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Abstract
Background Early prediction of pathological complete response (pCR) is important for deciding appropriate 
treatment strategies for patients. In this study, we aimed to quantify the dynamic characteristics of dynamic contrast-
enhanced magnetic resonance images (DCE-MRI) and investigate its value to improve pCR prediction as well as its 
association with tumor heterogeneity in breast cancer patients.

Methods The DCE-MRI, clinicopathologic record, and full transcriptomic data of 785 breast cancer patients receiving 
neoadjuvant chemotherapy were retrospectively included from a public dataset. Dynamic features of DCE-MRI were 
computed from extracted phase-varying radiomic feature series using 22 CAnonical Time-sereis CHaracteristics. 
Dynamic model and radiomic model were developed by logistic regression using dynamic features and traditional 
radiomic features respectively. Various combined models with clinical factors were also developed to find the optimal 
combination and the significance of each components was evaluated. All the models were evaluated in independent 
test set in terms of area under receiver operating characteristic curve (AUC). To explore the potential underlying 
biological mechanisms, radiogenomic analysis was implemented on patient subgroups stratified by dynamic model 
to identify differentially expressed genes (DEGs) and enriched pathways.

Results A 10-feature dynamic model and a 4-feature radiomic model were developed (AUC = 0.688, 95%CI: 
0.635–0.741 and AUC = 0.650, 95%CI: 0.595–0.705) and tested (AUC = 0.686, 95%CI: 0.594–0.778 and AUC = 0.626, 
95%CI: 0.529–0.722), with the dynamic model showing slightly higher AUC (train p = 0.181, test p = 0.222). The 
combined model of clinical, radiomic, and dynamic achieved the highest AUC in pCR prediction (train: 0.769, 
95%CI: 0.722–0.816 and test: 0.762, 95%CI: 0.679–0.845). Compared with clinical-radiomic combined model (train 
AUC = 0.716, 95%CI: 0.665–0.767 and test AUC = 0.695, 95%CI: 0.656–0.714), adding the dynamic component brought 
significant improvement in model performance (train p < 0.001 and test p = 0.005). Radiogenomic analysis identified 
297 DEGs, including CXCL9, CCL18, and HLA-DPB1 which are known to be associated with breast cancer prognosis 
or angiogenesis. Gene set enrichment analysis further revealed enrichment of gene ontology terms and pathways 
related to immune system.

Enhancing pathological complete response 
prediction in breast cancer: the role 
of dynamic characterization of DCE-MRI 
and its association with tumor heterogeneity
Xinyu Zhang1, Xinzhi Teng1, Jiang Zhang1, Qingpei Lai1 and Jing Cai1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-024-01836-3&domain=pdf&date_stamp=2024-5-14


Page 2 of 12Zhang et al. Breast Cancer Research           (2024) 26:77 

Introduction
Breast cancer is one of the most common malignant in 
women. In 2020, there were around 2.3  million women 
newly diagnosed with and over 600,000 women died 
of breast cancer worldwide [1]. Recently, neoadjuvant 
chemotherapy (NAC) has become increasingly used 
in breast cancer systemic treatment. NAC was initially 
used in inoperable breast cancer to enable surgical resec-
tion, and expanded to other types of breast cancer for 
increasing the chance of breast conservation owing to its 
remarkable efficacy [2]. Current NAC treatment schemes 
are determined by hormone receptor (HR) status and 
human epidermal growth factor receptor 2 (HER2) sta-
tus as recommended by American Society of Clinical 
Oncology (ASCO) [3]. Pathological complete response 
(pCR), defined as no residual disease in breast and axil-
lary region after NAC, is a validated prognostic factor to 
assess treatment response and associated with long-term 
outcome [4]. However, only 10-50% patients achieved 
pCR, varying according to their receptor subtypes [5]. 
Moreover, the assessment of pCR status is performed at 
surgery after completion of NAC, prior to which non-
responders have suffered from the toxicity and side 
effects caused by NAC. Therefore, it is essential to iden-
tify patients who are likely to achieve pCR before NAC to 
avoid unnecessary complications and maximize potential 
benefits.

Dynamic contrast-enhanced MRI (DCE-MRI) is the 
clinical routine for breast cancer assessment. It has high 
sensitivity in diagnosis and treatment monitoring [6, 7]. 
Through acquisition of sequential images before, during, 
and after the administration of contrast agent, DCE-MRI 
provides valuable information about tissue perfusion 
and contrast agent enhancement dynamics associated 
with tumor angiogenesis [8]. Radiomics extracts high-
dimentional image features that are imperceptible to 
human eyes to non-invasively quantify tumor character-
istics [9]. Radiomic analysis of breast DCE-MRI has been 
used for pCR prediction in many previous studies, most 
of which only used radiomic features from one or sev-
eral phases while ignoring the dynamic information [10, 
11]. Recently, attempts have been made to leverage the 
dynamic information embedded in DCE-MRI for pCR 
prediction by combining radiomic features extracted 
from different DCE-MRI phases. For instance, Peng et 
al. calculated delta-features between two different phases 
for pCR prediction [12]; Li et al. employed simple sta-
tistical patterns of radiomic features extracted from 

different phases for pCR prediction and achieved better 
performance compared to single-phase features, dem-
onstrating the value of multi-phase information [13]. In 
BMMR2 challenge, radiomic features from kinetic maps, 
such as peak enhancement maps and signal enhancement 
ratio maps, were used to predict pCR [14]. However, 
the entire time series of radiomic features has not been 
fully explored and may contain additional information 
for tumor characterization. On the other hand, feature-
based representation of time series data like 22 CAnoni-
cal Time-series CHaracteristics (Catch22) can capture 
the dynamic properties of time series data and was used 
in various tasks [15, 16]. Accordingly, there developed an 
assumption that the dynamics of radiomic feature series 
extracted by Catch22 can characterize the dynamic infor-
mation in DCE-MRI and improve pCR prediction of 
breast cancer patients.

In this study, we aimed to systematically extract 
dynamic properties of radiomic feature series from 
DCE-MRI to improve treatment response prediction of 
breast cancer patients. To achieve this, a large number of 
dynamic features were extracted by Catch22 from DCE-
MRI feature series, and a dynamic model was then built 
for pCR prediction. Various combinations of dynamic 
models and existing radiomic and clinical models were 
developed to find the optimal one as the final model. In 
addition, radiogenomic analysis of binarized dynamic 
model predictions was conducted to explore its asso-
ciation with tumor heterogeneity and biological process. 
Figure 1 shows the overall workflow of this study.

Materials and methods
Patient data
A total of 985 stage II/III locally advanced breast cancer 
patients enrolled in the multi-center I-SPY2 trial (clinical 
trial number: NCT01042379) during 2010 to 2016 were 
collected from the publicly available dataset on The Can-
cer Image Archive [17–19]. Institutional review board 
approval was waived due to the use of public data. The 
detailed descriptions of I-SPY2 trial have been reported 
by previous paper [20]. All the patients underwent MR 
examination and percutaneous biopsy before receiving 
NAC. After the completion of NAC, patients underwent 
surgical resection to assess residual disease. The exclu-
sion criteria included: (1) incomplete image or clini-
copathologic data; (2) deviations from the prescribed 
scanning protocol; (3) insufficient image quality.

Conclusion Dynamic characteristics of DCE-MRI were quantified and used to develop dynamic model for improving 
pCR prediction in breast cancer patients. The dynamic model was associated with tumor heterogeniety in prognostic-
related gene expression and immune-related pathways.
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Clinicopathologic data
Clinicopathologic data including HR, HER2, MammaP-
rint status (MP), pCR, and other patient characteristics 
was provided by the dataset. HR and HER2 were deter-
nmined by immunohistochemical (IHC) staining or fluo-
rescence in-situ hybridization (FISH) of tissues obtained 
during pre-treatment biopsy. HR was determined as 
positive when ≥ 5% tumor staining for ER and/or PgR 
was seen. HER2 was determined as positive by IHC 3 + or 
FISH overexpression [21]. The surrogate of treatment 
response pCR was defined as no residual disease in breast 
and axillary lymph nodes after NAC and obtained by 
post-treatment surgery [22].

Imaging data and tumor segmentation
The scanning process of DCE-MRI can be found on TCIA 
website [17, 18]. DCE-MRI scanning protocol details are 
provided in Supplementary Material Table S1. The pre-
contrast phase and five post-contrast phases were used 
for radiomic feature extraction and subsequent analysis.

The region of interest was segmented by functional 
tumor volume (FTV) included in the dataset. The calcu-
lation of FTV involved background filtering, estimating 
signal enhancement ratio, and applying a peak enhance-
ment threshold in a manual-defined 3D bounding box 
[23].

Image preprocessing and feature extraction
Image normalization was performed across different 
DCE-MRI phases of the same patient to preserve the 
dynamic information. All the images were isotropically 
resampled to 1*1*1mm3, and discretized by a fixed bin 
width of 5. More details of image preprocessing can be 
found in Supplementary Material Figure S1. Radiomic 
features were extracted from each phase of DCE-MRI 
using PyRadiomics package version 3.0.1 following the 
standardization and definitions in the image biomarker 
standadization initiative [24, 25]. The extracted features 
included morphological features (n = 14), first-order fea-
tures (n = 17), and texture features (n = 79). The repeat-
ability of radiomic features was evaluated by perturbation 
which involved random translation, rotation, and con-
tour randomization of original masks [26–28]. Features 
with high-repeatabliity (intraclass correlation coefficient, 
ICC ≥ 0.9 [29]) were retained for better model repeatabil-
ity. The fluctuation of radiomic features was measured 
by performing a single-sample t test on the variations 
between features from different phases. Radiomic fea-
ture series were constructed by concatenating the high-
repeatable and phase-varying first-order and texture 
features. Dynamic features were extracted from radiomic 
feature series using the 22 CAnonical Time-series Char-
acteristics (catch22) feature set, specifically designed for 
capturing the dynamic properties of time series data, 

Fig. 1 Workflow of the study. Firstly, the collected DCE-MR images were preprocessed by normalization and discretization. Radiomic features were 
extracted from multiple phases of DCE-MRI, while dynamic features were extracted from radiomic feature series. Feature selection, model development, 
and model validation were then conducted separately for radiomic model and dynamic model. Subsequently, combined models were developed by 
integrating radiomic, dynamic, and clinical information and their performance were evaluated. In addition, radiogenomic analysis was performed on 
dynamic model to investigate potential biological mechanisms
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such as distributions and outliers, linear and non-linear 
autocorrelation, and so on [30].

Model development and evaluation
The development of radiomic model and dynamic model 
followed the same process including feature selection and 
model building. The features with low variances were 
removed first to retain those providing more informa-
tion. Then, features with significant correlations with 
pCR were identified by MannWhitney U test, where a p 
value smaller than 0.05 was defined as significant. LASSO 
was subsequently used to select the independently dis-
criminative features. Finally, features were ranked by 
minimum redundancy and maximum relevance (mRMR) 
algorithm considering the relevance to pCR and redun-
dancy at the same time [31]. Clinical factors that are 
commonly used in clinical decision making and have sig-
nificant associations with pCR were identified and used 
in developing clinical model. Combined models were 
constructed using logistic regression with clinical factors, 
prediction score of the dynamic model, and prediction 
score of radiomic model as variables. Different combina-
tion strategies were adopted, including combining two of 
the three variables respectively, as well as the combina-
tion of all three together. The independence of the com-
ponents in the combined models were examined by their 
coefficients and p values. All the models were developed 
using Logistic Regression with 10-fold cross-validation in 
training set and tested in independent testing set.

The pCR prediction performance of the candidate mod-
els was assessed by various metrics, including area under 
receiver operating characteristic curve (AUC), accu-
racy, sensitivity, and specificity. AUCs were calculated 
by continuous prediction (the probability) and the other 
metrics were calculated by binary prediction (pCR or 
non-pCR) dichotomized by Youden index. An AUC typi-
cally ranges from 0 to 1 while AUC equal to one means 
a perfect descrimination ability. The optimal model was 
determined by the highest internal validation AUC in 
the training set. Heatmap was employed to visualize the 
relationships between different models and their associa-
tion with clinical factors. SHapley Additive Explanations 
(SHAP), a method to interpret and explain the output of 
machine learning models, was employed to evaluate the 
importance of each component in the model with the 
highest AUC [32]. In our case, where the model output 
is the probability of achieving pCR, the SHAP values for 
each parameter ranges from − 1 to 1 and a larger abso-
lute value means a higher importance for model output. 
Calibration curves and Brier scores were used to further 
evaluate the alignment between model-predicted prob-
abilities and actual probabilities. Brier score measures 
the accuracy of probabilistic predictions and takes the 
value from 0 to 1, for which 0 means a perfect prediction. 

Decision curve analysis was performed to evaluate the 
clinical benefit obtained by the optimal model [33]. 
Besides, to further demonstrate the generalizability of 
the optimal model, its association with pCR in various 
pre-defined molecular subtypes, namely HR + HER2-, 
HR + HER2+, HR-HER2-, and HR-HER2+, and patients 
receiving different treatments were evaluated.

Radiogenomic analysis
To examine whether the dynamic model can reflect 
tumor heterogeneity and its association with gene 
expression, we collected paired total mRNA expression 
data from National Center for Biotechnology Informa-
tion (NCBI) [34]. Patients were divided into DYN + and 
DYN- groups according to the binary prediction of 
dynamic model. Student t test was performed to iden-
tify differentially expressed genes (DEGs) between the 
two groups. An absolute log-2 fold change larger than 
0.25 and a p value smaller than 0.05 were used as cut-
off. Enriched Gene Ontology (GO) terms and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathways 
were identified by gene set enrichment analysis (GSEA) 
of DEGs [35–39]. A p value smaller than 0.05 and false 
discovery rate (FDR) smaller than 0.25 were considered 
statistically significant.

Statistical analysis and software
For statistical analysis, Chi-Square test or Fisher’s exact 
test was used for categorical variables and MannWhitney 
U test was used for continuous variables. A two-tailed 
p-value smaller than 0.05 was considered statistically sig-
nificant. The 95% CIs for AUCs were calculated accord-
ing to DeLong’s methods [40]. DeLong test was used 
to compare the AUCs of two independent models and 
likelihood ratio test was used to compare the model 
fit of nested models to demonstrate the improvements 
conferred by the additional factors in complex models. 
The statistical analysis was carried out on R4.2.2 [41] 
and Python3.7 [42]. Logistic regression was carried out 
by package scikit-learn 1.0.2 [43]. Radiogenomic analy-
sis was conducted using packages scanpy 1.9.3 [44] and 
gseapy 1.1.0 [45].

Results
Patient characteristics
A total of 785 patients with complete imaging data and 
clinicopathological record constituted the entire patient 
cohort in this study and were divided into training set 
and testing set with a ratio of 3:1 (Fig.  2). As shown in 
Table  1, there is no significant difference in all of the 
patient characteristics between training set and testing 
set. The characteristics of pCR and non-pCR patients 
were tabulated in Supplementary Material Table S2. Sig-
nificant association with pCR was observed in treatment, 
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HR, HER2, and MP, while the other characteristics were 
independent of pCR.

Feature repeatability and feature change
The summarized results of feature repeatability and fea-
ture variation are shown in Supplementary Material 
Figure S2 and Figure S3. After removing the duplicate 
shape features and features with low repeatability, there 
were 480 radiomic features retained for each patient. For 
dynamic feature extraction, features repeatable in all the 
DCE-MRI phases and changing across different phases 
were retained. A total of 1232 dynamic features were 
extracted from 56 selected radiomic feature series for 
each patient and used in further analysis. An example of 
the dynamic feature is shown in Supplementary Material 
Table S3.

Different models in pCR prediction
A 10-feature dynamic model and a 4-feature radiomic 
model were developed separately (Supplementary Mate-
rial Table S4). Dynamic model achieved higher AUC 
than radiomic model in both training set (0.688 vs. 0.650) 
and testing set (0.686 vs. 0.626) (Fig.  3(a)(b)), but the 

difference was not statistically significant (p value = 0.181 
and 0.222). Dynamic model also had better performance 
in terms of accuracy and specificity, while the sensitiv-
ity was the same as radiomic model (Table  2). The sig-
nificance of each feature in dynamic model and radiomic 
model was evaluated by the odds ratio and tabulated in 
Supplementary Material Table S5 and S6.

Among the clinicopathological variables provided 
in the dataset, treatment, HR, HER2, and MP were sig-
nificantly associated with pCR (Supplementary Material 
Table S2). Since we intended to study biomarkers and 
MP requires expensive genomic test, only HR and HER2 
were retained for further analysis. Table  3 summarized 
the metrics for pCR prediction performance of clinical 
model and combined models. Clinical-radiomic-dynamic 
(CRD) model achieved the highest training and testing 
AUC (Fig. 3(c)(d)), accuracy, and specificity, while clinical 
model had the highest sensitivity among all the models. 
The clinical factors, the dynamic model, and the radiomic 
model demonstrated independent value in CRD model as 
indicated by their coefficients and p values (Supplemen-
tary Material Table S7). Compared with clinical-radiomic 
(CR) model, CRD model shown significant improvement 

Fig. 2 Patient cohort and train-test split
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in both training and testing performance, indicating the 
additive value of dynamic model. Figure  3(e) shows the 
heatmap of the predicted probability by different mod-
els. Models containing dynamic features were clustered 
as similar models, showing the distinctive characteristic 

of dynamic features. The dynamic model was not associ-
ated with HR and HER2, demonstrating the independent 
value of dynamic model.

Evaluation of the optimal model
Overall, CRD model has the best performance in pCR 
prediction. The calibration curves of CRD model had 
Brier score of 0.174 and 0.180 in training and testing 
set respectively (Fig.  4(a)), indicating well-alignment 
between predicted probablities and actual probabilities. 
The decision curve analysis of CRD model demonstrated 
its clinical usefulness by higher net benefit gain com-
pared to clinical model and the other combined models 
(Fig. 4(b)).

The SHAP value analysis of CRD model shown high 
importance of dynamic model, which was comparable 
to HR. The importance of radiomic model and HER2 
was a little bit lower, but still had significant effect on the 
model output (Fig. 5(a)). The CRD model was also used 
in stratifying pCR and non-pCR patients under different 
pre-defined molecular subtypes. It shown a significant 
stratification ability in all the four molecular subtypes 
with odds ratio (OR) of 2.88–8.42. (Fig. 5(b)). In the anal-
ysis of patients receiving different drugs, except for the 
marginally significant performance in Pertuzumab arm, 
CRD model shown significant association with pCR with 
OR of 2.88–10.93 in the other treatment arms (Fig. 5(c)).

DEGs and enriched pathways
In DEG analysis, a total of 196 up-regulated genes and 
101 down-regulated genes in DYN + group were identi-
fied. As compared with HR- group and HER2 + group, 
which also associate with better pCR outcome in ISPY2 
trial, there are 7 common up-regulated genes and 22 
common down-regulated genes (Fig.  6(a)). In GSEA by 
GO terms, there are 36 biological processes, 3 cellular 
components, 2 molecular functions enriched in DYN+ 
(Fig.  6(b)), many of which are associated with immune 
system. There are 4 enriched pathways in GSEA by 
KEGG, in which 3 pathways are related to viral disease 
and 1 pathway is related to immune disease (Fig. 6(c)).

Discussion
While the dynamic information in DCE-MRI has shown 
potential in various clinical applications, the explora-
tion of DCE-MRI-derived radiomic feature series has 
remained limited. This study systematically extracted 
dynamic features from DCE-MRI-derived radiomic 
feature series using feature-based time series analysis 
method and built dynamic model for pCR prediction. 
Adding dynamic model to exisitng clinical and radiomic 
model can improve pCR prediction. Radiogenomic anal-
ysis revealed correlations of dynamic model with some 
breast cancer prognosis-related genes and pathways, 

Table 1 Patient characteristics in training set and testing set
Train Test P-value

Treatment Paclitaxel 95 47 0.448
Paclitaxel + ABT 
888 + Carboplatin

40 17

Paclitaxel + AMG 386 73 23
Paclitaxel + AMG 
386 + Trastuzumab

12 4

Paclitaxel + Ganetespib 59 19
Paclitaxel + Ganitumab 69 20
Paclitaxel + MK-2206 32 14
Paclitaxel + MK-2206 + Trastu-
zumab

25 5

Paclitaxel + Neratinib 70 15
Paclitaxel + Pembrolizumab 44 10
Paclitaxel + Pertuzum-
ab + Trastuzumab

23 10

Paclitaxel + Trastuzumab 16 4
T-DM1 + Pertuzumab 30 9

HR negative 265 89 1
positive 323 108

HER2 negative 454 157 0.322
positive 144 40

MP negative 304 102 1
positive 284 95

pCR negative 398 133 1
positive 190 64

Age (mean, range) 49 
(25–
77)

50 
(23–
72)

0.238

Race American Indian or Alaska 
Native

4 0 0.434

American Indian or Alaska Na-
tive; White

0 1

Asian 43 14
Asian; White 3 1
Black or African American 71 22
Native Hawaiian or Pacific 
Islander

4 0

Native Hawaiian or Pacific 
Islander; White

0 1

White 461 157
N/A 2 1

Menopaus-
al status

N/A 103 43 0.362

Perimenopausal 21 7
Postmenopausal 177 64
Premenopausal 287 83

Ethnicity Hispanic or Latino 76 28 0.723
Not Hispanic or Latino 511 169
N/A 1 0



Page 7 of 12Zhang et al. Breast Cancer Research           (2024) 26:77 

providing the potential biological explanations for the 
additive value.

The change in DCE-MR image appearances caused by 
the flow of contrast agent may contain valuable informa-
tion for pCR prediction. Previous studies have employed 
delta features and statistical distributions to character-
ize the relevant dynamic information [12, 13]. However, 

the former method may provide limited information by 
utilizing only two of multiple DCE-MR phases, while the 
latter method disregards the temporal information that 
is crucial for reflecting the directional flow of contrast 
agent. A recently published paper implemented several 
classical time series analysis algorithms in DCE-MRI-
derived radiomic feature series and achieved an accuracy 

Table 2 Results of radiomic model and dynamic model for pCR prediction
Training AUC p value Testing AUC p value Accuracy Sensitivity Specificity

Dynamic model# 0.688
(0.635–0.741)

0.686
(0.594–0.778)

0.650 0.609 0.669

Radiomic model 0.650
(0.595–0.705)

0.181 0.626
(0.529–0.722)

0.222 0.589 0.609 0.579

P values were obtained by DeLong test
# indicate reference model for comparison

Accuracy, sensitivity, and specificity were obtained in testing set

Table 3 Results of clinical model and combined models for pCR prediction
Training AUC p value Testing AUC p value Accuracy Sensitivity Specificity

CRD model# 0.769
(0.722–0.816)

0.762
(0.679–0.845)

0.736 0.578 0.812

CD model 0.754
(0.705–0.802)

< 0.001* 0.755
(0.672–0.839)

0.112 0.660 0.734 0.624

CR model 0.716
(0.665–0.767)

< 0.001* 0.695
(0.656–0.714)

0.005* 0.695 0.656 0.714

RD model 0.709
(0.658–0.761)

< 0.001* 0.693
(0.602–0.784)

< 0.001* 0.629 0.594 0.647

Clinical model 0.642
(0.586–0.697)

< 0.001* 0.691
(0.600-0.782)

< 0.001* 0.619 0.828 0.519

P values were obtained by likelihood ratio test

* indicate statistically significant # indicate reference model for comparison

Accuracy, sensitivity, and specificity were obtained in testing set

CRD model: Clinical-Radiomic-Dynamic model; CD model: Clinical-Dynamic model; CR model: Clinical-Radiomic model; RD model: Radiomic-Dynamic model

Fig. 3 Reciever operating characteristic (ROC) curve analysis of dynamic model and radiomic model in (a) training set and (b) testing set. ROC analysis of 
clinical model, radiomic-dynamic (RD) model, clinical-radiomic (CR) model, clinical-dynamic (CD) model, and clinical-radiomic-dynamic (CRD) model in 
(c) training set and (d) testing set. (e) Heatmap of predicted probability by different models
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of 0.852 in breast cancer diagnosis, demonstrating the 
significance of serial information as well as the feasibil-
ity and efficacy of time series analysis [46]. In our study, 
we used radiomic features to comprehensively describe 
DCE-MR image appearance and adopted Catch22 to 
systematically analyze the dynamics of radiomic feature 
series. The Catch22 feature set takes into account both 
the temporal order and relative magnitude of series val-
ues. It has been successfully implemented in many time 
series analysis applications, such as breath signal and 
heart rate. To the best of our knowledge, it is the first 
study to apply a systematic feature-based time series 
analysis method to DCE-MRI for pCR prediction. Our 
results demonstrated the utility of the extracted dynamic 
features by showing a modestly higher AUC of dynamic 
model in comparison to the conventional radiomic 
model. Furthermore, the dynamic features provided 
additive value to the existing methods, as evidenced by 
a significantly improved model performance compared 
with both clinical model and CR model. Overall, we have 
demonstrated the feasibility and efficacy of extracting 
dynamic information through feature-based time series 
analysis and the potential of dynamic features in facili-
tating pCR prediction. Besides, our method offers the 
advantage of interpretability as Catch22 provides clear 
definition for each dynamic feature. And it is adaptable to 
different time series length which is frequently encoun-
tered in real-world clinical practice due to the variations 
of machines and scan settings. Our method demonstrates 
the potential to be implemented in real clinical practice, 
although further validation is required to confirm its per-
formance in diverse settings.

Both single-modal and multi-modal models were 
developed in this study. While the imaging-based model 
and clinical model appeared to have similar performance, 
the combined models shown better performance than 
individual models. The CRD model achieved the highest 

AUC, which is significantly better than RD model and 
clinical model alone, indicating that imaging features and 
clinical factors may provide distinct and complementary 
information for pCR prediction. Subgroup analysis of the 
CRD model was conducted to further explore the effec-
tiveness of CRD model under various conditions. Breast 
cancer is a highly heterogeneous disease characterized by 
various HR and HER2 status, resulting in four molecu-
lar subtypes. Our results on molecular subtype analysis 
resulted in varying effect size by OR ranging from 2.88 
to 8.42, where a larger OR indicates a stronger predic-
tive ability. While CRD model is significantly associated 
with pCR in all the molecular subtypes, our results sug-
gested that CRD model has stronger predictive ability for 
patients of HR + HER2-. The CRD model was also evalu-
ated by its effect for patients receiving different drugs, 
resulting in the largest OR in Ganetespib and marginally 
significant OR in Pertuzumab. This indicates the vari-
ous predictive value of CRD model for various treatment 
drugs and assists the clinicians to decide applicable sce-
narios. In general, CRD model shown generalizability 
acorss various molecular subtypes and various treat-
ment drugs. However, due to the nature of trial data, the 
patient numbers are small in each subgroups and further 
validation on larger cohort is required to confirm the 
results.

It is believed that radiomics is able to detect the under-
lying biological processes in the human body by analyz-
ing image textures that are imperceptible to human eyes. 
Moreover, pre-treatment radiomics mostly reflect the 
baseline tumor characteristics, which is the result of vari-
ous biological processes and associated with treatment 
response. Previous studies indicated the representative-
ness of image phenotypes for the biological character-
istics by demonstrating their similar predictive ability 
to pCR [47]. However, few radiomics study has linked 
the image phenotype to biological processes through 

Fig. 4 Calibration curve and decision curve analysis
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Fig. 5 (a) SHAP analysis for interpretable component importance of CRD model. The beaswarm plot shows how each variable influence model output 
on single data where one dot represents one patient (left). The mean absolute SHAP value reflects the global effect of each variable on model output 
(right). (b) Box plots showing the predictive ability of CRD model in patient subgroups of various molecular subtypes. The molecular subtypes were 
defined by the status of HR and HER2, namely HR + HER2-, HR + HER2+, HR-HER2+, and HR-HER2-. The box plots indicate that the CRD model yields signifi-
cantly distinct prediction probabilities for patients with pCR and non-pCR in all the four molecular subtypes. (c) Box plots showing the predictive ability 
of CRD model in patients receiving various treatments. Patients received standard care (control) or standard care plus one trial agent (ABT888, AMG386, 
Ganetespib, Ganitumab, MK2206, Neratinib, Pembrolizumab, Pertuzumab, T-DM1) in the trial. The box plots suggest that CRD model demonstrates the 
capability to differentiate pCR and non-pCR patients across various treatment drugs in this trial, with the exception of a marginal significance observed in 
Pertuzumab. All the p values were obtained by student t test. OR: odds ratio
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radiogenomic analysis [48]. In this study, we conducted a 
radiogenomic analysis to associate our dynamic model to 
the genomic profiles of breast tumors, providing insight 
into the underlying biological mechanisms of radiomics. 
Some DEGs in our DYN + subgroup is associated with 
better prognosis of breast cancer patients. For example, 
the DYN + subgroup has higher expression of CXCL9 
which was demonstrated to associate with higher pCR 
rate in breast cancer patients receiving NAC in previous 
study [49]; HLA-DPB1  was up-regulated in DYN + sub-
group and was also assocaited with more tumor infiltrat-
ing lymphcytes and thereby better prognosis [50]. On 
the other hand, DEGs such as CCL18 is associated with 
angiogenesis in breast cancer, demonstrating the poten-
tial of DYN to represent the dynamics in DCE-MRI [51].

Our study has several limitations. Due to the retro-
spective nature of the study, it is possible that our results 
suffer from spectrum bias and information bias, which 
may compromise the overall strength of evidence of our 
study. Besides, our study included a medium sample size 
(n = 785) without external validation, which may not be 
representative enough for the large population of breast 
cancer patients. Therefore, further study is needed to 
externally validate our methods and conclusions in a 
prospective manner. Also, our study only employed 
DCE-MRI, while multi-parametric MR images could be 
available in clinics. Further exploration on incorporating 
other MR images is warranted.

Conclusions
In conclusion, this study quantified the dynamic char-
acteristics of DCE-MRI by calculating dynamic proper-
ties of radiomic feature series and developed a dynamic 
model. The dynamic model can aid in improving pCR 
prediction of breast cancer patients receiving NAC. The 
potential biological underpinnings of the dynamic model 
was explored by demonstrating its association with 
tumor heterogeneity in gene expression. Further inves-
tigations on more biological associations and assisting 
treatment selection are warranted.
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