcripts in an epide-
miologically diverse group of breast cancers.  Int J Cancer
1998, 75:555-558.

27. Iezzoni JC, Gaffey MJ, Weiss LM: The role of Epstein-Barr virus
in lymphoepithelioma-like carcinomas.  Am J Clin Pathol 1995,
103:308-315.

28. Chu JS, Chen CC, Chang KJ: In situ detection of Epstein-Barr
virus in breast cancer.  Cancer Lett 1998, 124:53-57.

29. Bonnet M, Guinebretiere JM, Kremmer E, Grunewald V, Benhamou
E, Contesso G, Joab I: Detection of Epstein-Barr virus in inva-
sive breast cancers.  J Natl Cancer Inst 1999, 91:1376-1381.

30. Kleer CG, Tseng MD, Gutsch DE, Rochford RA, Wu Z, Joynt LK,
Helvie MA, Chang T, Van Golen KL, Merajver SD: Detection of
Epstein-Barr virus in rapidly growing fibroadenomas of the
breast in immunosuppressed hosts.  Mod Pathol 2002,
15:759-764.

31. Fina F, Romain S, Ouafik L, Palmari J, Ben Ayed F, Benharkat S,
Bonnier P, Spyratos F, Foekens JA, Rose C, et al.: Frequency and
genome load of Epstein-Barr virus in 509 breast cancers from
different geographical areas.  Br J Cancer 2001, 84:783-790.

32. Arbach H, Viglasky V, Lefeu F, Guinebretiere JM, Ramirez V, Bride
N, Boualaga N, Bauchet T, Peyrat JP, Mathieu MC, et al.: Epstein-
Barr virus (EBV) genome and expression in breast cancer tis-
sue: effect of EBV infection of breast cancer cells on resist-
ance to paclitaxel (Taxol).  J Virol 2006, 80:845-853.

33. Chang Y, Tung CH, Huang YT, Lu J, Chen JY, Tsai CH: Require-
ment for cell-to-cell contact in Epstein-Barr virus infection of
nasopharyngeal carcinoma cells and keratinocytes.  J Virol
1999, 73:8857-8866.

34. Nishikawa J, Imai S, Oda T, Kojima T, Okita K, Takada K: Epstein-
Barr virus promotes epithelial cell growth in the absence of
EBNA2 and LMP1 expression.  J Virol 1999, 73:1286-1292.

35. Imai S, Nishikawa J, Takada K: Cell-to-cell contact as an efficient
mode of Epstein-Barr virus infection of diverse human epithe-
lial cells.  J Virol 1998, 72:4371-4378.

36. Speck P, Longnecker R: Infection of breast epithelial cells with
Epstein-Barr virus via cell-to-cell contact.  J Natl Cancer Inst
2000, 92:1849-1851.

37. Danve C, Decaussin G, Busson P, Ooka T: Growth transforma-
tion of primary epithelial cells with a NPC-derived Epstein-Barr
virus strain.  Virology 2001, 288:223-235.

38. Baselga J, Norton L, Albanell J, Kim YM, Mendelsohn J: Recom-
binant humanized anti-HER2 antibody (Herceptin) enhances
the antitumor activity of paclitaxel and doxorubicin against
HER2/neu overexpressing human breast cancer xenografts.
Cancer Res 1998, 58:2825-2831.

39. Guerreiro-Cacais AO, Li L, Donati D, Bejarano MT, Morgan A, Mas-
ucci MG, Hutt-Fletcher L, Levitsky V: Capacity of Epstein-Barr
virus to infect monocytes and inhibit their development into
dendritic cells is affected by the cell type supporting virus
replication.  J Gen Virol 2004, 85:2767-2778.

40. Borza CM, Morgan AJ, Turk SM, Hutt-Fletcher LM: Use of gHgL
for attachment of Epstein-Barr virus to epithelial cells compro-
mises infection.  J Virol 2004, 78:5007-5014.

41. Tugizov SM, Berline JW, Palefsky JM: Epstein-Barr virus infec-
tion of polarized tongue and nasopharyngeal epithelial cells.
Nat Med 2003, 9:307-314.

42. Borza CM, Hutt-Fletcher LM: Alternate replication in B cells and
epithelial cells switches tropism of Epstein-Barr virus.  Nat
Med 2002, 8:594-599.

43. McCall SA, Lichy JH, Bijwaard KE, Aguilera NS, Chu WS, Tauben-
berger JK: Epstein-Barr virus detection in ductal carcinoma of
the breast.  J Natl Cancer Inst 2001, 93:148-150.

44. Brink AA, van Den Brule AJ, van Diest P, Meijer CJ: Re: detection
of Epstein-Barr virus in invasive breast cancers.  J Natl Cancer
Inst 2000, 92:655-656.

45. Ambinder RF: Gammaherpesviruses and "Hit-and-Run"
oncogenesis.  Am J Pathol 2000, 156:1-3.

46. Liu S, Dontu G, Wicha MS: Mammary stem cells, self-renewal
pathways, and carcinogenesis.  Breast Cancer Res 2005,
7:86-95.

47. Smalley M, Ashworth A: Stem cells and breast cancer: A field in
transit.  Nat Rev Cancer 2003, 3:832-844.
Page 8 of 8
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7805038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7805038
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15714061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15714061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15714061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15824148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15824148
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2830981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2830981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2830981
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14962239
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9677010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9677010
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15159298
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12928356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12928356
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11485915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11485915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11485915
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8063937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8063937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8063937
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9466655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9466655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9466655
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7872253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7872253
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9500191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9500191
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10451442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10451442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12118114
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11259092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11259092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11259092
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16378986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16378986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16378986
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10482644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10482644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10482644
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9882333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9882333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9882333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9557727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9557727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9557727
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11078764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11078764
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11601894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11601894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11601894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9661897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9661897
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15448337
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15113881
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12592401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12592401
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12042810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12042810
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11208885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11208885
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10772685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10772685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10623645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10623645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15987436
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668814
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14668814

	Abstract
	Introduction
	Methods
	Results
	Conclusion

	Introduction
	Materials and methods
	Patients and tissue samples
	Extraction of DNA
	Amplification of DNA using MGB-TaqMan PCR
	Statistics

	Results
	Patient population
	EBV load measurements

	Discussion
	Table 2 

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgements
	References

