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Abstract 

Breast cancer exhibits significant heterogeneity, manifesting in various subtypes that are critical in guiding treatment 
decisions. This study aimed to investigate the existence of distinct subtypes of breast cancer within the Asian popu‑
lation, by analysing the transcriptomic profiles of 934 breast cancer patients from a Malaysian cohort. Our findings 
reveal that the HR + /HER2− breast cancer samples display a distinct clustering pattern based on immune phenotypes, 
rather than conforming to the conventional luminal A‑luminal B paradigm previously reported in breast cancers 
from women of European descent. This suggests that the activation of the immune system may play a more impor‑
tant role in Asian HR + /HER2− breast cancer than has been previously recognized. Analysis of somatic mutations 
by whole exome sequencing showed that counter‑intuitively, the cluster of HR + /HER2− samples exhibiting higher 
immune scores was associated with lower tumour mutational burden, lower homologous recombination deficiency 
scores, and fewer copy number aberrations, implicating the involvement of non‑canonical tumour immune pathways. 
Further investigations are warranted to determine the underlying mechanisms of these pathways, with the potential 
to develop innovative immunotherapeutic approaches tailored to this specific patient population.
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Introduction
Breast cancer is a highly heterogeneous disease, charac-
terized by diverse subtypes that have important implica-
tions in guiding treatment [1–4]. These distinct subtypes 
encompass variations in clinical presentation, molecu-
lar profiles, and response to treatment, highlighting the 
complex nature of breast cancer. The classification of 
breast cancer subtypes has provided valuable insights 
into disease prognosis and treatment selection, enabling 
more personalized and targeted therapeutic approaches.

Currently, there are two generally accepted method-
ologies to classify breast cancer subtypes: PAM50 [1, 2, 
5] and Integrative Clusters [3, 4, 6]. Under the PAM50 
classification scheme, breast cancer is classified into four 
main subtypes according to gene expression-based clus-
ters: luminal A, luminal B, HER2− enriched, and basal-
like, as well as an additional small group usually labelled 
as “normal-like”. These categories roughly correspond to 
the biomarker- and treatment-based clinical subtypes of 
HR + /HER2−, HR + /HER2 + , HR−/HER2 + , and triple 
negative breast cancer (TNBC). The Integrative Cluster 
classification scheme, on the other hand, integrates both 
transcriptomic and copy number data to classify breast 
cancer into 11 subtypes with different driver mutations. 
These subtypes include the HER2 + -associated IntClust 
5, the TNBC-associated IntClust 10, as well as subtypes 
with low copy number variation (IntClust 4 + and 4−).

However, it is important to recognize that the existing 
subtypes were predominantly derived from studies con-
ducted in populations of European descent. Given the 
clinical utility of molecular subtyping, there is a growing 
need to investigate breast cancer subtypes in different 
ethnic populations to account for potential variations in 
genetic, environmental, and lifestyle factors. For exam-
ple, the various breast cancer subtypes are known to have 
different associations with reproductive risk factors [7, 
8] and BMI [7], and these lifestyle risk factors are likely 
to differ substantially between different populations. 
Additionally, different breast cancer subtypes are associ-
ated with different breast cancer risk genetic loci [9–11], 
which are also distributed differently in different popu-
lations [12]. Importantly, previous studies have found 
differences in the prevalence of certain subtypes in non-
European populations, with the African population hav-
ing higher numbers of TNBC-associated samples [13], 
and the Asian population having a higher prevalence of 
HER2− enriched [14] or luminal B [15] samples.

The heterogeneity in clinicopathological features across 
different populations suggests the possibility that intrin-
sic molecular subtypes differ across different populations 
as well. For example, breast cancers from the Nige-
rian population have a high prevalence of homologous 
recombination deficiency (HRD), TP53 mutations, and 

structural variation indicative of a more aggressive biol-
ogy compared to tumours from Western populations 
[13]. It has also been identified previously that Asian 
breast cancers exhibit higher immune scores compared 
to the Western population [14, 15]. These findings sug-
gest potential differences in the underlying biology of 
breast cancer in different ethnic groups and highlight the 
importance of population-specific studies across diverse 
populations.

Investigating breast cancer subtypes in Asians holds 
significant promise for improving our understanding of 
the disease and optimizing treatment strategies for this 
specific population. Additionally, it may provide insights 
into the underlying genetic and molecular mechanisms 
that contribute to breast cancer pathogenesis, allowing 
for the development of more tailored and effective thera-
peutic interventions. Existing studies which investigated 
the molecular subtypes underlying breast cancer in Asian 
populations have reported that molecular subtypes are 
largely conserved between Asian and Western popula-
tions [15–17]. However, the cohort sizes in these stud-
ies are relatively small, and some are only focused on a 
subpopulation, such as young breast cancer, and may not 
be representative of the entire Asian population. In this 
study, we explored the possibility of unique subtypes of 
breast cancer within the Asian population by examining 
the transcriptomic profiles of breast cancer patients from 
a relatively large cohort. Our analyses found the HR + /
HER2− breast cancer samples in our cohort display a 
distinct clustering pattern based on immune phenotypes 
instead of the luminal A-luminal B paradigm. This sug-
gests that the activation of the immune system may play 
a more important role in Asian HR + /HER2− breast can-
cer than has been previously recognized, which may have 
important clinical implications.

Materials and methods
Study cohort
Our study cohort consists of 934 Malaysian women with 
breast cancer. Patients were recruited to the MyBrCa 
Genetics study [18] from the Subang Jaya Medical Cen-
tre and the University Malaya Medical Centre between 
2012 and 2018. Peripheral blood samples and breast 
tumour tissues were acquired from each patient. For 
breast tumour tissues, representative fresh tumour tis-
sues were obtained and frozen during surgical resection 
of the tumour. These tumour samples were then stored 
in liquid nitrogen. Tumour samples were then sectioned 
for DNA and RNA extraction. The top and bottom sec-
tions were stained with haematoxylin and eosin and 
reviewed for tumour content. Tumour samples with an 
average tumour content of < 30% (n = 50) and/or insuffi-
cient DNA (n = 8) were excluded from the study. Patients 
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with bilateral breast cancer were also excluded (n = 14). 
Patient enrolment and genetic analyses were approved 
by the Ethics Committee of Subang Jaya Medical Centre 
(Reference no: 201208.1) and the Medical Ethics Com-
mittee of the University Malaya Medical Centre (Ref-
erence no: 842.9) and written informed consent was 
provided by each patient.

Nucleic acid extraction and sequencing of tumour 
and matched normal specimens
For samples which were part of our original MyBrCa 
tumour cohort publication, DNA and RNA extraction 
and sequencing were performed as previously published 
[14]. This study also included an additional 448 samples. 
For these samples, DNA extraction from blood sam-
ples was performed using the Maxwell 16 Blood DNA 
Purification Kit with a Maxwell 16 Instrument, follow-
ing standard protocol. For tumour samples, DNA was 
extracted using the QIAGEN DNeasy Blood and Tissue 
Kit following standard protocol and quantified using the 
Qubit HS DNA Assay kit and Qubit 2.0 fluorometer (Life 
Technologies Inc).

RNA was extracted from tumour samples using the 
QIAGEN miRNeasy Mini Kit with a QIAcube, accord-
ing to standard protocol. Quantification of total RNA was 
performed using a Nanodrop 2000 Spectrophotometer 
and RNA integrity was established through an Agilent 
2100 Bioanalyzer. For both DNA and RNA sequencing 
(RNA-seq), samples with a concentration above 20.0 ng/
μL were selected. Additionally, an RNA integrity num-
ber above 7 was required for samples to be selected for 
RNA-seq.

DNA libraries were produced from 50  ng of genomic 
DNA using the Nextera Rapid Capture Exome kit (Illu-
mina, San Diego, USA) as per manufacturer’s instruc-
tions. Exome capture was achieved in pools of 3 and 
subjected to paired end 75 sequencing on a NovaSeq 
platform (Illumina, San Diego, USA) at 40 × depth for 
blood samples and 80 × depth for tumour samples. Prior 
to exome capture, 4  nM pools of DNA libraries from 
tumour samples were also selected for single end 50 shal-
low whole-genome sequencing at 0.1 × depth.

RNA libraries were prepared from 550 ng of total RNA 
from tumour samples using the TruSeq Stranded Total 
RNA HT kit with Ribo-Zero Gold (Illumina, San Diego, 
USA) as per manufacturer’s instructions, subjected to 
paired end 75 sequencing on a NovaSeq platform (Illu-
mina, San Diego, USA) at 40 × depth.

Gene expression analysis
RNA-seq reads were aligned to the hs37d5 human 
genome and the ENSEMBLE GrCh37 release version 87 

human transcriptome via the STAR aligner (v.2.5.3a) [19]. 
Gene-level counts were calculated with featureCounts (v. 
1.5.3) [20]. Gene-level count matrices for the cohort were 
transformed into normalized log2 counts-per-million 
(logCPM) using the voom function from the limma (v. 
3.34.9) R package. The transformed matrices were then 
subtyped according to PAM50 and SCMgene designa-
tions using the Genefu package in R (v. 2.14.0).

Clustering and classification analysis
To identify unique subtypes, unsupervised k-means clus-
tering was performed on the gene-level count matrices 
for the MyBrCa cohort. We also evaluated the use of 
different numbers of genes as our feature set, by rank-
ing each gene according to the median absolute devia-
tion of each gene within the cohort, and using either the 
top 1000 genes with the highest median absolute devia-
tion, the top 5000, or all genes. To ensure robustness, an 
extensively implemented consensus clustering method 
[21], with 1000 iterations and 0.9 subsampling ratio, was 
used to assess clustering stability. Consensus clustering 
was implemented by the ConsensusClusterPlus function 
of the R package ConsensusClusterPlus with k-means 
clustering algorithm using Pearson correlation distance. 
Our final clustering model used k = 12 with the top 5000 
genes.

Hierarchical clustering analysis
Hierarchical clustering was conducted on the gene-level 
count matrices for the MyBrCa cohort using the hclust 
package from R with default parameters.

Shallow whole genome sequencing alignment and copy 
number aberration (CNA) assessment
Sequenced reads were mapped to the hg19 reference 
genome using bwa-mem, sorted using samtools and 
dedupped using picard (http:// broad insti tute. github. io/ 
picard). Mapped reads were analysed using QDNAseq 
[22] to obtain 100  kb segmented copy number profiles 
using standard protocol and default parameters. CNAs 
were called using CGHcall (v 2.40) as implemented in the 
QDNASeq R package, which calls each segment as nor-
mal, copy number gain, copy number loss, amplification 
or deletion using a mixture model. ENSEMBL hg19 genes 
with HUGO names were mapped to the segmented copy 
number calls by their start positions to determine the 
copy number status for each gene in each sample.

Profiling the tumour immune microenvironment
Overall immune cell infiltration in the bulk tumour sam-
ples was assessed from RNA-seq TPM gene expression 

http://broadinstitute.github.io/picard
http://broadinstitute.github.io/picard
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scores using ESTIMATE (v. 1.0.13) [23], gene set varia-
tion analysis (GSVA) (v. 1.26) using combined immune 
cell gene sets from Bindea et al. [24] and immune scores 
from Thorsson et al. [25]. For each sample, immune fea-
tures predictive of checkpoint inhibitor immunotherapy 
was also scored. This was done using IMPRES scores 
(only 14 out of 15 of the predictive features were avail-
able in our datasets) as well as GSVA using the Expanded 
IFN-gamma gene set [26, 27]. The relative abundance of 
specific immune cell populations was estimated from 
RNA-seq TPM scores with the CIBERSORT [28] web 
tool, as well as through GSVA with individual immune 
gene sets from Bindea et al. [24].

Mutational signatures
The weights of previously reported breast cancer muta-
tional signatures using COSMIC matrices (Single Base 
Substitutions (SBS) Signatures 1, 2, 3 and 13) were estab-
lished using deconstructSigs [29]. The proportion of 
variants associated with each mutational signature was 
determined only for samples with at least 15 detected 
single nucleotide variants (SNVs).

HRD scores
The following measures of HRD were determined as 
described previously: (1) loss of heterozygosity (LOH), 
(2) large-scale state transitions (LST), and (3) telomeric 
allelic imbalance (TAI) [30, 31]. Allele-specific copy num-
ber (ASCN) profiles on paired normal-tumour BAM files 
were classified via Sequenza [32] and utilised to analyse 
the individual measure scores and HRD-sum scores via 
scarHRD R package [33].

Differential gene expression and functional enrichment 
analysis
Gene expression was analysed with the DEseq2 pack-
age, an R-based open-source software designed to ana-
lyse transcriptomic data for differential expression, as 
previously described [34]. Gene set enrichment analyses 
(GSEA) was performed to compare clusters using the 
Hallmark pathways from the Molecular Signatures Data-
base [35] as well as KEGG pathways. These analyses were 
performed with default parameter settings using 1,000 
permutations and an FDR cutoff of 0.05. Single-sample 
gene set enrichment analyses (ssGSEA) and gene set vari-
ation analyses (GSVA) were also performed for each indi-
vidual sample for specific Hallmark and KEGG pathway 
gene sets, including the Hallmark complement, hypoxia, 
IL6-JAK-STAT3 signalling, inflammatory response, and 
interferon gamma response pathways, as well as the 
KEGG cGAS-STING, T-cell receptor signalling, antigen 
processing and presentation, and TGF-β signalling path-
ways, using the GSVA package in R.

Survival analysis
Survival data of patients were obtained from the Malay-
sian National Registry record of deaths. Survival length 
was defined as the period between the date of diagnosis 
of patients until the date of death for deceased patients, 
or the date when the Malaysian National Registry was 
last queried for patients assumed to be still alive. Cox 
proportional hazard models were built using the coxph 
function from the survival package and plotted using 
ggadjustedcurves and ggforest functions from the sur-
vminer package in R (v. 4.3.1). For comparison of overall 
survival between MyBrCa clusters, the cluster with rela-
tively large sample sizes and the best survival (Clusters 2) 
was selected as the reference group, and the p-value from 
comparison with Cluster 1, which had the worst survival 
among the larger clusters, was reported. For compari-
son between HR + /HER2− clusters, Cluster 7 (Group 1) 
was used as the reference group as comparison with the 
Group 2 clusters and the p value of the cluster with best 
survival was reported.

Statistical analysis
The Wilcoxon  test and the Chi-square test were exe-
cuted for comparisons of variables between categories. 
Unpaired t-tests were used to compare continuous vari-
ables between two groups. All tests were two-tailed and a 
significance level of p = 0.05 was used. Statistical analyses 
were performed using R v4.0. All box and whiskers plots 
in the main and supplementary figures were constructed 
with boxes indicating the 25th percentile, the median 
and the 75th percentile, whiskers showing the maximum 
and minimum values within 1.5 times the inter-quartile 
range, and outliers were not shown.

Results
Clinical characteristics of the MyBrCa cohort
The MyBrCa tumour cohort comprises of 934 female 
breast cancer patients of self-reported Malaysian nation-
ality who were sequentially recruited from two Malaysian 
hospitals, Subang Jaya Medical Centre and Universiti 
Malaya Medical Centre. This cohort consists of a mix of 
Chinese, Malay, or Indian ancestry. The clinical charac-
teristics of these patients are shown in Table 1.

Identification of Clusters Associated with Subtypes 
of MyBrCa patients
After sample processing, sequencing, and data process-
ing, we were able to obtain transcriptomic profiles for 
934 samples, which we used to conduct a cluster analy-
sis. Using k-means clustering, we iteratively analysed 
the clustering of these samples across a range of k values 
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and number of features (number of genes included—see 
“Methods”). The optimum k value and feature set was 
selected by comparing our clustering results with the 
PAM50 clustering. Given that Her-2 enriched breast 
cancer is a well validated, biologically distinct subtype 
with copy number amplification of the ERBB2 gene, 
we selected a clustering result which grouped HER2− 
enriched samples consistently into a single cluster to be 
used for all subsequent analyses. This clustering result 
had the k value of 12 and a feature set of the top 5000 
genes with the highest median absolute deviation within 
the cohort (Fig. 1).

Comparisons with PAM50, IntClust, and clinical sub-
types indicated that our clustering results largely support 
the notion of distinct basal-like/IntClust10/TNBC and 
HER2− enriched/IntClust5/HER2 + groups of samples 
(Fig.  1). However, our clustering results were very dif-
ferent compared to previous clustering methods for the 
subtypes of HR + samples (Fig.  1a), suggesting that the 
grouping of HR + samples in our cohort may be driven 

by a different phenotypic paradigm relative to other 
populations.

Comparison of pathway expression across MyBrCa clusters
Next, to investigate the differences between our clusters, 
we conducted differential gene expression and path-
way analyses. We compared each cluster to the other 
clusters with similar clinical subtypes, with a particular 
focus on the HR + clusters. Using GSEA, we found that 
the HR + clusters 2, 4, 5, and 7 differed from each other 
primarily in immune-related pathways such as the com-
plement, inflammatory response, and interferon gamma 
(IFN-γ) response pathways (Fig.  2c, Additional file  2: 
Table  S1). Pathway enrichment analyses returned simi-
lar results, with an over-representation of genes involved 
in immune-related pathways when comparing between 
the four HR + clusters. To follow up on these results, 
we calculated the scores for several gene expression-
based immune-scoring methods, including ESTIMATE, 
IMPRES, the Ayers expanded IFN-γ gene set, and the 

Table 1 Clinico‑pathological characteristics of the study cohort. Group 1 and Group 2 are the two groups of HR + /HER2− patients 
described below. Statistical significance was determined using Student’s t‑test or Pearson’s chi‑squared test

Overall Group 1 Group 2 Statistical 
Significance

Subjects (n) 934 61 421

Patient age (Mean ± SD) 53.78 ± 11.65 50.56 ± 10.08 54.16 ± 11.89 0.0247

Clinical subtypes (n(%))

 HR−/HER2 + 138 (14.78) 5 (8.20) 5 (1.19) 0.0004

 HR + /HER2− 432 (46.25) 39 (63.93) 312 (74.11)

 HR + /HER2 + 126 (13.49) 10 (16.39) 60 (14.25)

 TNBC 159 (17.02) 4 (6.56) 7 (1.66)

 N/A 79 (8.46) 3 (4.92) 37 (8.79)

TNM Stage (n(%))

 0 23 (2.46) 2 (3.28) 8 (1.90) 0.7430

 I 146 (15.63) 8 (13.11) 67 (15.91)

 II 428 (45.82) 28 (45.90) 198 (47.03)

 III 270 (28.91) 20 (32.79) 114 (27.08)

 IV 40 (4.28) 2 (3.28) 24 (5.70)

 N/A 27 (2.89) 1 (1.64) 10 (2.38)

Grade (n(%))

 1 27 (2.87) 3 (4.92) 22 (5.23) 0.3310

 2 385 (40.45) 31 (50.82) 248 (58.91)

 3 420 (44.46) 22 (36.07) 113 (26.84)

 N/A 102 (12.22) 5 (8.20) 38 (9.03)

Histology (n(%))

 Ductal carcinoma 800 (85.65) 48 (76.19) 361 (82.23)  < 0.0001

 Lobular carcinoma 30 (3.21) 11 (17.46) 11 (2.51)

 Other 1 (0.11) 0 (0.00) 0 (0.00)

 N/A 103 (11.03) 2 (3.17) 49 (11.16)
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immune scores from Thorsson et  al. (2018) for each 
sample (Fig. 2b). We found that there was a marked dif-
ference for many of these scores between our HR + clus-
ters, consistent with the notion that the clustering of 
HR + samples in our cohort is driven by differences in 
immune-related phenotypes. We identified a group of 
clusters with consistently low or intermediate immune 
scores (Group 2), comprising of Clusters 2, 4 and 5, while 
Cluster 7 (Group 1) has consistently high immune scores.

We also investigated several KEGG pathways known 
to mediate IFN-γ, including cGAS-STING, T-cell recep-
tor signalling, antigen processing and presentation, and 
TGF-β signalling pathways. We compared gene expres-
sion for genes in these pathways between our Group 1 
and Group 2 samples using GSVA and ssGSEA, and the 
results indicated that all of these pathways were upreg-
ulated in Group 1 as compared to Group 2 (Additional 
file 1: Fig. S1).

Fig. 1 Comparison of MyBrCa clusters with a clinical subtypes, b PAM50 and c Integrative Clusters
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Fig. 2 Comparison of MyBrCa clusters with a clinical subtypes, b immune scores and c Gene Set Variation Analysis (GSVA) scores. HR + clusters 
with high immune scores (Group 1) and low immune scores (Group 2) are identified
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We validated our results by conducting unsupervised 
hierarchical clustering of transcriptomic profiles of the 
MyBrCa cohort. Hierarchical clustering of our samples 
gave similar results to our k-means clustering analyses in 
that our HR + /HER2− samples were again clustered into 
two main groups, and the segregation of the two groups 
was primarily driven by immune-related pathways 
according to pathway analyses (Additional file 1: Fig. S2, 
Additional file 3: Table S2).

In addition, we also evaluated the association between 
ER status and clustering of the HR + /HER2− samples in 
our cohort. We found that there is a significant difference 
in the prevalence of ER positivity between the 4 clusters 
that are primarily HR + /HER2− (p = 1.3e-5; Additional 
file 4: Table S3a), with Cluster 7/Group 1 having a higher 
prevalence of ER-negative samples. Similarly, we also 
found a significant difference in PAM50 subtype distribu-
tion between the four HR + /HER2− clusters (p < 1.0e−5). 
Cluster 5 contained no luminal B samples, while Cluster 
7 had more basal-like, HER2− enriched, and normal-like 
samples compared to the other clusters (Additional file 4: 
Table S3b).

Genomic profiles of HR + /HER2− clusters
Given the growing importance of immunotherapy in 
cancer treatment, biomarkers to identify a subset of 
HR + /HER2− breast cancer patients that have an active 
immune microenvironment may be useful in both 
clinical and research settings. Since both whole-exome 
and shallow whole-genome sequencing data are avail-
able for the majority of samples in our study cohort, 
we next compared the mutational and copy number 
profiles of samples in the high immune scoring HR + /
HER2− cluster (Group 1) to those in the intermediate 
and low immune-scoring HR + /HER2− clusters (Group 
2), in order to identify molecular features that may be 
associated with an active immune microenvironment 
in a HR + /HER2− breast cancer background. First, 
we compared the prevalence of known somatic driver 
mutations in both groups and found that somatic TP53 
mutations were more common in Group 1, but no other 
driver mutations were significantly different (Fig.  3a). 
Next, we compared the prevalence of mutational sig-
natures and found that the aging-associated mutational 
signature SBS1 was more prevalent in Group 2 (Fig. 3b). 
Contrary to expectations, samples in Group 1 had on 
average fewer somatic mutations (Fig.  3c) and CNAs 
(Additional file  1: Fig.  S3) compared to Group 2, as 
well as lower scores for HRD-associated LOH and LST 
(Fig. 3d).

Immune profiles of HR + /HER2− clusters
Next, we asked if there was a difference in the composi-
tion of immune cells in the tumour microenvironment 
between the two groups that could be associated with 
immune activation. We first confirmed that there was a 
significant difference between the two groups by com-
paring several general immune score markers and found 
that Group 1 indeed had significantly higher scores for 
the combined Bindea gene set, Ayers expanded IFN-
gamma gene set, IMPRES score, as well as scores for 
cytotoxic cells (Fig. 4a). Following that, we used CIBER-
SORT transcriptomic deconvolution to measure the rela-
tive abundances of 22 different immune cell types in the 
tumour microenvironment and compared the abundance 
of each cell type between the two groups. We found sig-
nificant differences between the two groups across all 22 
immune cell types (Fig.  4b). Interestingly, immune cell 
types associated with the adaptive immune system such 
as CD4 + memory T-cells, CD8 + T-cells, and B-cells 
had a higher relative abundance in Group 1, whereas 
Group 2 had a higher relative abundance of cells typically 
associated with the innate immune system, such as M2 
macrophages and mast cells (Fig.  4b). Moreover, Group 
1 samples were found to have higher abundance of lym-
phoid lineage cells, including B cells, CD8 + T cells and 
CD4 + T cells, whereas immune cells which were more 
abundant in Group 2 were mostly from the myeloid line-
age, such as neutrophils and mast cells. There was also a 
notable difference in the prevalence of macrophage phe-
notypes between Group 1 and Group 2. Pro-inflamma-
tory M1 macrophages were found to be more abundant 
in Group 1, while non-activated M0 macrophages and 
anti-inflammatory M2 macrophages are more abundant 
in Group 2 (Fig. 4b).

Survival analyses of MyBrCa clusters
Following that, we looked for prognostic differences 
between our clusters by conducting survival analyses. 
Survival analyses were performed using Cox propor-
tional hazard models for overall survival, adjusting for 
tumour stage and grade. In general, HR + clusters, (Clus-
ters 2, 4, 5 and 7) appeared to have better survival than 
the rest of the cohort (Fig. 5d, Additional file 1: Fig. S4a). 
As expected, clusters comprising of mainly TNBC sub-
types, namely Clusters 1, 8 and 11, were associated with 
the worst survival, followed by Cluster 3 which comprises 
of a mix of clinical subtypes which are mainly HER2 + or 
TNBCs.

We also asked if survival differs between the HR + /
HER2− clusters with distinct immune phenotypes 
(Group 1 versus Group 2). Group 1 was associated with 
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Fig. 3 Comparison of characteristics between HR + /HER2− Group 1 and Group 2. a Somatic driver mutations in Group 1 and Group 2. b Mutational 
signatures of Group 1 and Group 2. c Number of somatic mutations in Group 1 and Group 2. d Comparison of homologous recombination 
deficiency (HRD) scores between Group 1 and Group 2. LOH = loss of heterozygosity, LST = large‑scale state transitions, TAI = telomeric allelic 
imbalance. A significance level of p = 0.05 was used
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a slightly poorer survival than Group 2, but the difference 
was not statistically significant (Fig. 5e, Additional file 1: 
Fig.  S4b). Relative to Cluster 7 (Group 1), both Clus-
ters 2 and 5 (Group 2) had better survival, although the 

difference was insignificant, while Cluster 4 (Group 2) 
had similar survival as Cluster 7 (Fig. 5f, Additional file 1: 
Fig. S4c).

Fig. 4 Comparison of immune profiles of Group 1 and Group 2. a Scores of Group 1 and Group 2 for the Bindea combined gene set, Ayers 
expanded IFN‑gamma gene set, IMPRES score and scores for the Bindea cytotoxic cells gene set. b Comparison of abundance of immune cell types 
in the tumour microenvironment in Group 1 and Group 2

(See figure on next page.)
Fig. 5 Prognostic analyses between different clusters a Overall survival by stage, adjusted for grade and clinical subtypes. b Overall survival 
by grade, adjusted for stage and clinical subtypes. c Overall survival by clinical subtypes, adjusted for stage and grade. d Overall survival by MyBrCa 
clusters, adjusted for stage and grade. In the right panel, small clusters with n < 20 were removed. e Overall survival by immune group, adjusted 
for stage and grade. f Overall survival by MyBrCa clusters adjusted for stage and grade, showing only clusters in Group 1 or Group 2. Adjustments 
were made using a Cox proportional hazard model. Sample sizes are reported in brackets. For d and f, Cox proportional hazard ratio p‑values 
between the group with the best survival and the group with poorest survival are reported. For d, the p‑value between Clusters 1 and 2 
was reported. For f, the p‑value between Cluster 7 and Cluster 5 was reported



Page 11 of 14Pan et al. Breast Cancer Research           (2024) 26:67  

Fig. 5 (See legend on previous page.)
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Discussion
The aim of this study was to look for novel subtypes of 
breast cancer from cluster analyses using transcrip-
tomic data from a large Malaysian cohort of 934 breast 
tumours. Our classifier grouped these samples into 
12 clusters which were highly associated with clini-
cal subtypes. Comparisons of our clustering results to 
the PAM50 and IntClust classification schemes in the 
MyBrCa cohort suggest that intrinsic subtypes of breast 
cancer are largely conserved between Asian and West-
ern cohorts for HER2 + and TNBC subtypes. Survival 
analyses of our k-means clusters were also consistent 
with what might be expected based on the clinical sub-
types which each cluster comprise of and also consistent 
with previous findings. On the other hand, our results 
from both k-means clustering and hierarchical clustering 
demonstrated a unique clustering pattern of Asian HR + /
HER2− breast cancer samples. Instead of conforming to 
the conventional luminal A-luminal B paradigm, differ-
ences in immune-related pathways, immune scores as 
well as immune profiles suggest that clustering of these 
samples were driven by immune phenotypes.

This observation suggests that in Asian populations 
with HR + /HER2− breast cancer, the activation of the 
immune system may play a more crucial role compared 
to other populations. These findings are consistent with 
previous studies which reported a more immune-active 
tumour microenvironment in the Asian population, sup-
porting the notion that immune responses could poten-
tially have a heightened importance in Asian HR + /
HER2− breast cancer patients [15, 36, 37]. These find-
ings are also consistent with previous studies report-
ing that luminal breast cancers in Asians can be further 
stratified based on immune profiles [38, 39]. Additionally, 
comparison of the clustering results of our study to Inte-
grative Clusters suggests that the majority of our HR + /
HER2− immune high group (Group 1) also classified 
as IntClust 4, which was previously identified as having 
strong immune signatures in the METABRIC cohort [3], 
further supporting our findings.

Previous studies have suggested that the immune activ-
ity in HR + /HER2− breast tumours is associated with 
different outcomes compared to other breast cancer 
subtypes [40]. For example, the abundance of tumour-
infiltrating lymphocytes (TILs) is associated with worse 
outcomes in HR + /HER2− breast cancer, whereas it is 
associated with better outcomes in other subtypes [41]. 
This difference may be due to a different balance of 
immune cell subsets within the tumour microenviron-
ment—such a higher abundance of FOXP3 + T-cells [42], 
or due to differences in the tumour immune microenvi-
ronment such as CTLA-4 expression [43]. In addition 
to an association with poorer prognosis, the presence of 

TILs in HR + /HER2− breast cancer is also thought to 
be an independent predictor of response to neoadjuvant 
chemotherapy [44].

The underlying factors driving the increased activation 
of the immune system in Asian breast cancer remains to 
be elucidated, however we suggest that this may be due 
to a combination of genetic and environmental factors. 
Genetic variants that lower the threshold for immune 
activation during breast cancer may be more common in 
Asian populations—for example, germline deletion of the 
APOBEC3B gene, a cytidine deaminase that has roles in 
both cancer mutagenesis and innate immunity, is much 
more common in Asian and Oceanic populations than 
in Western populations [45, 46]. Additionally, lifestyle 
factors such as parity and BMI are known to influence 
cancer immunity [47, 48] as well as risk for developing 
specific breast cancer subtypes [7, 8], and these lifestyle 
factors also differ between Asian and Western popula-
tions, with Asian populations generally having higher 
(albeit decreasing) parity [49, 50], and lower BMI [51] 
compared to their Western counterparts. Additionally, 
immunity generally declines with increasing age, and 
Asian breast cancer studies so far have indicated that the 
average age at diagnosis is lower than in Western popula-
tions [52, 53], although this may be due to a birth cohort 
effect [52, 54]. As a whole, these studies suggest plausible 
mechanisms or combinations of mechanisms by which 
the immune system in Asian breast cancer is more active.

Our study also revealed associations between the clus-
ter of Asian HR + /HER2− breast cancers exhibiting 
high immune scores and several molecular character-
istics. Specifically, this cluster was composed primarily 
of HR + /HER2− samples, but contained a higher num-
ber of ER-negative and basal-like/normal-like samples 
compared to other HR + /HER2− clusters, suggesting 
that this cluster straddles the continuum between hor-
monally-driven breast cancers and other TNBC-associ-
ated breast cancer subtypes. Additionally, we observed 
a higher prevalence of TP53 somatic mutations within 
this cluster, suggesting that reduced functionality of this 
well-known tumour suppressor gene may contribute to 
immune activation in Asian HR + /HER2− breast cancer. 
Interestingly, despite the strong immune activation, these 
Asian HR + /HER2− breast cancers demonstrated lower 
overall numbers of somatic SNVs and indels, as well as 
fewer CNAs and lower HRD scores. This is opposite to 
what we might expect given the current paradigm for 
immune activation in cancer, where high tumour muta-
tional burden generates a high neoantigen load, leading 
to immune activation via tumour antigen presentation 
[55, 56], suggesting that immune activation in this spe-
cific subset of Asian HR + /HER2− breast cancers may be 
governed by non-canonical mechanisms.
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In our study, the cluster of Asian HR + /HER2− breast 
cancers characterized by high immune scores also dis-
played a notable association with specific immune cell 
types linked to adaptive immunity. This cluster exhib-
ited a higher prevalence of immune cell populations 
associated with antigenic presentation and recognition 
pathways, suggesting a potential mechanism of immune 
activation in these tumours. Furthermore, we observed a 
lower number of immuno-suppressive M2 macrophages 
within this cluster, further supporting the notion of an 
immunologically active tumour microenvironment. 
These findings are consistent with the involvement of 
adaptive immune responses in promoting antitumor 
immunity in Asian HR + /HER2− breast cancer.

In conclusion, our classifier subtyped Asian breast 
cancer into biologically distinct clusters which revealed 
that the clustering of Asian HR + /HER2− breast cancer 
is driven by immune phenotypes. These findings may be 
important because HR + breast cancer is traditionally 
associated with a less immune active tumour microenvi-
ronment and thus less responsive to immunotherapy, but 
the findings from this study support other recent studies 
suggesting that a subset of HR + /HER2− breast cancer 
may be more likely to respond to immunotherapy.
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