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Abstract
Background This study aimed to explore potential indicators associated with the neoadjuvant efficacy of TCbHP 
regimen (taxane, carboplatin, trastuzumab, and pertuzumab) in HER2 + breast cancer (BrCa) patients.

Methods A total of 120 plasma samples from 40 patients with HER2 + BrCa were prospectively collected at three 
treatment times of neoadjuvant therapy (NAT) with TCbHP regimen. Serum metabolites were analyzed based 
on LC-MS and GC-MS data. Random forest was used to establish predictive models based on pre-therapeutic 
differentially expressed metabolites. Time series analysis was used to obtain potential monitors for treatment 
response. Transcriptome analysis was performed in nine available pre-therapeutic specimens of core needle biopsies. 
Integrated analyses of metabolomics and transcriptomics were also performed in these nine patients. qRT-PCR was 
used to detect altered genes in trastuzumab-sensitive and trastuzumab-resistant cell lines.

Results Twenty-one patients achieved pCR, and 19 patients achieved non-pCR. There were significant differences 
in plasma metabolic profiles before and during treatment. A total of 100 differential metabolites were identified 
between pCR patients and non-pCR patients at baseline; these metabolites were markedly enriched in 40 metabolic 
pathways. The area under the curve (AUC) values for discriminating the pCR and non-PCR groups from the NAT of the 
single potential metabolite [sophorose, N-(2-acetamido) iminodiacetic acid, taurine and 6-hydroxy-2-aminohexanoic 
acid] or combined panel of these metabolites were greater than 0.910. Eighteen metabolites exhibited potential for 
monitoring efficacy. Several validated genes might be associated with trastuzumab resistance. Thirty-nine altered 
pathways were found to be abnormally expressed at both the transcriptional and metabolic levels.
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Introduction
Breast cancer (BrCa) has replaced lung cancer as the 
most commonly diagnosed cancer in women worldwide 
[1], and is the leading cause of cancer-related mortality 
in females [2]. Approximately 15–20% of all instances 
of BrCa are human epidermal growth factor receptor 2 
positive (HER2+) [3], which exhibits aggressive biological 
and clinical behavior and is linked to disease recurrence, 
metastasis, and unfavorable prognoses [4, 5]. However, in 
the last two decades, there have been many advances in 
HER2-targeted drugs, such as the monoclonal antibod-
ies trastuzumab (H) and pertuzumab (P); tyrosine kinase 
inhibitors lapatinib, neratinib, tucatinib and pyrotinib; 
and the antibody-drug conjugates T-DM1 and trastu-
zumab deruxtecan (T-DXd), which have dramatically 
improved the outcomes of HER2 + BrCa patients [6].

Neoadjuvant therapy (NAT) can reduce the size of 
locally advanced BrCa tumors, decrease the subclinical 
micro-metastatic illness, and improve the rate of breast-
conserving surgeries [7–9]. Meanwhile, NAT provides a 
unique chance to evaluate the response of patients with 
BrCa to different treatments [10]. Currently, the patho-
logic complete response (pCR) is a commonly used 
assessment tool for evaluating the response to NAT and 
is one of the most important target endpoints of NAT 
due to its correlation with favorable patient outcomes 
[11]. For patients with high-risk characteristics who are 
eligible for NAT, dual HER2-blockade with trastuzumab 
and pertuzumab coupled with chemotherapy is advised 
as the gold standard of care worldwide, pending medi-
cation availability [12]. In addition, in clinical practice, 
the regimen of taxane, carboplatin, and trastuzumab 
in combination with pertuzumab (TCbHP) has become 
the preferred and the most commonly used neoadjuvant 
regimens for HER2 + BrCa in China [13]. However, clini-
cal challenges might arise when cancer cells are resis-
tant to currently available HER2 inhibitors. Currently, 
not all HER2 + BrCa patients can benefit from NAT, and 
approximately 40-50% of patients cannot achieve pCR at 
surgery, even if the HP based regimen is used [14–16]. 
At present, there are no effective indicators for predict-
ing pathological response to NAT in the clinic. Therefore, 
exploring biomarkers to assess the pathogenic response 
to NAT is crucial and will assist in the exploration of 
novel strategies to overcome resistance and have signifi-
cant impact on the customized treatment of HER2-pos-
itive BrCa.

A proposed mechanism of HER2 + BrCa cell resis-
tance to anti-HER2 therapy is altered metabolism [17], a 
well-known hallmark of malignancy [18]. In fact, HER2-
mediated signaling has been linked to the activation of 
certain metabolic pathways, underscoring the impor-
tance of metabolic dysregulation in sustaining unregu-
lated growth, proliferation, and treatment resistance in 
HER2 + BrCa cells [19]. Panels of metabolites have been 
used as biomarkers for early diagnosis, grading, staging, 
molecular typing discrimination, and prognosis predic-
tion of BrCa [20–27]. The changes in metabolite profiles 
might be caused by the complex interactions between 
multiple environmental factors and gene expression 
[18]. Transcriptomics could assist in identifying cer-
tain molecular responses and generating theories on the 
underlying processes involved [28]. The integration of 
transcriptomics and metabolomics may provide more 
information on tumor pathophysiology than any tech-
nique used separately [29]. However, research identify-
ing biomarkers for evaluating the therapeutic response 
of HER2 + BrCa patients to NAT via metabolomics and/
or transcriptomics is still sparse. Furthermore, the exist-
ing studies are most focused on single-targeted therapy 
rather than dual-targeted therapy.

In this study, liquid chromatography-mass spectrom-
etry (LC-MS) and gas chromatography-mass spectrom-
etry (GC-MS) platform-based untargeted metabolomics 
were used to determine the metabolites in 120 plasma 
samples from 40 patients with HER2 + BrCa who received 
NAT via the TCbHP regimen at three different time 
points (pre-treatment, under treatment, post-treat-
ment). Moreover, transcriptome analysis of nine available 
biopsy samples was performed to identify differentially 
expressed genes (DEGs) between non-PCR patients and 
pCR patients. Pathways significantly altered in associa-
tion with drug resistance were identified by integrating 
metabolic and transcriptomic data. Quantitative real-
time polymerase chain reaction (qRT-PCR) was used to 
verify several DEGs in trastuzumab-resistant and trastu-
zumab-sensitive cell lines. This research was conducted 
to explore both possible biomarkers and pathways asso-
ciated with therapeutic response and to gain insight into 
the dynamic changes in efficacy-related metabolites at 
the different times of dual-targeted NAT with TCbHP. 
Moreover, a prediction model of the treatment response 
to TCbHP in patients with HER2 + BrCa was established 
based on differentially expressed metabolites (DEMs) 

Conclusion Serum-metabolomics could be used as a powerful tool for exploring informative biomarkers for 
predicting or monitoring treatment efficacy. Metabolomics integrated with transcriptomics analysis could assist in 
obtaining new insights into biochemical pathophysiology and might facilitate the development of new treatment 
targets for insensitive patients.
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using random forest (RF), which may help to identify 
insensitive patients before treatment.

Methods
Patient population
HER2-amplified BrCa patients who underwent and suc-
cessfully completed NAT with the TCbHP regimen and 
subsequent surgery at the Department of Breast Cancer 
Center, Chongqing University Cancer Hospital, from 
July 20, 2020, to May 28, 2021, were included in this pro-
spective analysis. The study received approval from the 
Chongqing University Cancer Hospital’s ethics commit-
tee (CZLS2022022-A) and was carried out in strict con-
formity with the Good Clinical Practice guidelines and 
the Declaration of Helsinki. Informed consent form was 
signed by every patient.

The detailed other inclusion criteria were as follows: (1) 
histologically diagnosed with invasive breast carcinoma 
by core needle biopsy and subjected to IHC analysis with 
paraffin-embedded tumor samples biopsied before NAT. 
At least 1% immunoreactivity for either the estrogen 
receptor (ER) or progesterone receptor (PR) in tumor cell 
nuclei was required for a positive result. According to the 
2018 American Society of Clinical Oncology (ASCO)/
College of American Pathologists (CAP) Clinical Prac-
tice Guidelines, HER2 overexpression was indicated by a 
score of 3 + immunoreaction intensity or 2 + immunore-
action intensity with HER2 amplification by fluorescence 
in situ hybridization (FISH) [30]; (2) the lack of metas-
tases, as determined by ultrasound, magnetic resonance 
imaging (MRI), computed tomography (CT), bone scan, 
and/or positron emission tomography (PET)/CT; When 
metastases to the axillary lymph nodes was either sus-
pected or discovered, fine needle aspiration cytology was 
carried out; (3) having healthy kidney, liver, and hema-
topoietic systems as well as an echocardiography with-
out significant cardiac arrhythmia or heart failure; (4) 
received the TCbHP regimen, which included carbopla-
tin [area under curve (AUC) = 6], docetaxel [75 mg/m2, 
without dose escalation], a loading dose of trastuzumab 
(8  mg/kg) with a maintenance dose of 6  mg/kg, and a 
loading dose of pertuzumab (840 mg) with a maintenance 
dose of 420 mg every three weeks for six cycles.

The following conditions were excluded from the study: 
a history of prior malignancy (apart from inactive non-
melanoma skin cancer and in situ cervical carcinoma), 
complicated with metabolic disorder syndrome, a cur-
rent infection, and other concomitant illnesses that might 
impact medication tolerance or hamper compliance.

Evaluation of the NAT pathological response
Pathological response was gauged using the semi-quan-
titative Miller-Payne (MP) grading method. This gauges 
the percentage reduction in invasive tumor volume and 

cellularity following NAT based on the pathological eval-
uation of surgical samples [31]. In our investigation, pCR 
was determined by experienced pathologists to be the 
absence of residual invasive disease after surgery in both 
the breast (MP grade 5) and axillary lymph nodes (ypT0/
is ypN0).

Sample collection
A total of 120 blood specimens from 40 patients were col-
lected at three time points of NAT (baseline, T1; after 2 
cycles, T2; after 6 cycles, before surgery, T3). Blood sam-
ples were taken from the elbow vein in the fasting state 
in the morning, kept in ethylenediaminetetraacetic acid 
vacuum tubes (BD Vacutainer, Franklin Lakes, NJ, USA), 
and centrifuged for 10 min at 3000 rpm at 4  °C. Imme-
diately after separation, the serum was kept at -80 °C for 
further examination. A total of 1–2 cores of biopsies were 
taken from the breast tumor at the diagnosis and placed 
promptly frozen in liquid nitrogen before being stored at 
-80 °C until use.

Non-targeted metabolomic analysis
GC-MS detection
The samples stored at -80 ℃ were thawed at room tem-
perature. The following steps were taken to prepare the 
samples for GC-MS analysis: briefly, 450 µL methanol 
and acetonitrile (2/1, vol/vol) were used to extract the 
metabolites from the cecal content sample (150 µL). 50 
µL BSTFA (with 1% TMCS) and 20 µL n-hexane were 
used to oxidate and derive the metabolites. During sam-
ple processing, ten different internal standards (C8/C9/
C10/C12/C14/C16/C18/C20/C22/C24) were applied. 
Before the GC-MS analysis, the samples were left at room 
temperature for 30 min. Equal aliquots from each sample 
were combined to create the quality control (QC) sample.

The derivatized samples were examined using an Agi-
lent 5977 A MSD system and an Agilent 7890B gas chro-
matography system (Agilent Technologies Inc., CA, 
USA). The derivatives were separated using a DB-5MS 
fused-silica capillary column (30 m × 0.25 mm × 0.25 μm, 
Agilent J&W Scientific, Folsom, CA, USA). As the carrier 
gas, helium (> 99.999%) was pumped through the column 
at a constant flow rate of 1 mL/min. The initial oven tem-
perature was 60℃, held at 60 °C for 0.5 min, ramped to 
125℃ at a rate of 8℃/min, to 210℃ at a rate of 5℃/min, 
to 270℃ at a rate of 10℃/min, to 305℃ at a rate of 20℃/
min, and finally held at 305℃ for 5 min. The temperature 
of MS quadrupole and ion source (electron impact) was 
set to 150 and 230℃, respectively. The collision energy 
was 70  eV. Mass spectrometric data was acquired in a 
full-scan mode (m/z 50–500), and the solvent delay time 
was set to 5 min.

The QC sample was created by combining aliquots 
from each sample. Throughout the analytical run, the 
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QCs were injected at regular intervals (every 10 samples) 
to generate a set of data from which repeatability could 
be evaluated.

LC-MS detection
At normal temperature, the samples frozen at -80 °C were 
defrosted. The following sample preparation procedures 
were used for LC-MS analysis: in brief, 150 µL of sam-
ple and 10 µL of L-2-chlorophenylalanine (0.06 mg/mL) 
dissolved in methanol were added to a 1.5 mL Eppen-
dorf tube, and the tube was vortexed for 10 s. Then, 450 
µL of an ice-cold mixture of acetonitrile and methanol 
(2/1, vol/vol) was added. The solutions were vortexed 
for 1 min, and the entire batch of samples was extracted 
using an ultrasonic device for 10 min in an ice-water bath 
before being kept at -20 °C for two hours. The extract was 
centrifuged for 10 min at 4  °C (13,000  rpm). A freezing 
concentration centrifugal drier was used to dry 150 µL 
of the supernatant in a glass vial. With the use of crys-
tal syringes and 0.22  μm microfilters, the supernatants 
(150 µL) from each tube were collected and subsequently 
transferred to LC vials. Prior to LC-MS analysis, the vials 
were kept at -80 °C. A pooled sample made from an ali-
quot of each sample was used to create the QC samples.

To examine the metabolic profile in both ESI positive 
and ESI negative ion modes, a Dionex Ultimate 3000 RS 
UHPLC equipped with a heated electrospray ionization 
(ESI) source and a Q Exactive plus quadrupole-Orbitrap 
mass spectrometer (Thermo Fisher Scientific, Waltham, 
MA, USA) was used. In both positive and negative 
modes, an ACQUITY UPLC HSS T3 column (1.8  μm, 
2.1 × 100  mm) (Waters Corporation Milford, Milford, 
MA, USA) was used. The binary gradient elution system 
consisted of (A) water (containing 0.1% formic acid, v/v) 
and (B) acetonitrile (containing 0.1% formic acid, v/v) 
and separation was achieved using the following gradi-
ent: 0.01 min, 5% B; 2 min, 5% B; 4 min, 30% B; 8 min, 
50% B; 10 min, 80% B; 14 min, 100% B; 15 min, 100% B; 
15.1  min, 5% and 16  min, 5%B. The flow rate was 0.35 
mL/min and column temperature was 45℃. All the sam-
ples were kept at 10℃ during the analysis. The injection 
volume was 2 µL.

The mass range was from m/z 100 to 1,000. The resolu-
tion was set at 70,000 for the full MS scans and 17,500 for 
HCD MS/MS scans. The Collision energy was set at 10, 
20 and 40 eV. The mass spectrometer operated as follows: 
spray voltage, 3800 V (+) and 3200 V (−); sheath gas flow 
rate, 35 arbitrary units; auxiliary gas flow rate, 8 arbitrary 
units; capillary temperature, 320 °C; Aux gas heater tem-
perature, 350 °C; S-lens RF level, 50.

The metabolomic data processing
The plasma samples from patients in non-pCR (N = 19) 
and pCR groups (N = 21) at T1, T2, and T3 time points 

were termed as the A, B, C and D, E, F groups, respec-
tively. The metabolomic analyses were based on these 
patients and groups.

To enable rapid data retrieval, the collected GC-MS 
raw data in.D format were converted to ABF format using 
Analysis Base File Converter program. The data were 
subsequently entered into the program MS-DIAL, which 
carries out peak detection, peak identification, charac-
terization, MS2Dec deconvolution, peak alignment, peak 
filtering, and missing value interpolation. The LUG data-
base (Untargeted metabolites database of GC-MS from 
Lumingbio) was used for the annotation of metabolites. 
A data matrix was derived. The sample information, the 
name of each substance’s peak, retention duration, reten-
tion index, mass-to-charge ratio, and signal intensity 
were included in the three-dimensional matrix. After 
screening, all peak signal intensities in each sample were 
segmented and normalized according to internal stan-
dards with relative standard deviation (RSD) greater than 
0.3. Redundancy elimination and peak merging were car-
ried out after the data had been standardized to produce 
the data matrix.

Progenesis QI V2.3 (Nonlinear, Dynamics, Newcastle, 
UK) was used to process the original LC-MS data for 
baseline filtering, peak identification, integral, retention 
time correction, peak alignment, and normalization. The 
main parameters used were 5% production threshold, 
10 ppm product tolerance, and 5 ppm precursor toler-
ance. Using the Human Metabolome Database (HMDB) 
(https://hmdb.ca/), LIPID MAPS (V2.3) (https://lipid-
maps.org/), Metlin (https://metlin.scripps.edu), EMDB, 
PMDB, and self-built databases to conduct qualitative 
analysis, compounds were identified based on the precise 
mass-to-charge ratio (M/z), secondary fragments, and 
isotopic distribution. The retrieved data were then sub-
jected to additional processing, including removal of any 
peaks with missing values (ion intensity = 0) in more than 
50% of the groups, replacement of zero values with half of 
the minimum values, and screening in accordance with 
the qualitative outcomes of the compound. Additionally, 
compounds that produced results of less than 36 (out of 
60) points were declared incorrect and eliminated. The 
data from the positive and negative ions were integrated 
into a data matrix.

Then the matrix was imported into R (R package 
MixOmics) to perform unsupervised analysis of prin-
cipal component analysis (PCA) to observe the general 
distribution among the samples and the stability of the 
entire analytic process. The metabolites that differed 
across groups were identified using supervised analysis 
of orthogonal partial least-squares discriminate analysis 
(OPLS-DA) (R package MetaboAnalystR), which were 
offen used to maximize the global metabolic variations 
among groups. Seven folds cross-validation and 200 

https://hmdb.ca/
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response permutation testing (RPT) were employed to 
assess the model’s quality and minimize overfitting. The 
total contribution of each variable to group discrimina-
tion was ranked using the variable importance of pro-
jection (VIP) values derived from the OPLS-DA model. 
DEMs with VIP values higher than 1.0 and p-values lower 
than 0.05 were chosen. Hierarchical clustering analysis 
(pheatmap, R package pheatmap) based on these DEMs 
were utilized to demonstrate the expression pattern of 
DEMs in different groups and samples. The enriched 
pathway analysis of changed metabolites was performed 
using Kyoto Encyclopedia of Genes and Genomes 
(KEGG) database (http://www.genome.jp/KEGG/path-
way.html) with the Hypergeometric Test to calculate sig-
nificantly perturbed pathways. The pathway impact is the 
sum of the importance of the matched metabolites nor-
malized by the sum of the importance of all the metabo-
lites in each metabolic pathway.

Transcriptomic analysis
RNA isolation and high-throughput RNA sequencing 
(RNA-Seq) were performed by Oebiotech Corp (Shang-
hai, China). The Spin Column Bacterial Total RNA Puri-
fication Kit (Sangon Biotech, Shanghai, China) was used 
to extract the total RNA. RNA purity and quantification 
were evaluated using the Agilent 2100 bioanalyzer (Agi-
lent Technologies, Santa Clara, CA, USA). The Nano-
Drop2000 spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, United States) was used to calculate the 
concentration. Integrity number (RIN) ≥ 7, 28 S/18S ≥ 0.7, 
and total RNA concentration greater than 0.5  µg were 
the selection criteria for RNA samples. For some of the 
enrolled patients had pathologic confirmation of BrCa 
when they consulted at our hospital or had insufficient 
residual tissue for transcriptomics test after pathology 
diagnosis, only 21 pre-treatment puncture specimens 
from these 40 patients were available for RNA extraction. 
After the quality control, only nine samples (43%), includ-
ing six samples from patients in the non-pCR group (a03, 
a06, a12, a15, a17, a19) and three samples from patients 
in pCR group (d02, d08, d10), met the experimental 
requirements for RNA-Seq libraries construction; the 
other 11 samples had the RIN < 6–28  S/18S < 0.7, and 
one sample did not have sufficient total RNA for further 
experimentation. The libraries were constructed using 
VAHTS Universal V6 RNA-seq Library Prep Kit accord-
ing to the manufacturer’s instructions. The transcriptome 
sequencing and analysis were conducted by OE Biotech 
Co., Ltd. (Shanghai, China).

The libraries were sequenced on a llumina Novaseq 
6000 platform and 150 bp paired-end reads were gener-
ated. About 48.13 M raw reads for each sample were gen-
erated. Raw reads of fastq format were firstly processed 
using fastp and the low quality reads were removed to 

obtain the clean reads. Then about 6.7G CleanData for 
each sample were retained for subsequent analyses. 
The clean reads were mapped to the human reference 
genome GRCh38.p13 using HISAT2. Fragments per kilo-
base million (FPKM) of each gene was calculated and the 
read counts of each gene were obtained by HTSeq-count. 
Covariance-based PCA analysis were performed on the 
top 2000 highly variable genes with the highest degree of 
variation using R (v 3.2.0) to evaluate the biological dupli-
cation of samples.

Differential expression analysis was performed using 
the DESeq2 with negative binomial distribution (NB) 
test. Q value < 0.05 and foldchange ≥ 2 or foldchange ≤ 0.5 
was set as the threshold for significantly DEGs. Hierar-
chical cluster analysis of DEGs was performed using R (v 
3.2.0) to demonstrate the expression pattern of genes in 
different groups and samples.

Based on the hypergeometric distribution, Gene 
Ontology (GO, which provide annotation information 
of biological process, molecular function, and cellular 
component,  http://www.Geneontology.org/)  and KEGG 
pathway enrichment analysis of DEGs were performed 
to screen the significant enriched term using R (v 3.2.0), 
respectively.

Integrative analysis of metabolome and transcriptome
In this study, integrative analyses of gene expression 
differences (derived from nine patients including six 
patients from non-pCR group and three patients from 
pCR group) and metabolism differences (derived from 
40 patients including 19 patients from non-pCR group 
and 21 patients from pCR group) between the non-pCR 
group and the pCR group at baseline were explored by 
transcriptomic analysis and untargeted metabolomic 
analysis. Based on the top 20 DEGs and DEMs, Spear-
man correlation coefficients were calculated by R and the 
cluster analysis heatmap was drawn. Then, all DEGs and 
DEMs were mapped to the KEGG pathway database, and 
common pathways information of them was acquired.

Cell lines and quantitative reverse transcription-
polymerase chain reaction (qRT-PCR)
HER2 + BrCa cell lines, including trastuzumab-sensitive 
SK-BR-3 and BT-474 cells, primary trastuzumab-resis-
tant JIMT-1 cells, and acquired trastuzumab-resistant 
SK-BR-3-HR cells (generated in our laboratory from the 
parental cell line SK-BR-3 by exposing the cells to grad-
ually increasing concentrations of trastuzumab for 6 
months), were cultured in appropriate medium. TRIzol 
solution (Thermo Fisher’s) was used to extract the total 
RNA from these cell lines, and a PrimeScript RT reagent 
kit (Yeasen, China) was used to reverse-transcribe the 
RNA into cDNA. qRT-PCR was performed using a 
LightCycler 480 (Roche) with a SYBR-based detection 

http://www.genome.jp/KEGG/pathway.html
http://www.genome.jp/KEGG/pathway.html
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system, and specific primers were used to measure the 
relative mRNA expression levels of all the genes. The 
relative levels of the target genes to the control β-actin 
mRNA transcripts in each sample were analyzed by the 
2-ΔCt method. Each experiment was run in triplicate. The 
primers utilized and their sequences are listed in the Sup-
plementary Table 1.

Statistical analysis
Wilcoxon test was used for continuous variable (age at 
diagnosis), Chi-square test or Fisher exact test were used 
to compare dichotomous variables in other clinicopath-
ological features analyses. The significance of metabo-
lites in two groups or multiple groups was calculated 
by Wilcoxon test and Kruskal-Wallis test, respectively. 
The metabolites with VIP > 1.0 and P < 0.05 between two 
groups were considered as DEMs. RF was performed to 
screen potential metabolites for the prediction of treat-
ment response to NAT (randomforest package) based on 
the pre-therapeutic DEMs between non-pCR patients 
and pCR patients. The two important parameters used in 
the RF classifier are ntree (number of trees) and mtry (the 
number of features to choose the best subset). The ntree 
parameter was set to 500 trees. The mtry was set to the 
default value (sqrt(p) where p is number of variables in 
the metabolomic data). The area under receiver operat-
ing characteristic (ROC) curve (AUC) (R package pROC) 
was applied to evaluate the performance of the predic-
tive model based on the four pre-therapeutic metabolites 
selected by RF analysis. The correlation of the four pre-
therapeutic metabolites with MP grade, and the correla-
tion of DEMs and DEGs were calculated by Spearman 
correlation coefficients. The trends analyses of DEMs 
expression between non-pCR and pCR patients were 

performed by Mfuzz R package. The qRT-pCR results of 
several DEGs were presented as mean ± SD, and Student t 
test was used to generate P value between two cell lines. 
The visualization of results was performed by R (v 3.2.0) 
and GraphPad Prism software (v8.0). Unless otherwise 
stated, a variable was deemed to be statistically signifi-
cant at P < 0.05.

Results
Patient clinical characteristics
Figure  1 shows the study workflow. A total of 40 
HER2 + BrCa patients were eligible and recruited for this 
prospective study. Of these patients, 21 (52.5%) patients 
achieved pCR and 19 (47.5%) patients achieved non-
pCR. The detailed demographic and clinicopathological 
characteristics of the participants are listed in Table  1. 
Patients in pCR and non-pCR groups exhibited no signif-
icant differences in baseline clinicopathological features 
including age at diagnosis, menopausal status, tumor lat-
erality, T and N stage, ER and PR status, and the expres-
sion level of Ki67.

GC-MS/LC-MS metabolomic analysis
Screening and identification of differential metabolites
GC-MS and LC-MS respectively detected 328 and 9536 
peaks in positive and negative ionization modes. After the 
standing data, 305 and 3324 metabolites were identified 
in the 120 serum samples by GC-MS and LC-MS, respec-
tively. OPLS-DA, which is commonly used to maximize 
the variances between groups in metabolomics analysis 
and identify metabolites with significant contribution to 
the variances [32–34], was used to gain further insights 
into the metabolomic profiles. Volcano plots were visu-
alized using metabolites with VIP > 1.0 and P < 0.05. The 

Fig. 1 A schematic diagram of sample collection in the context of neoadjuvant therapy (NAT) followed by LC-MS, GC-MS metabolomics, transcriptomic 
RNA sequencing (RNA-seq), and integrated data analyses. T1, the time point at baseline of NAT. T2, the time point after 2 cycles of NAT. T3, the time point 
after 6 cycles (before surgery) of NAT. BrCa, breast cancer. pCR, pathologic complete response
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results of OPLS-DA (Fig.  2A-B, Supplementary Figs.  1 
and 2) and volcano plot analyses (Fig. 2C, Supplementary 
Fig. 3A and 3B) reveal significant differences in the meta-
bolic features among the different groups. To completely 
and clearly illustrate the link between samples and the 
variations in metabolite expression between pCR group 
and non-pCR groups, we carried out a hierarchical clus-
tering analysis based on the expression of all substantially 
varied metabolites. As shown in Fig. 2D, Supplementary 
Fig. 3C and 3D, compared with those in pCR groups, the 
metabolites in non-pCR groups were also significantly 
different, which may be related to the treatment response 
to NAT of the TCbHP regimen.

Figure 2E further shows the distribution of the counts 
of different metabolites among the different groups, and 
the detail information on the DEMs could be found in 
Supplementary Table 2. The data demonstrated that both 
in the non-pCR and pCR groups, the metabolic differ-
ences were most obvious after 6 cycles of NAT (A/C and 

D/F), and the total differential metabolites count was 196 
and 224, respectively. The main objective of this inves-
tigation was to identify predictive markers of treatment 
efficacy, we focused on the analysis of DEMs between 
non-pCR and PCR groups at baseline with NAT treat-
ment. The comparison at T1 time point revealed that, 
when comparing the non-pCR group with the pCR group 
(A/D), one hundred metabolites exhibited statistically 
significant changes, while the level of 46 metabolites were 
significantly upregulated, and 54 metabolites were signif-
icantly downregulated in non-pCR group. Among these 
100 DEMs, 22 and 78 DEMs were identified via LC-MS 
and GC-MS, respectively.

Analysis of differential metabolites and metabolic pathways
To further identify and understand the biological signifi-
cance of these 100 DEMs between the A and D groups, 
the KEGG database was used to evaluate any possible 
biological significance. There were 40 metabolic path-
ways, and their P values were all significantly less than 
0.05 (Fig.  3A). The most common enrichment factors 
were related to central carbon metabolism in cancer 
(glycine, L-alanine, L-asparagine, L-glutamic acid, L-glu-
tamine, L-histidine, L-isoleucine, L-methionine, L-phe-
nylalanine, L-proline, L-valine, leucine, oxoglutaric acid, 
pyruvic acid), protein digestion and absorption, amino-
acyl-tRNA biosynthesis, mineral absorption, D-amino 
acid metabolism, and ABC transporters, which may 
greatly contribute to the therapeutic efficacy of TCbHP 
treatment. The top 20 significantly differentiated meta-
bolic pathways of the upregulated and downregulated 
metabolites were shown in Fig.  3B and C, respectively. 
Obviously, upregulated and downregulated metabo-
lites enriched pathways were different. Central carbon 
metabolism in cancer, valine, leucine and isoleucine bio-
synthesis, D-Amino acid metabolism were the top three 
enriched pathways of these 46 upregulated metabo-
lites, while Lysosome, apoptosis, ascorbate and aldarate 
metabolism were the top three enriched pathways of 
these 54 downregulated metabolites. These results indi-
cated that these altered metabolites and pathways might 
be associated with treatment response.

Screening of key differential metabolites
To identify the key metabolites associated with the treat-
ment efficacy, the RF classifier was further performed 
based on these 100 pre-therapeutic DEMs that were 
compared between non-pCR and pCR groups (A/D). 
Four key metabolites [sophorose, N-(2-acetamido)imino-
diacetic acid (ADA), taurine, and 6-hydroxy-2-aminohex-
anoic acid] were selected by RF analysis. The predictive 
accuracy of these four metabolites and the combined 
panel of these metabolites were evaluated for their abil-
ity to predict pCR. The AUC for the single metabolite 

Table 1 Patient characteristics according to pathological 
response
Characteristics All  

(n = 40)
Number 
(%)

pCR 
(n = 21)
Number 
(%)

Non-pCR 
(n = 19) 
Number 
(%)

P-
val-
ue

Age at diagnosis (me-
dian, y)

50.5 51 50.0 0.935

≥ 50 21 (52.5) 11 (52.4) 10 (52.6) 0.987
< 50 19 (47.5) 10 (47.6) 9 (47.4)
Menopausal status 0.516
Pre- 21 (52.5) 10 (47.6) 11 (57.9)
Post- 19 (47.5) 11 (52.4) 8 (42.1)
Laterality 0.726
Left 18 (45.0) 10 (47.6) 8 (42.1)
Right 22 (55.0) 11 (52.4) 11 (57.9)
T stage* 0.105
cT1 1 (2.5) 0 (0) 1 (5.3)
cT2 21 (52.5) 9 (42.9) 12 (63.1)
cT3 9 (22.5) 5 (23.8) 4 (21.1)
cT4 9 (22.5) 7 (33.3) 2 (10.5)
N stage# 0.666
cN1 14 (35.0) 8 (38.1) 6 (31.6)
cN2 18 (45.0) 8 (38.1) 10 (52.6)
cN3 8 (20.0) 5 (23.8) 3 (15.8)
ER 0.115
Positive 29 (72.5) 13 (61.9) 16 (84.2)
Negative 11 (27.5) 8 (38.1) 3 (18.8)
PR 0.119
Positive 18 (45.0) 7 (33.3) 11 (57.9)
Negative 22 (55.0) 14 (66.7) 8 (42.1)
Ki67 1.000
≥ 20 35 (87.5) 18 (85.7) 17 (89.4)
< 20 5 (12.5) 3 (14.3) 2 (10.5)
Notes * cT1–2 vs. cT3–4; # cN1 vs. cN2-3
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Fig. 2 Analysis of multivariate data from LC-MS and GC-MS data. (A) The plot of the OPLS-DA score for the GC-MS data from non-pCR and pCR groups at 
the time point of baseline. (B) The plot of the OPLS-DA score for the LC-MS data from non-pCR and pCR groups at the time point of baseline. (C) Volcano 
diagram depicting the differentially expressed metabolites (DEMs) in the non-pCR and pCR groups at the time point of baseline. DEMs with VIP values 
higher than 1.0 and p-values lower than 0.05 were considered significant. Red and blue dots indicate up- and down-regulated metabolites, respectively. 
(D) Heatmap depicting the 100 pre-therapeutic DEMs between non-pCR patients and pCR groups according to metabolite class. Each column represents 
a subject and each row represents a metabolite. (E) The distribution of the counts of DEMs among the different groups. Group A, B, C, non-pCR patients, 
N = 19; group D, E, F, pCR patients, N = 21. Group A and D, at the time point of baseline; Group B and E, at the time point 2 cycles of neoadjuvant treatment; 
Group C and F, at the time point after 6 cycles (before surgery) of neoadjuvant treatment
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of sophorose, ADA, taurine, and 6-hydroxy-2-amino-
hexanoic acid reached 0.932 (95% CI 0.858-1.000), 0.927 
(95% CI 0.850-1.000), 0.910 (95% CI 0.822–0.998) and 
0.935 (95% CI 0.859-1.000), respectively. The AUCs for 
sophorose + ADA, sophorose + ADA + taurine, and soph-
orose + ADA + taurine + 6-hydroxy-2-aminohexanoic 
acid were 0.967 (95% CI 0.922-1.000), 0.982 (95% CI 
0.950-1.000) and 0.982 (95% CI 0.950-1.000), respectively 
(Fig.  4A). Among these metabolites, the concentrations 
of sophorose, ADA and 6-hydroxy-2-aminohexanoic 
acid were significantly higher in pCR group than in non-
pCR group and were positively correlated with the MP 

grade. However, the taurine concentration was signifi-
cantly higher in non-pCR group than in pCR group and 
was negatively correlated with the MP grade at baseline 
(Fig.  4B-D). These findings indicated that these four 
metabolites may be potential biomarkers for distinguish-
ing non-sensitive individuals from sensitive individuals.

The metabolic profiles of the three-time points from 
which the serum samples were collected differed notice-
ably, indicating that the metabolome was altered during 
the course of NAT. To identify the metabolites related 
to treatment response over time, the Venn diagram was 
drawn for the DEMs in the A/D, B/E and C/F groups 

Fig. 3 Metabolite pathway analysis using KEGG basing on pre-therapeutic DEMs. (A) Pre-therapeutic metabolic pathway enrichment of 100 differential 
metabolites between non-pCR patients and pCR patients at baseline of neoadjuvant therapy. The P-value of the red dashed line was 0.01 and that of the 
blue dashed line was 0.05. (B) Bubble plot depicting the KEGG pathways (top 20) in which 46 elevated metabolites were substantially enriched (P < 0.05); 
(C) Bubble plot depicting the KEGG pathways (top 20) in which 54 downregulated metabolites were substantially enriched (P < 0.05)
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Fig. 4 Comprehensive analyses of four pre-therapeutic metabolites performed via random forest analysis. (A) Receiver operating characteristic curve 
analysis of the efficacy of the four metabolites-based predictive model. 1: Sophorose; 2: Sophorose + ADA; 3. Sophorose + ADA + Taurine; 4: Sopho-
rose + ADA + Taurine + 6-hydroxy-2-aminohexanoic acid; (B) Violin plots depicting the levels of four pre-therapeutic metabolites between non-PCR and 
PCR patients. (C) Violin plots depicting the levels of four pre-therapeutic metabolites among patients with different MP scores. (D) Spearman correlation 
of the four pre-therapeutic metabolites with MP grade
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(Fig. 5A). Persistent differences of 13 metabolites, includ-
ing 4-aminophenol, L-sorbose, trisaccharide, D-fructose, 
methyl alpha-d-glucofuranoside, maltitol, N-acetyl-l-
tyrosine, 6-deoxyglucitol, 5-hydroxyindole-2-carboxylic 
acid, beta-glutamic acid, labetalol, palmitoyl sphingo-
myelin and N-oleoyl-D-sphingomyelin, were found dur-
ing the treatment time. Among these metabolites, only 
maltitol was more abundant at the time point of T1, less 
abundant at T2, and more abundant at T3 in the non-
pCR group than in the pCR group. However, the other 
12 metabolites showed the opposite trend. The change 
curves over time are shown in Fig.  5B-N. These results 
indicated that these 13 metabolites could be potential 
biomarkers of residual disease.

To understand the dynamic change profile during NAT, 
the total DEMs (102) in non-pCR and pCR patients were 
split into 16 groups (Fig.  6A-B) based on their trend 
similarity over time using the soft Mfuzz clustering algo-
rithm. Clusters 2, 5, and 8 in non-pCR group and clusters 
2, 6, 10, 12, 13, and 16 in pCR group trended to decrease 
over time. However, Clusters 7, 9, 13 and 16 in non-
pCR group and clusters 3, 4, 7, 11, and 15 in pCR group 
trended to increase over time (Fig. 6A-B). Among these 
altered metabolites, 1-O-(2-methoxy-4Z-hexadecenyl)-
sn-glycero-3-phosphocholine, GM4(d18:1/18:0), ascor-
bic acid, cholic acid and L-Valine might be the potential 
monitors for the treatment response (Fig.  6C-G). Com-
prehensive metabolomics showed that NAT therapy in 
HER2 + BrCa patients changed their metabolic profiles 
and identified sensitive metabolic features.

Transcriptomic data analysis via RNA-seq
A total of 18,072 genes were identified in these nine 
biopsy tissue samples. Genes with q-value < 0.05 and 
|log2 fold change (FC)|>1 were considered as significant. 
163 genes, including 87 upregulated and 76 downregu-
lated genes, were identified as DEGs between non-pCR 
patients and pCR patients. As shown in Fig.  7A, the 
volcano plot demonstrated the overall distribution of 
DEGs. The two main hierarchical clusters based on the 
expression levels of DEGs are shown in Fig. 7B. Pathway 
analysis was also conducted to further functionally char-
acterize the DEGs via using the KEGG database. KEGG 
enrichment analysis of the DEGs identified 6, 39 and 189 
KEGG pathways at KEGG level 1, 2 and 3, respectively 
(Fig. 7C), signal transduction is the most enriched path-
way of DEGs. The pathways with significant enrichment 
are shown in Fig.  7D, which illustrates the relationship 
between DEGs and pathways. In the GO enrichment 
analysis, 180 significantly abundant pathways were iden-
tified and the 30 most important pathways involved in 
cellular components, biological processes, and molecular 
functions are shown in Fig. 7E.

Integration analyses of the transcriptomic and 
metabolomic data
Integrative analysis was performed to provide a more 
comprehensive understanding of the reason for the dif-
ference in treatment efficacy induced by the TCbHP 
regimen. First, Spearman correlations between the DEMs 
and DEGs were calculated pairwise to create a correla-
tion network diagram based on the transcriptomic data 
from the nine patients and metabolomic data from the 
40 pre-therapeutic patients. Figure  8A shows relation-
ships between the top 20 DEMs and DEGs, and a signifi-
cant (P < 0.05) transcript-metabolite interaction network 
was generated accordingly (Fig.  8B). Among them, sev-
eral metabolites, such as LysoPC(22:5(7Z,10Z,13Z,16Z,
19Z)) (VIP = 2.85, P value = 0.01469, Fold Change = 1.31) 
and PC(20:5(5Z,8Z,11Z,14Z,17Z)/0:0) (VIP = 1.20, P 
value = 0.04885, Fold Change = 1.48), were respectively 
markedly correlated with several of the top up-regulated 
DEGs, including S100A4, PLAC9, ETFB, CCL14, and 
GSDMD, SNRNP70, and BAX. However, pregnanolone 
sulfate (VIP = 1.67, P value = 0.02066, Fold Change = 0.62) 
was negatively correlated with up-regulated DEGs 
including PTMS, CDK5RAP3, and YPEL3. In addition, 
a joint analysis of the omics data at the pathway level 
revealed that 39 pathways were enriched on account of 
DEGs and DEMs (Fig. 8C). The pathways shared by the 
DEGs and DEMs mainly belonged to ABC transport-
ers (glycine, L-alanine, L-glutamic acid, L-glutamine, 
L-histidine, L-isoleucine, L-lysine, L-phenylalanine, 
L-proline, L-threonine, L-valine, Leucine, maltotriose, 
ornithine, sucrose, taurine; ABCA12, ABCC2), protein 
digestion and absorption, mineral absorption, arginine 
and proline metabolism, shigellosis, pathways of neuro-
degeneration-multiple diseases, glutathione metabolism 
and the HIF-1 signaling pathway (Fig.  8D). Among the 
DEGs and DEMs related to the integrated pathways, 15 
genes and 36 metabolites were respectively significantly 
upregulated, whereas 8 genes and 9 metabolites were sig-
nificantly downregulated (Fig. 8E and F). Further correla-
tion analysis of these DEGs and DEMs sharing common 
pathways demonstrated that 9 genes and 38 metabolites 
were significantly correlated (Supplementary Fig. 4A). In 
addition, in the KEGG functional annotation of DEGs, 13 
genes were assigned to 8 metabolic pathways (Table  2), 
among which 7 genes were significantly correlated with 
16 metabolites (Supplementary Fig.  4B). Overall, the 
integrated analysis successfully identified pathways and 
their related genes and metabolites that may affect the 
treatment efficacy of the TCbHP regimen.

qRT-PCR detection results
Some DEGs were arbitrarily chosen for qRT-PCR detec-
tion to confirm the validity of the mRNA-seq data and 
to identify the probable genes implicated in trastuzumab 
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Fig. 5 Thirteen metabolites exhibited permanent changes between non-pCR patients and pCR patients during the therapy term. (A) Venn plot was 
performed to identify metabolites that were persistently and differentially expressed between non-pCR patients and pCR patients (A vs. D, B vs. E and C 
vs. F). (B-N) Violin plots depicting the levels of 13 metabolites between non-pCR and pCR groups at different treatment time points. The Kruskal Wallis test 
was used to compare the metabolite expression difference among multiple groups
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Fig. 6 Dynamic alteration profile of metabolites in non-pCR and pCR patients basing on the total DEMs (102) in non-pCR and pCR patients. (A) Time trend 
cluster summary of serum metabolites in non-pCR group. (B) Time trend cluster summary of the serum metabolites in pCR group. Yellow or green lines 
represent metabolites with low membership values, whereas red and purple lines represent metabolites with high membership values. (C-G) Relative 
expression intensity of five metabolites that exhibited the same change trend over time in the same group. Each value of the metabolite is the mean of 
samples in every group at different time point. T1, the time point at baseline of neoadjuvant treatment. T2, the time point after 2 cycles of neoadjuvant 
treatment. T3, the time point after 6 cycles (before surgery) of neoadjuvant treatment
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Fig. 7 Identification of differentially expressed genes (DEGs) between non-pCR and pCR group and functional enrichment analysis for these DEGs. (A) 
Differential gene volcano plot (genes with q-value < 0.05 and |log2 fold change (FC)|>1 were considered as significant, red and blue dots indicate up- and 
down-regulated genes, respectively). (B) Cluster analysis of DEGs between non-pCR and pCR group. Each column represents a subject and each row 
represents a gene. (C) KEGG enrichment analysis of DEGs at level 1 and level 2. (D) Sankey dot plot for level 3 KEGG enrichment analysis of DEGs. (E) GO 
classification analysis of DEGs (top 30)
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Fig. 8 Integrated transcript and metabolite profile analysis. (A) Heatmap of the Spearman correlation coefficient matrix between the top 20 differen-
tially expressed metabolites (DEMs) and the top 20 differentially expressed genes (DEGs). The red and blue colors represent a positive correlation and a 
negative correlation, respectively. The color label reflects the Spearman correlation coefficient value. (B) Cytoscape was used to construct the correlation 
network of the top 20 DEMs (red nodes) and the top 20 DEGs (green nodes). The results with P Value < 0.05 were shown. Positive and negative correla-
tions are shown by the red and blue margins, respectively. (C)Venn diagram was used to identify the KEGG pathways in which both the DEMs and DEGs 
participated. (D) The histogram of KEGG pathways in which DEMs and DEGs are both enriched. (E) The DEMs involved in the integrated pathways. (F) 
The DEGs involved in the integrated pathways. DEMs were derived from 40 pre-therapeutic patients including 19 patients from non-pCR group and 21 
patients from pCR group; DEGs were derived from nine patients including six patients from non-pCR group and three patients from pCR group. *P<0.05; 
** P<0.01, ***P<0.001
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resistance. These findings indicated that several DEGs, 
such as ABCA12, CKMT1A, CDK5RAP3, CYBA, 
DMAP1, HDAC10, LRFN4, MYL5, PPP1R12C, RENBP, 
and TP53I13 might be both associated with primary and 
acquired resistance of trastuzumab. Other DEGs, such 
as CPB1, GTF2I, HAUS7, IDUA, IL6, PLAC9, and TAZ 
might be indicators only for primary resistance but not 
for acquired resistance of trastuzumab (Supplementary 
Fig. 5).

Discussion
In the present study, our data showed that, compared 
with non-pCR patients, pCR patients with HER2 + BrCa 
had unique metabolic features at baseline and during dif-
ferent treatment periods. These metabolic changes were 
most likely the result of many metabolic pathways being 
dysregulated. Importantly, we discovered four serum 
metabolites for predicting treatment response in patients 
receiving the TCbHP regimen, offering an opportunity to 
identify insensitive individuals before NAT. Further qRT-
PCR detection results in cell lines indicated that several 
DEGs might be associated with trastuzumab resistance. 
Integrated metabolomics and transcriptomics data sug-
gested that metabolites and transcripts were significantly 
correlated and involved in several common pathways, 
which indicated that these significant alterations might 
be associated with treatment response.

One of our main objectives was to explore metabolite-
based biomarkers for the prediction of NAT response in 
HER2 + BrCa patients. Here, we selected prediction mod-
els using random forest. A set of 4 metabolites, sopho-
rose, ADA, taurine and 6-hydroxy-2-aminohexanoic 
acid, was evaluated as new predictive indicators. The 
selected biomarkers have more accurately predicted abil-
ity for NAT efficacy, and the AUC of the constructed pre-
diction model was greater than 0.932. However, studies 
with large-scale and longitudinal cohorts of NATs are 
needed to validate the potential biomarkers and substan-
tiate these findings. The identification of these potential 
NAT response predicting metabolites could help to gain 
insight into the understanding of underlying mechanisms 
of drug resistance.

In the present study, sophorose was up-regulated in 
pCR group compared with non-pCR group. Sophorose is 
a disaccharide, a glucose dimer. It is distinct from other 
glucose dimers, such as maltose, because its β-1,2 bond 
is unique. It was isolated from sophora japonica stems 
in 1938 [35]. It is a component of sophorolipids and is a 
product of the caramelization of glucose [36]. The role of 
sophora in cancer is less well understood, but sophoro-
lipids are gaining interest as potential cancer therapeutics 
due to their inhibitory effects on a range of cancer cells 
including those of the breast, cervical, colon, liver, brain, 
and pancreas [37]. Our study indicated that HER2 + BrCa 
patients with higher concentrations of sophorose may 
have better treatment responses to NAT with TCbHP, 
which is consistent with the anti-tumor effect of sopho-
rolipids. ADA and 6-hydroxy-2-aminohexanoic acid 
were up-regulated in pCR group compared with non-
pCR group. However, the specific roles of ADA and 
6-hydroxy-2-aminohexanoic acid in cancer are currently 
limited.

Taurine (2-aminoethane-sulfonic acid) is a non-essen-
tial amino acid that is found in millimolar concentrations 
in most mammalian tissues [38]. Humans manufacture 
taurine endogenously but obtain it from food [39, 40], 
especially seafood. Taurine regulates cell volume, osmo-
regulation, membrane stability, bile salt conjugation, 
antioxidation, inflammation, and autophagy [38, 41, 42]. 
Agouza’s study revealed that BrCa patients had consid-
erably lower serum taurine levels than high-risk BrCa 
patients and people with benign breast lesions [43]. How-
ever, other investigations have shown that serum taurine 
levels are higher in cancer patients including those with 
BrCa [44], endometrial cancer [45], and bladder cancer 
[46], than in controls. These inconsistent results indicate 
that further researches are needed to determine whether 
the serum taurine concentration is associated with tumor 
malignancy and whether taurine may serve as a metabo-
lomic marker for the development of malignant tumors. 
In addition, taurine has an antitumor effect by increasing 
antioxidant capacity, boosting immunity, and triggering 
the death of tumor cells in BrCa [47, 48] and other types 
of cancer cells including glioblastoma [49], lung [50], 
colon [51], nasopharynx [52] and ovarian cancer [53]. 

Table 2 DEGs enriched in metabolic pathways
Classification_level2 Classification_level1 gene_number percentage Genes
Amino acid metabolism Metabolism 2 2.82 ADH1C↑; CKMT1A↓
Carbohydrate metabolism Metabolism 4 5.63 ADH1C↑; ENPP3↓; MTMR4↓; RENBP↑
Glycan biosynthesis and metabolism Metabolism 2 2.82 IDUA↑; MAN2A1↓
Lipid metabolism Metabolism 4 5.63 ADH1C↑; SGPP2↓; TAZ↑; TMEM86B↑
Metabolism of cofactors and vitamins Metabolism 2 2.82 ADH1C↑; ENPP3↓
Metabolism of other amino acids Metabolism 2 2.82 GSTM1↑; GSTM5↑
Nucleotide metabolism Metabolism 1 1.41 ENPP3↓
Xenobiotics biodegradation and metabolism Metabolism 4 5.63 ADH1C↑; GSTM1↑; GSTM5↑; MPO↓
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Patients with lung cancer who have elevated serum tau-
rine levels typically respond to PD-1 blockade antibody 
therapy [54]. After treatment with NAT, bladder cancer 
patients with upregulated serum taurine levels could eas-
ily achieve pCR [55]. Moreover, taurine combined with 
chemotherapeutic drugs, including cisplatin and doxoru-
bicin, can increase the effectiveness of chemotherapeutic 
medications and lessen their side effects [40]. These find-
ings suggested that taurine has the potential to improve 
the efficacy of immunotherapy or chemotherapy. How-
ever, in our study, the serum taurine concentration was 
higher in non-pCR group than in pCR group and was 
negatively correlated with MP grade. The analyses of 
the integration of previous studies and our unexpected 
results have given rise to several interesting questions 
that need to be addressed by further studies. First, 
whether taurine has an antitumor effect in HER2 + BrCa. 
Second, whether taurine was a true indicator for NAT 
response of TCbHP in HER2 + BrCa. Third, whether 
taurine influences the process of the biological effect or 
drug efficacy of the chemotherapeutic drugs (taxane and 
carboplatin) or targeted drugs (trastuzumab and pertu-
zumab) in the body. Fourth, whether dietary supplement 
taurine is reasonable for HER2 + BrCa patients receiving 
NAT.

No matter the pathway analyses of pre-therapeutic 
metabolic traits or integrated with transcriptional traits, 
the results confirmed that dysregulation of cancer-related 
metabolic pathways was also related to the treatment 
effect of TCbHP. The central carbon metabolismin in 
cancer was the top up-regulated pathway according to the 
metabonomic analysis. ABC transporters were one of the 
top 4 up-regulated pathways according to the metabo-
nomic analysis and were the top dysregulated pathways 
in integrated analysis. The central carbon metabolism in 
cancer pathway involves aerobic glycolysis, increased glu-
taminolysis, a dysregulated TCA cycle, and the pentose 
phosphate pathway, which is the host’s primary source of 
energy [56]. In addition to being necessary for the prolif-
eration of cancer cells, the central carbon metabolism in 
cancer plays a fundamental role in metabolic reprogram-
ming and is vital for the function of endothelial cells, 
stromal cells, CTLs, regulatory T cells, and myeloid cells 
[18]. Changes in central carbon metabolism in the can-
cer pathway of cancer stem cells have been reported [57]. 
ABC transporters are one of the most well-known mech-
anisms of multidrug resistance, and they are involved in 
a variety of physiological processes such as cholesterol 
homeostasis, the transport of numerous chemicals into 
and out of cells and organelles, oxidative stress, immu-
nological recognition, and drug efflux [58]. Notably, the 
ABC transporter pathway is required for lipid homeo-
stasis, lipid trafficking, and signaling, which are essential 
functions for cell function [59]. Our findings showed that 

a range of substrates, including carbohydrates and amino 
acids, were also transported by this route. Changes in the 
biological pathways of these metabolites and genes may 
aid in understanding the possible mechanism underly-
ing the therapeutic response of HER2 + BrCa patients to 
NAT.

In the present work, we collected samples at three dif-
ferent points during NAT to examine dynamic changes 
in metabolites and to investigate the metabolic processes 
involved in the NAT treatment response in HER2 + BrCa 
patients. To the best of our knowledge, no metabolomics 
studies have been conducted to investigate the altera-
tions in metabolic patterns during NAT in HER2 + BrCa 
patients. This study offered an in-depth look at the 
metabolite alterations that occur during NAT. According 
to the dynamic metabolomics analyses, 13 metabolites 
exhibit persistent differences during the different peri-
ods of NAT. However, they showed an opposite trend at 
the second cycle of treatment compared with the time 
point at baseline and at the end of treatment. Another 
five metabolites exhibited the same changing tendency 
in the same group at different time points. The metabo-
lome exhibits dynamic changes over time, which corre-
sponds to the trajectory of developing illness [60]. Thus, 
we speculate that these metabolites might be related to 
the efficacy of treatment. However, further studies need 
to be conducted to evaluate whether these metabolites 
are ideal monitoring markers for NAT in HER2 + BrCa 
patients.

At present, in BrCa, metabolomics-based techniques 
have been employed in a wide range of applications, 
including screening, predicting therapy response, fore-
casting recurrence diagnosis, and evaluating prognosis 
[25]. A previous study revealed that the metabolomic 
profile of HER2 + participants who received lapatinib 
had substantial prognostic accuracy in terms of time to 
progression and overall survival [61]. Serum metabolites 
might be used as diagnostic biomarkers for HER2 + BrCa 
and could serve as predictors of trastuzumab therapy 
efficacy [62]. Other studies have shown that metabolo-
mics can predict the response to NAT with epirubicin 
plus cyclophosphamide, followed by three weekly doses 
of docetaxel +/- trastuzumab [63]; or trastuzumab-
paclitaxel [64]. In our study, we discovered substan-
tial metabolic alterations in the serum as a response to 
therapy by metabolic profiling of blood samples taken 
before, during, and after NAT in HER2 + BrCa patients. 
This provides insight into how therapy affects the body 
and suggests that metabolomics might be a useful tech-
nique for identifying biomarkers to predict or moni-
tor the treatment response in patients with TCbHP. In 
addition, the qRT-PCR results obtained from the trastu-
zumab-sensitive and trastuzumab-resistant cell lines 
were consistent with the expression patterns of the DEGs 
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identified by RNA-seq, suggesting that some of the genes 
whose expression was altered might be involved in pri-
mary or acquired trastuzumab resistance. Moreover, 
the integration of metabolomic and transcriptomic data 
can help to clarify the processes that underlie the asso-
ciation between altered metabolite levels and treatment 
response. However, we should note that transcriptomic 
analysis has several inherent limitations. For example, 
relevant tissues are often unavailable, and this difficulty 
is not easily overcome. Moreover, RNA degradation is a 
serious limitation of transcriptomic studies. These short-
comings are very obvious in our study due to but not lim-
ited by the small size of the puncture tissue specimens 
and longer time span or longer sample preservation time 
before RNA-seq analysis. However, untargeted metabo-
lomic investigations of serum metabolites are indicators 
of tumor/host metabolism, could reveal downstream risk 
factors, and have the advantages of rapid, non-invasive, 
relatively inexpensive, and facilitating dynamic monitor-
ing; moreover, these methods are very suitable for iden-
tifying valuable biomarkers clinically. Our findings imply 
the potential clinical application of serum-metabolomics 
for predicting or monitoring treatment efficacy before or 
during NAT. Thus, we propose that metabolomics could 
be a promising approach for predicting or monitoring the 
sensitivity of NAT to the TCbHP regimen using signifi-
cantly abnormally changed metabolites from serum sam-
ples. Moreover, the utility of transcriptomics could be 
used as a supplement to metabolomics in the discovery of 
biomarkers related to treatment efficacy, understanding 
of drug resistance mechanisms, and helping to explore 
potential intervention targets or strategies.

However, it is important to note that our study has sev-
eral limitations. First, the sample size was quite small, 
which might lead to insufficient discovery and overlook-
ing of other relevant indicators. Second, these identified 
metabolites were not further validated in a larger num-
ber of samples or external cohorts. Third, although we 
found that some genes may be associated with trastu-
zumab resistance, the NAT regimen used in this study 
included four different drugs, identifying a definite rela-
tionship between potential biomarkers or pathways with 
the resistance of a specific drug is difficult. Moreover, 
it is uncertain whether these identified biomarkers are 
also applicable to other neoadjuvant anti-HER2 therapy 
regimens, such as taxane and trastuzumab in combina-
tion with pertuzumab or pyrotinib, which are also rec-
ommended by guidelines and used in clinical practice. 
Fourth, the current study did not uncover the underly-
ing molecular mechanism for why changes in the levels 
of these metabolites or genes are connected with medi-
cation sensitivity, which will be determined in future 
research.

Conclusions
In summary, comprehensive utilization of non-targeted 
GC-MS and LC-MS metabolomics revealed metabo-
lomic patterns linked with the therapeutic response to 
NAT with TCbHP regimen in HER2 + BrCa patients. 
Four potential new serum metabolic predictive indica-
tors could be used to effectively discriminate TCbHP 
resistance from sensitivity, allowing for the early predic-
tion of the treatment response to NAT with TCbHP in 
the HER2 + BrCa population. Significantly altered meta-
bolic pathways could offer mechanistic insight into drug 
resistance and aid in the development of novel thera-
peutic targets for insensitive patients. Moreover, sev-
eral abnormally altered metabolites may have potential 
value in monitoring the efficacy of treatment. Moreover, 
several abnormally expressed genes might be associ-
ated with trastuzumab resistance. Integrating metabolo-
mics and transcriptomics could assist in obtaining new 
insights into biochemical pathophysiology and generat-
ing hypotheses for future research. Future research is 
needed to corroborate these findings in a large patient 
population and to investigate the resistance-mediating 
mechanism and their potential clinical applications in 
HER2 + BrCa patients.
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