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Abstract
Background  Although several transcriptome-wide association studies (TWASs) have been performed to identify 
genes associated with overall breast cancer (BC) risk, only a few TWAS have explored the differences in estrogen 
receptor-positive (ER+) and estrogen receptor-negative (ER-) breast cancer. Additionally, these studies were based on 
gene expression prediction models trained primarily in breast tissue, and they did not account for alternative splicing 
of genes.

Methods  In this study, we utilized two approaches to perform multi-tissue TWASs of breast cancer by ER subtype: 
(1) an expression-based TWAS that combined TWAS signals for each gene across multiple tissues and (2) a splicing-
based TWAS that combined TWAS signals of all excised introns for each gene across tissues. To perform this TWAS, we 
utilized summary statistics for ER + BC from the Breast Cancer Association Consortium (BCAC) and for ER- BC from a 
meta-analysis of BCAC and the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA).

Results  In total, we identified 230 genes in 86 loci that were associated with ER + BC and 66 genes in 29 loci that 
were associated with ER- BC at a Bonferroni threshold of significance. Of these genes, 2 genes associated with ER + BC 
at the 1q21.1 locus were located at least 1 Mb from published GWAS hits. For several well-studied tumor suppressor 
genes such as TP53 and CHEK2 which have historically been thought to impact BC risk through rare, penetrant 
mutations, we discovered that common variants, which modulate gene expression, may additionally contribute to 
ER + or ER- etiology.

Conclusions  Our study comprehensively examined how differences in common variation contribute to molecular 
differences between ER + and ER- BC and introduces a novel, splicing-based framework that can be used in future 
TWAS studies.
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Background
Estrogen receptor-positive (ER+) and estrogen receptor-
negative (ER-) breast cancer (BC) not only have mark-
edly different clinical prognoses and treatment decisions 
[1–3], but also are molecularly and etiologically distinct. 
Several non-genetic risk factors that differ between 
ER + and ER- BC including age at first birth, nulliparity, 
obesity in younger women, and age of menarche have 
been identified in previous studies [4, 5]. Genetic differ-
ences of breast cancer by ER status were first character-
ized between BRCA1 and BRCA2-related tumors [6, 7], 
with BRCA1-related tumors predominantly lacking ER 
expression [8–10]. While rare mutations in some breast 
cancer susceptibility genes such as BRCA1 and BRCA2 
with moderate to high penetrance have been shown to 
play a distinct role in breast cancer etiology by ER sta-
tus [11–13], genome-wide association studies (GWAS) 
have additionally reported that common variants associ-
ated with breast cancer risk differ between ER subtypes 
[14–21]. Though these GWAS have indicated common 
variants may contribute to genetic differences between 
ER + and ER- BC, the genes by which these variants act 
through to impact the risk of developing each ER subtype 
have not been fully explored.

Transcriptome-wide association studies (TWAS) have 
recently emerged as an approach to explore how pre-
dicted expression of genes by common variants asso-
ciates with various diseases by incorporating both 
summary statistics from GWAS and expression predic-
tion models using information of expression quantita-
tive trait loci (eQTLs) [22–24]. By training predictive 
models of gene expression on a reference panel of indi-
viduals for whom gene expression and single nucleotide 
polymorphism (SNP) data are available, TWAS studies 
bypass the need to obtain gene expression data for larger 
cohorts where only SNP data is available. As a result, 
TWAS studies have been shown to comparatively have 
more power than GWAS studies in identifying genes that 
potentially impact complex traits [25]. Most previous 
TWAS performed to study breast cancer have focused on 
overall breast cancer risk [26–29] with only a few stud-
ies that have explicitly explored ER- BC or stratify their 
analysis by ER status. These past studies that explore how 
gene associations differ by ER status were in European 
ancestry breast cancer TWAS [30, 31], or meta-analysis 
of multiple ancestry TWAS of breast cancer [32, 33]. In 
total, these studies have identified 22 genes that associate 
with ER- BC and 69 genes for ER + BC (Table S1 in Addi-
tional file 1).

Though the aforementioned studies established an 
initial framework for performing TWAS by ER status, 

there are several shortcomings. First, all these studies 
utilize expression prediction models to perform TWAS 
analyses, which do not explicitly account for alternative 
splicing events within each gene. Splicing is markedly 
important to include in subtype-specific TWAS analy-
ses since dysregulation of alternatively spliced transcripts 
has been shown to play a considerable role in BC etiol-
ogy in prior studies [34–36]. Second, these previous 
TWAS studies have been primarily focused on studying 
the association between BC risk and gene expression in 
breast and blood tissues. The effects of gene expression 
in tissues other than breast tissue on breast cancer risk 
have thus far not been addressed for either ER + or ER- 
tumors. Third, the expression prediction models used in 
these prior studies have been based on modest sample 
sizes, which limits their power to detect associations. In 
this study, we work to address these limitations by per-
forming a comprehensive subtype-specific TWASs of ER- 
and ER + breast cancer that utilize information of splicing 
quantitative trait loci (sQTLs) in addition to eQTL infor-
mation across multiple tissues from the latest version of 
GTEx models (v8) to increase our power to detect breast 
cancer susceptibility genes by ER status.

Methods
Subtype-specific GWAS summary statistics for women 
with European ancestry. We obtained ER + BC sum-
mary statistics that have been previously generated 
from 69,501 ER + BC cases and 105,974 controls who 
are women with European ancestry in the Breast Cancer 
Association Consortium (BCAC) [37, 38]. As described 
in previous studies, these summary statistics for ER + BC 
were obtained by using an inverse-variance fixed-effects 
meta-analysis of BCAC participants who were genotyped 
using the OncoArray, participants who were part of the 
Collaborative Oncological Gene-Environment Study 
(iCOGS), and participants from 11 other BC GWAS 
studies within BCAC. We obtained ER- summary statis-
tics for a total of 30,882 ER- cases and 115,468 controls 
who are women with European ancestry by performing 
a meta-analysis of 21,468 ER- cases and 105,974 controls 
from BCAC and 9,414 BC cases and 9,494 controls from 
the Consortium of Investigators of Modifiers of BRCA1 
and BRCA2 (CIMBA) [39] using an inverse variance-
based approach with the METAL software package [40].

Expression and splicing prediction models. Both 
overall gene expression and intron excision proportion 
prediction models were previously built using genotyping 
and RNA-sequencing data from 49 tissues of European 
ancestry from the Genotype-Tissue Expression (GTEx) 
Project (v8) [41]. These models were built based on 

Keywords  Breast, Cancer, TWAS, Estrogen, Receptor, Splicing



Page 3 of 15McClellan et al. Breast Cancer Research           (2024) 26:51 

fine-mapping of cis-SNPs of each gene (or each intron) 
to select predicting SNPs and estimate the effect sizes of 
these selected SNPs by applying the multivariate adaptive 
shrinkage (MASH) [42] method to the marginal eQTL 
and sQTL effects across these 49 tissues. Specifically, 
building prediction models for a gene includes the fol-
lowing steps: (1) Only genes with cis-eQTLs with a false 
discovery rate of 5% in any tissues were selected. (2) Fine 
mapping was performed in each tissue in the correspond-
ing cis gene region (±1 Mb of the gene) to select variants 
with minor allele frequency > 0.01 and posterior inclu-
sion probabilities (PIPs) > 0.01 and genes with at least 
one credible set of PIP > 0.1, where the credible set PIP 
is sum of PIPs of variants in the set, were selected. Then 
in each credible set, only the variant with the highest PIP 
was kept. A union of selected variants across 49 tissues 
was obtained and linkage disequilibrium (LD) pruning 
was applied to the union of variants to remove redundant 
variants. (3) The MASH method [42] was applied to the 
marginal eQTL effects across the 49 tissues at the union 
of variants to jointly estimate effects of eQTLs. (4) The 
predicted expression of the gene in each tissue was calcu-
lated as the linear combination of genotypes multiplying 
by their estimated effect sizes of the selected variants. By 
a similar way as described for expression models, splic-
ing prediction models were built for each intron in 49 
tissues in GTEx (v8) samples of European ancestry. The 
only difference is to predict the (normalized) intron exci-
sion proportion instead of the gene expression by using 
cis-variants. From these prebuilt models, we specifically 
utilized models from 11 tissues relevant to breast cancer 
etiology for this study including female-specific tissues 
(breast, uterus, vagina, ovary), connective and fat tissues 
akin to those in breast (subcutaneous adipose, visceral 
adipose, and cultured fibroblasts), immune cell-related 
tissues (whole blood, EBV-transformed lymphocytes, and 
spleen), and liver.

Harmonizing SNPs between expression prediction 
models and GWAS summary statistics. To harmonize 
the variants utilized in expression prediction models with 
GWAS summary statistics, we utilized the ImpG-Sum-
mary [43] method to impute z-scores from the genotyp-
ing data from GTEx samples. ImpG-Summary assumes 
the distribution of z-scores for all SNPs at a locus approx-
imately follows a normal distribution with 𝒁 ̴ 𝑁(𝟎,S) 
where S is the pairwise correlation matrix between all 
SNPs induced by linkage disequilibrium (LD); from 
these pairwise correlations, ImpG-Summary estimates 
the posterior mean of z-scores for unobserved SNPs. As 
input for ImpG-Summary, we utilized the correlation 
matrix estimated using GTEx genotyping data along with 
ER + and ER- summary statistics, separately.

Joint-tissue expression- and splicing-based TWAS 
analyses. In this study we utilized two joint-tissue 

TWAS approaches including (1) an expression-based 
approach and (2) a splicing-based approach. Firstly, for 
the expression-based TWAS approach, we performed a 
conventional TWAS for each gene using the S-PrediXcan 
software [22] separately in each of the 11 tissue types 
using eQTL-based prediction models. We then com-
bined TWAS p-values for each gene across all 11 tissues 
using the aggregated Cauchy association test (ACAT) 
method [44]. The ACAT method calculates a test statistic 
TACAT using the following formula where pk is the p-value 
of the kth tissue type and wk is the weight of that tissue 
type: 

∑11
k=1wktan (( 0.5− pk)π). In our study, we utilized 

equal weighting of tissues where wk = 1/11. The joint 
p-value of this test statistic is approximated by the equa-
tion 12 − (arctan(TACAT))/π. For genes that did not have 
expression prediction models in all 11 tissue types, we 
appropriately changed the calculation of the ACAT test 
statistic to only include the tissue types that contained 
expression prediction models and modified the weighting 
to still be equal among the tissue type containing mod-
els for a gene. As a sensitivity analysis, we performed the 
ACAT analysis utilizing square root of sample size in the 
prediction models as the weights, and found highly simi-
lar results, with only 4 marginally significant genes addi-
tionally identified by the sample size-weighted ACAT. 
Thus, we kept the equal weighted results. While the 
(overall) gene expression measures the total expression 
of all isoforms of the gene, mRNA splicing (measured by 
intron excision ratio in a cluster) is complementary to 
information from total mRNA expression levels. Intron 
excision ratios measure the proportions of RNA-seq read 
counts aligned to specific excised introns in the total read 
counts aligned to a cluster. Hence, we additionally imple-
mented an intron splicing-based TWAS to test asso-
ciation of each excised intron using S-PrediXcan with 
sQTL-based prediction models for introns. After per-
forming these splicing-based TWAS analyses for individ-
ual excised introns, we then utilized ACAT to combine 
the p-values from all excised introns in each gene within 
each of our tissues to calculate a gene-based p-value in 
each tissue; we then performed an additional, second-
step ACAT to collate gene-based p-values to obtain a 
joint p-value across all tissues. By implementing this 
splicing-based approach we may be able to identify genes 
that could be missed by expression-based TWAS.

Conditioning our TWAS analyses on nearby GWAS 
variants. To determine whether any genes we detected 
in our expression- and splicing-based TWASs were 
independent of previously reported GWAS signals, we 
performed both TWAS analyses while conditioning on 
genome-wide significant index SNPs (p-value < 5E-8). 
Specifically, we conditioned the effect sizes of SNPs 
(eQTL or sQTL) used in expression and splicing predic-
tion models on nearby GWAS significant index variants 
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within +/- 2  Mb of the transcription start or stop sites 
of each gene. We then utilized the conditional and joint 
multiple-SNP (COJO) analysis [45] method to compute 
the GWAS index variant-adjusted effects of each eQTL 
and sQTL. We then performed our expression- and splic-
ing-based TWAS analyses with these conditioned eQTL 
and sQTL effect sizes similar to that described in the 
preceding section. Additionally, for selected genes, we 
queried the NHGRI-EBI GWAS Catalog [46] to identify 
other previously reported GWAS SNPs within the same 
loci, and then utilized LDpop to examine the correla-
tion between these index SNPs and the SNPs used in our 
eQTL and sQTL prediction models [47].

Conditioning GWAS variants on TWAS-identified 
genes. To examine whether previous reported GWAS 
index variants affect breast cancer risk through genes 
identified in our TWAS analysis, we utilized the COJO 
analysis [45] method to calculate adjusted odds ratios 
of GWAS index variants in association with breast can-
cer risk, after adjusting for eQTL and sQTL used in 
gene or splicing predictions within the same locus. This 
is similar to mediation analysis, in which the adjusted 
odds ratios are the direct effect and the unadjusted 
odds ratios are the total effect. We calculated propor-
tion mediated for each GWAS variant using the for-
mula direct effect×(indirect effect−1)

total effect−1  to indicate the extent to 
which the index variant’s total effect is accounted for by 
the nearby TWAS genes. We considered a GWAS index 
variant as being mediated by nearby genes if the vari-
ant had a proportion mediated > 0.5 and was no longer 
genome-wide significant in the COJO analysis (adjusted 
p-value > 5.0E-8).

Gene-based fine-mapping of genes and intron exci-
sion events. LD may result in false positive BC suscep-
tibility genes being identified that are correlated with 
true causal genes. To identify candidate causal genes 
for ER + and ER- BC by accounting for LD structure, we 
performed gene-based statistical fine-mapping at the 
level of gene-trait associations using the Fine-mapping 
of Causal Gene Sets (FOCUS) software [48]. FOCUS 
controls for the genetic correlation and other pleiotro-
pic effects induced by both LD structure and expression 
prediction model weights. We separately input weights 
for eQTLs and sQTLs used in the prediction models, an 
LD reference panel we computed using GTEx genotyp-
ing data, and subtype-specific summary statistics into 
FOCUS separately for each of the 11 tissue types. For 
each LD block in the genome, we identified credible sets 
of genes that contained the causal genes and credible 
sets of intron excision events using a confidence level of 
90%. We additionally computed marginal PIPs in each of 
the 11 tissues for each gene (or each intron) within each 
region to be causal given the observed TWAS signals in 

each tissue. We classified TWAS genes that met a PIP 
threshold of 0.9 as candidate causal genes.

Gene set and functional annotation enrichment anal-
ysis: To determine gene sets with annotated biological 
pathways and other functional categories, we performed 
an enrichment analysis of protein-coding and long non-
coding RNA (lncRNA) genes, separately for ER + and ER- 
breast cancer, using the GENE2FUNC method within the 
Functional Mapping and Annotation of Genome-wide 
association studies (FUMA) software package [49]; as 
the background gene set for testing enrichment of gene 
sets, we specified 33,527 protein-coding and lncRNA 
genes. We utilized a multiple testing threshold of an 
FDR-adjusted p-value < 0.05 for reporting significantly 
enriched gene sets.

Results
Two joint-tissue TWAS approaches: an expression-
based and a splicing-based approach. We utilized 
expression and splicing prediction models trained in 11 
tissue types obtained from European individuals from 
the GTEx v8 dataset; sample sizes ranged from 129 to 
670 and had weights refined using a multivariate adaptive 
shrinkage (MASH) method. In our TWAS analyses, we 
tested 19,288 genes across the 11 tissues with expression 
prediction models including 14,615 genes in breast tissue 
alone, and 14,527 genes with intron splicing prediction 
models including 10,928 genes in breast tissue alone.

Using either the expression- or splicing-based 
approaches, we discovered that 230 genes were signifi-
cantly associated with ER + BC at Bonferroni significance 
thresholds (expression-based p-value < 2.6E-6 or splic-
ing-based p-value < 3.4E-6) (Table S2 in Additional file 
1). If only considering eQTL in breast tissue, 72 (30%) 
genes were identified, and the number increased to 170 
in multi-tissue expression TWAS, while 60 (26%) genes 
were identified only using the splicing-based approach 
(Fig.  1). Of the 230 genes associated with ER + BC, 43 
genes have not been reported in any previous TWAS 
(Table  1). Among previously reported TWAS genes, 30 
were identified in ER + TWAS studies and 5 in ER- TWAS 
studies (S1 in Additional file 1). Of the 230 ER + genes, 
228 were located in 85 known GWAS loci, while one 
protein-coding gene (FAM72C) and one pseudogene 
(FCGR1CP) located at the 1q21.1, L1 locus were at least 
1.4  Mb away from any previously identified GWAS risk 
variants (p < 5E-8) and were also not in LD with any risk 
variants (S3 in Additional file 1). Overall, among the 113 
previously reported GWAS loci for ER + BC, 72 loci had 
a gene identified in our ER + TWAS (S3 in Additional file 
1).

Furthermore, we discovered 66 genes that were sig-
nificantly associated with ER- BC at Bonferroni signifi-
cance thresholds (Table S2 in Additional file 1). If only 
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considering eQTL in breast tissue, 27 (41%) genes can be 
identified, and the number increased to 53 in multi-tissue 
expression TWAS, while 13 (20%) genes were identified 
exclusively using the splicing-based approach (Fig.  1). 
Of the 66 genes associated with ER- BC, 24 genes have 
not been reported in any previous TWAS (Table 2), and 
among previously reported TWAS genes, 11 were iden-
tified in ER- TWAS studies and 6 in ER + TWAS studies 
(Table S1 in Additional file 1). The 66 genes we identi-
fied in the ER- TWASs were all located in 29 known BC 
GWAS loci. Among the 45 previously reported GWAS 
loci for ER- BC, 24 loci contained a gene identified in our 
ER- TWAS (Table S4 in Additional file 1).

Overall, a vast majority of genes identified using either 
splicing- or expression-based approaches was unique 
to either the ER+ (204 genes) or ER- (40 genes) subtype 
with only 26 genes being associated with both ER + and 
ER- BC (Fig.  2). Several noteworthy genes that specifi-
cally were associated with ER + BC include FGFR2 and 
CHEK2. Several noteworthy genes that were associated 
with ER- BC include TP53 and its regulator MDM4. 
Interestingly, we discovered that TERT in the 5p15.33 
locus was associated with both ER- and ER + BC in our 
TWAS, while TERT was previously believed to be a pre-
dominantly ER- locus in GWAS. As shown in Table S5 
(in Additional file 1), SNPs annotating to TERT generally 
have larger effect sizes for ER- BC than those for ER + BC. 
Furthermore, we discovered that TOX3, which has been 

historically viewed as a gene implicated in ER + and over-
all BC risk (with an index SNPs having ORs generally 
above 1.2 and below 0.8 for ER + BC), was associated with 
both ER + and ER- BC risk in our study (Table S5 in Addi-
tional file 1). The 270 TWAS-identified genes of ER + and 
ER- genes were mapped across genome in the context of 
known GWAS loci of ER + and ER- breast cancer, show-
ing that our TWAS study identified genes in most of the 
GWAS loci (Fig. 3).

Joint TWAS analyses conditioned on BC GWAS 
index variants. To test whether the association between 
genes identified in our TWAS analyses and breast can-
cer risk could be explained by nearby GWAS variants, 
we conditioned the effect sizes of eQTLs and sQTLs on 
nearby index SNPs separately for ER + and ER- BC prior 
to performing our TWAS analyses. After conditioning on 
nearby index SNPs, we discovered that 27 genes in 17 loci 
remained Bonferroni-significant for ER + BC and 9 genes 
in 6 loci remained Bonferroni-significant for ER- BC 
(Table  3). Among these conditionally significant genes, 
only two genes in two loci (CCDC91 at 12p11.22, L1 and 
TOX3 at 16q12.1-q12.2) were identified for both ER + and 
ER- BC. Interestingly, CHEK2, a gene previously reported 
to impact BC risk via rare and highly penetrant muta-
tions, was identified to be conditionally significant for 
ER + BC (Table  3); moreover, the SNPs used in CHEK2 
expression prediction models generally had little to no 

Figure 1  Number of genes identified cumulatively using each TWAS approach. Abbreviations: TWAS, transcriptome-wide association study; “Breast Exp”, 
genes identified using the expression-based TWAS approach in breast tissue only; “Breast Exp + 11 Tissue Exp”, genes identified using the expression-
based TWAS approach in either breast tissue only or jointly across tissues; “Breast Exp + 11 Tissue Exp + Breast Splice”, genes identified using the expres-
sion-based TWAS approach in either breast tissue only or jointly across tissues and the splicing-based approach in breast tissue only; “Breast Exp + 11 
Tissue Exp + Breast Splice + 11 Tissue Splice”, genes identified using the expression-based TWAS approach in either breast tissue only or jointly across 
tissues and the splicing-based approach in either breast tissue only or jointly across tissues
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Table 1  Genes significantly associated with estrogen receptor (ER)-positive breast cancer that have not been identified in previous 
TWAS of breast cancer
Loci Gene Name Min. 11 Tissue 

ACAT p-valuea
Min. Breast 
p-valueb

TWAS-significant 
Approachesc

Max. PIP 
(eQTL)d

Max. 
PIP 
(sQTL)e

1p34.1-p33 RAD54L 5.24E-07 NA express 0.56 NA
1p34.1-p33 UQCRH 1.48E-06 9.11E-01 express 0.06 NA
1p34.1-p33 FAAH 7.08E-09 3.39E-07 express|splice 1 0.39
1q21.1, L1 FCGR1CP 5.05E-11 NA splice NA 1
1q21.1, L2 ITGA10 1.46E-06 1.91E-06 splice NA 0.36
1q21.1, L2 HJV 9.75E-07 6.46E-01 splice NA 0.3
1q22 DPM3 2.51E-06 2.51E-06 splice NA 0.02
1q22 ARHGEF2 4.02E-07 2.10E-04 express 0.44 NA
3p14.1 THOC7 5.21E-06 5.81E-07 splice NA 0
3p24.1, L2 TGFBR2 3.47E-09 1.14E-02 express 1 NA
3p26.1 ITPR1 7.41E-11 3.17E-01 splice NA 1
4q21.23 HELQ 1.16E-06 1.42E-06 splice NA 0.93
4q34.1 RP13-577H12.2 1.97E-12 NA splice NA 1
5q11.1 PARP8 2.96E-06 1.08E-06 express 0 NA
5q14.3 ARRDC3 3.39E-10 9.52E-11 splice NA 1
5q33.3 EBF1 1.61E-15 NA splice NA 1
6p22.1-p21.33 TRIM31 1.43E-06 7.78E-02 express 0.94 NA
6p22.1-p22.2 BTN3A1 1.93E-06 1.24E-06 splice NA 0.87
6p22.1-p22.2 ABT1 7.41E-07 7.70E-02 splice NA 0.74
6p22.1-p22.2 ZSCAN9 1.34E-06 9.36E-03 splice NA 0.12
6p22.1-p22.2 PGBD1 9.86E-07 4.75E-07 splice NA 0.48
6p22.1-p22.2 ZSCAN23 1.45E-07 8.88E-08 splice NA 0.55
6p23 SIRT5 5.03E-06 3.31E-06 express 0.76 NA
7q21.2 ANKIB1 6.90E-07 7.75E-07 splice NA 0.01
10p12.31-p12.2 MLLT10 2.22E-16 1.98E-02 splice NA 0.5
10p12.31-p12.2 PIP4K2A 4.38E-07 8.95E-07 splice NA 1
10q21.2-q21.3 EGR2 9.53E-08 9.53E-08 splice NA 0.98
10q26.13 ENSG00000273767 1.66E-06 NA splice NA 0.53
11p15.5, L2 AC051649.12 2.22E-16 NA splice NA 0.07
11p15.5, L2 H19 2.96E-09 1.63E-09 splice NA 0
12q24.21 RP11-116D17.3 1.06E-06 3.14E-01 express 0.95 NA
14q24.1 RAD51B 2.23E-07 8.64E-01 splice NA 0.99
14q32.11-q32.12 CCDC88C 5.45E-10 8.72E-11 splice NA 1
14q32.11-q32.12 PPP4R3A 4.79E-07 2.63E-02 splice NA 0.95
15q22.33 SMAD3 2.31E-06 4.07E-02 splice NA 0.88
15q24.1 SCAMP2 4.84E-07 3.59E-03 splice NA 0.93
15q26.1 VPS33B 8.09E-11 6.34E-11 splice NA 1
16q13 AMFR 2.85E-06 2.85E-06 splice NA 0.72
17q11.2 ATAD5 5.93E-07 6.22E-01 splice NA 0.98
18q11.2, L2 CHST9 6.74E-09 NA splice NA 1
19p13.13 NACC1 4.72E-07 4.72E-07 splice NA 0.51
19q13.31 ZNF45 6.32E-12 6.69E-12 splice NA 1
22q12.1-q12.2 CTA-292E10.6 3.01E-09 8.71E-03 splice NA 0.9
Abbreviations:

TWAS, transcriptome-wide association study; ER+, estrogen receptor-positive.
a The minimum joint-tissue TWAS p-value between either the expression-based or splicing-based approach.
b The minimum TWAS p-value in breast tissue between either the expression-based approach or splicing-based approach.
c “Express” indicates the listed gene was identified using only the expression-based TWAS approach in either only breast tissue or jointly across all tissues. “splice” 
indicates the listed gene was identified using only the splicing-based TWAS approach in either only breast tissue or jointly across all tissues. “express|splice” indicates 
the listed gene was identified in either expression-based or splicing-based approaches in either breast tissue or jointly across all tissues.
d The maximum PIP of an eQTL for a given gene across 11 tissues.
e The maximum PIP of an sQTL for a given gene across 11 tissues.
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correlation with other GWAS index SNPs at the same 
22q12.1-q12.2 locus (Table S6 in Additional file 1).

GWAS variants conditional on TWAS-identified 
genes. To examine whether previous reported GWAS 
index variants affect breast cancer risk through our 
TWAS-identified genes, we conducted association analy-
sis after conditional on eQTL and sQTL for GWAS vari-
ants in loci with both TWAS and GWAS signals. We 
found 126 ER + variants had a proportion mediated > 0.5 
and were no longer genome-wide significant (Table S3 
in Additional file 1), suggesting that these variants may 
affect ER + breast cancer risk via expression regulation of 
nearby TWAS genes. There were 131 ER + variants still 
significant in the adjusted analysis; for example, several 
index SNPs in the 22q12.1-q12.2 locus remained signifi-
cant after adjusting for nearby genes including CHEK2. 
Of ER- GWAS index variants, effects of 40 variants were 

found to be mediated by nearby genes, while 38 were not 
(Table S4 in Additional file 1).

Gene-based fine-mapping of associations. To iden-
tify candidate causal genes in each tissue we performed 
fine-mapping of gene-trait associations separately using 
expression and intron splicing prediction models, LD 
matrices, and subtype-specific GWAS summary statis-
tics. Of the 230 genes in 86 loci associated with ER + BC, 
we discovered that 133 genes in 75 loci had a PIP above 
0.9 in at least one of the 11 tissues, where 104 genes were 
identified by gene expression-based fine-mapping, 58 by 
intron splicing-based fine-mapping, and 29 by both fine-
mapping analysis (Table S7 in Additional file 1). Of the 
66 genes in 29 loci associated with ER- BC, we found that 
44 genes in 26 loci had a PIP > 0.9 in a least one tissue, 
where 32 genes were identified by gene expression fine 

Table 2  Genes significantly associated with estrogen receptor (ER)-negative breast cancer that have not been identified in previous 
TWAS of breast cancer
Loci Gene Name Min. 11 Tissue ACAT 

p-valuea
Min. Breast 
p-valueb

TWAS-significant 
Approachesc

Max. PIP (gene)d Max. 
PIP 
(intron)e

1q32.1, L3 LGR6 8.52E-08 1.22E-08 splice NA 1
1q32.1, L4 PIK3C2B < 5.50E-17 1.46E-24 express 1 NA
2p23.2 WDR43 6.54E-13 7.81E-13 express|splice 1 1
2q33.1 CLK1 1.34E-08 6.97E-01 express|splice 1 0.45
2q33.1 FAM126B 6.89E-08 2.02E-04 express|splice 0.26 0.36
2q33.1 NDUFB3 2.36E-08 NA express 0.64 NA
5q11.2, L2 PELO 2.36E-06 2.76E-05 splice NA 0.87
5q33.3 EBF1 7.34E-07 NA splice NA 0.92
6p21.32 RPS18 1.49E-07 1.15E-07 express 0.98 NA
6p21.32 B3GALT4 3.38E-08 8.46E-09 express 0.9 NA
8p23.3 RPL23AP53 2.16E-06 6.86E-07 splice NA 0.97
9p21.3 CDKN2B 1.58E-06 1.94E-01 express 0.97 NA
11q22.3 ACAT1 2.53E-06 1.99E-06 splice NA 0.96
11q22.3 C11orf65 1.50E-06 4.92E-04 express 1 NA
16q12.2, L1 FTO 7.19E-08 NA splice NA 0.99
17p13.1 TP53 2.34E-06 9.92E-07 express 0.87 NA
19p13.11, L1 USE1 6.75E-09 4.03E-02 splice NA 0
19p13.11, L1 OCEL1 3.16E-10 4.30E-10 express|splice 0.15 0
19p13.11, L1 NR2F6 1.40E-10 2.33E-11 express 0.08 NA
19p13.11, L1 USHBP1 6.11E-16 5.55E-17 splice NA 0
19p13.11, L1 DDA1 2.96E-14 7.13E-01 express|splice 1 0
19p13.11, L1 ANO8 1.02E-13 4.86E-08 express|splice 0 1
19p13.11, L1 GTPBP3 1.52E-11 1.86E-11 splice NA 0.33
19q13.31 ZNF45 3.53E-08 3.80E-08 splice NA 1
Abbreviations:

TWAS, transcriptome-wide association study; ER-, estrogen receptor-negative.
a The minimum joint-tissue TWAS p-value between either the expression-based or splicing-based approach.
b The minimum TWAS p-value in breast tissue between either the expression-based approach or splicing-based approach.
c “Express” indicates the listed gene was identified using only the expression-based TWAS approach in either only breast tissue or jointly across all tissues. “splice” 
indicates the listed gene was identified using only the splicing-based TWAS approach in either only breast tissue or jointly across all tissues. “express|splice” indicates 
the listed gene was identified in either expression-based or splicing-based approaches in either breast tissue or jointly across all tissues.
d The maximum PIP for a given gene across 11 tissues.
e The maximum PIP of introns in a given gene across 11 tissues.
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mapping, 24 by intron splicing fine mapping, and 12 by 
both types of fine mapping (Table S8 in Additional file 1).

Enrichment of gene sets and functional annotations. 
Among the genes we discovered that were associated 
with ER + BC, 191 were protein-coding genes and 31 were 
lncRNAs. Additionally, among the genes we discovered 
were associated with ER- BC, 59 were protein coding 
genes and 6 were lncRNAs. We explored the enrichment 
of these lncRNA and protein-coding genes identified 
in the ER + and ER- TWASs using FUMA package [49]. 
The ER + genes were enriched for gene sets including cell 
cycle regulation, gland development, body fat distribu-
tion, multiple other types of cancers (e.g. lung, prostate, 
pancreatic, esophageal), and dysregulated immune sys-
tem (Crohn’s disease, allergies) (Table S9 in Additional 
file 1). These results suggest that the effects of many of 
these ER + genes may be mediated through lifestyle fac-
tors, as well as exert pleiotropic effects on other types of 
cancers. In contrast, ER- genes were enriched for gene 
sets including numerous apoptosis pathways (caspase 
activation, Trail signaling, c-FLIP regulation) and other 
types of cancers (e.g., glioblastoma, non-glioblastoma 
glioma, esophageal cancer, leukemia) (Table S10 in Addi-
tional file 1). In addition, we observed that ER + and ER- 
genes identified in our study tended to be upregulated in 
female reproductive tissues such as cervix, uterus, and 
ovary, though this enrichment for upregulation was not 
statistically significant for ER- genes (Figure S1 and S2 
in Additional file 2). Taken together, these enrichment 

results suggest that future experimental studies of how 
ER- genes play a role in BC etiology by impacting apopto-
sis are warranted, as well as additional how genes in both 
subtypes mechanistically exert effects in female repro-
ductive tissues.

Discussion
In this study of ER- and ER + breast cancer, we employed 
an expression-based TWAS approach utilizing models 
trained on overall gene expression and a splicing-based 
TWAS approach using models trained on intron exci-
sion events. We applied both TWAS approaches in breast 
tissue only, as well as jointly across 11 tissues poten-
tially related to breast cancer development. In total, we 
identified 66 genes in 29 loci that were associated with 
ER- breast cancer and 230 genes in 86 loci that were asso-
ciated with ER + breast cancer at a Bonferroni threshold 
of significance. In general, we observed modest consis-
tency between our findings and genes reported in previ-
ous TWAS studies (Table S1, in Additional file 1). Among 
the 66 genes associated with ER- BC, 11 were reported 
in previous ER- TWASs and 6 in ER + TWASs. Among 
the 230 genes associated with ER + BC, 30 had been 
previously reported in TWASs of ER + BC and 5 in ER- 
TWASs (Table S2, in Additional file 1).

Our TWASs of ER- and ER + breast cancer identified 
more genes compared to previously conducted TWAS 
studies of breast cancer subtypes (22 ER- and 69 ER + in 
all previous TWAS combined). One factor leading to 

Figure 2  Venn diagram of TWAS genes identified for ER + and ER + breast cancer using each TWAS approach. Abbreviations: TWAS, transcriptome-wide 
association study; ER+, estrogen receptor-positive; ER-, estrogen receptor-negative
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this higher number of identified genes was that our study 
had increased statistical power compared to previous 
studies by utilizing the latest GTEx v8 prediction mod-
els that were trained on much larger sample sizes (up to 
670 participants per tissue type) [50] compared to previ-
ous TWAS studies which primarily utilized prediction 

models trained only on 67 GTEx breast samples [26, 30]. 
In addition, by utilizing predictive models from multiple 
tissue types, we were able to identify candidate genes that 
may play a role in the etiology of ER- and ER + breast can-
cer in tissues other than breast tissue. Given that dysreg-
ulated gene expression in tissues other than breast tissue 

Figure 3  Ideogram of the 270 TWAS-identified genes for ER + and ER- breast cancer in the context of known GWAS loci of breast cancer. Abbreviations: 
TWAS, transcriptome-wide association study; GWAS, genome-wide association study; ER+, estrogen receptor-positive; ER-, estrogen receptor-negative
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have been associated with breast carcinogenesis through 
either having similar characteristics as cell types in breast 
– such as adipose tissue resembling adipocytes in breast 
– and/or having a direct impact on breast cancer etiology 

such immune cell-related tissues, it is no surprise that 
utilizing predictive expression models from multiple tis-
sues allowed us to identify more genes than that using 
only breast tissue [51–53]. Furthermore, unlike previous 

Table 3  Genes significantly associated with estrogen receptor (ER)-positive and/or ER-negative breast cancer after conditioning on 
nearby GWAS SNPs for breast cancer risk
Loci Gene Name Closest GWAS 

Index SNP
Distance to Clos-
est GWAS Index 
SNP (kb)

Min. 11 Tissue 
ACAT COJO 
p-valuea

Min. Breast 
COJO 
p-valueb

COJO TWAS-
significant 
Approachesc

Estrogen receptor positive
1q21.1, L1 FCGR1CP rs1552172 1846.8 3.33E-11 NA splice
1q21.1, L1 FAM72C rs1552172 1758.3 1.25E-11 NA express
1q21.1, L2 ITGA10 rs143384623 60.4 1.20E-06 1.58E-06 splice
2q35 DIRC3 rs6436017 102.1 2.29E-10 1.74E-01 express
3p24.1, L1 NEK10 rs4973768 5.1 1.82E-11 2.02E-12 express
5p12 MRPS30 rs930395 1.9 2.78E-16 2.78E-16 express|splice
5p12 RP11-53O19.3 rs930395 3.7 5.55E-17 9.11E-01 express
8q21.13 HNF4G rs72658071 14.4 1.47E-10 NA express|splice
10p12.31-p12.2 PIP4K2A rs541079479 0 5.22E-07 6.12E-07 splice
11p15.5, L2 LSP1 rs576603 0.6 9.57E-13 2.82E-04 express
11p15.5, L2 TNNT3 rs576603 26.8 5.22E-12 5.12E-04 express|splice
11q13.3 RP11-554A11.8 rs72932540 0 3.44E-07 NA express
12p11.22, L1 CCDC91 rs7297051 111.4 6.45E-08 5.34E-08 express|splice
14q32.11-q32.12 CCDC88C rs150658557 4.7 8.74E-07 1.35E-07 splice
16q12.1-q12.2 TOX3 rs3803662 4.6 < 5.50E-17 2.21E-02 express
17q22 COX11 rs6504950 10.4 2.32E-08 2.97E-01 splice
18q11.2, L2 CHST9 rs232320 0 8.27E-07 NA splice
19p13.11, L2 LRRC25 rs7258465 25.2 1.15E-09 2.19E-01 express
19p13.11, L2 SSBP4 rs7258465 0 6.34E-09 3.89E-08 splice
19p13.11, L2 ISYNA1 rs7258465 11.6 6.01E-08 3.00E-08 express
19q13.32 GIPR rs61373376 0 1.40E-06 1.55E-02 express
22q12.1-q12.2 TTC28 rs62235681 4.9 9.72E-10 6.49E-02 express
22q12.1-q12.2 CHEK2 rs62235681 3 1.16E-12 6.57E-02 express|splice
22q12.1-q12.2 HSCB rs17879961 16.9 2.02E-12 8.42E-08 express|splice
22q12.1-q12.2 CCDC117 rs17879961 47.6 1.46E-09 1.17E-06 express|splice
22q12.1-q12.2 XBP1 rs17879961 69.5 7.97E-09 5.37E-06 express
22q12.1-q12.2 CTA-292E10.6 rs4822992 24.2 2.91E-09 6.63E-04 splice
Estrogen receptor negative
1q32.1, L4 MDM4 rs4245739 0 3.29E-09 9.86E-10 splice
2q14.2 RALB rs4528762 27.2 4.52E-07 1.69E-07 splice
2q14.2 INHBB rs11903787 15.5 6.09E-07 2.66E-01 express
2q33.1 FAM126B rs13015648 54.1 5.23E-07 8.21E-03 express
2q33.1 NDUFB3 rs13015648 40.1 3.47E-08 NA express
2q33.1 CFLAR rs13015648 0 5.34E-06 3.40E-06 express
11q22.3 ACAT1 rs199504893 249.1 2.18E-07 4.45E-08 splice
12p11.22, L1 CCDC91 rs7297051 111.4 2.71E-07 2.32E-07 splice
16q12.1-q12.2 TOX3 rs3803662 4.6 1.38E-10 6.51E-01 express
Abbreviations:

TWAS, transcriptome-wide association study; ER+, estrogen receptor-positive; ER-, estrogen receptor-negative; ER+, estrogen receptor-positive; COJO, conditional 
& joint association analysis using GWAS summary statistics.
a The minimum joint-tissue TWAS p-value conditioned on GWAS index SNPs between either the expression-based or splicing-based approach.
b The minimum TWAS p-value in breast tissue conditioned on GWAS index SNPs between either the expression-based approach or splicing-based approach.
c “Express” indicates the listed gene was identified using only the expression-based TWAS approach in either only breast tissue or jointly across all tissues after 
conditioning on nearby GWAS index SNPs. “splice” indicates the listed gene was identified using only the splicing-based TWAS approach in either only breast tissue 
or jointly across all tissues after conditioning on nearby GWAS index SNPs. “express|splice” indicates the listed gene was identified in either expression-based or 
splicing-based approaches in either breast tissue or jointly across all tissues after conditioning on nearby GWAS index SNPs.
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TWAS studies which have traditionally utilized models 
to predict overall gene expression, our splicing-based 
approach additionally incorporates the predicted expres-
sion of excised introns to draw associations between gene 
expression and breast cancer.

Furthermore, a vast number of genes we discov-
ered in this study were uniquely associated with either 
ER + or ER- BC including 40 genes that uniquely asso-
ciated with ER- and 204 genes that uniquely associated 
with ER + BC. In particular, one gene we discovered that 
was only associated with ER + BC was FGFR2, a recep-
tor tyrosine kinase that is involved in cell growth and 
proliferation [54] that has been shown to contain sev-
eral variants that associated with an increased risk of 
both ER + and overall BC [55–57]. We identified FGFR2 
to be significant via both expression- and splicing-based 
TWAS approaches and tissue with the max PIP was cul-
tured fibroblasts (PIP = 1), indicating FGFR2 likely caus-
ally impacts breast cancer risk through its expression in 
fibroblasts. After conditioning on a nearby GWAS index 
variant rs10510097, these associations were no longer 
statistically significant. Moreover, one of the SNPs used 
to predict FGFR2 expression across many GTEx tis-
sues, rs1863744, was in moderate LD with rs10510097 
(R2 = 0.40). This finding suggests that SNPs in LD with 
the GWAS SNP rs10510097 may partially contribute to 
ER + BC etiology through altered expression of FGFR2. 
Another interesting gene we identified that uniquely 
associated with ER- BC was TNFSF10. This gene was first 
implicated in a GWAS of ER- BC in women with Afri-
can ancestry [58]; later TNFSF10 was also implicated in a 
GWAS of overall breast cancer risk in women with Euro-
pean ancestry, but with a different risk variant [37]. It has 
been previously shown experimentally that editing the 
risk variant rs13074711, which is associated with ER- BC, 
leads to altered expression of TNFSF10 and subsequent 
IFN-β-induced apoptosis, suggesting that the signal from 
TNFSF10 at the 3q26.21 locus may play a role in BC risk 
through immune defense mechanisms. However, since 
our study identified several other tissues including vis-
ceral adipose, EBV-transformed lymphocytes, and whole 
blood that had PIPs of 0.949 when fine-mapping eQTLs 
for TNFSF10; we suggest further research is warranted to 
explore the effects of TNFSF10 expression on ER- BC risk 
in these additional tissues. Overall, this study’s identifica-
tion of many subtype-specific TWAS genes, in combina-
tion with the minimal overlap in genes identified for each 
subtype, supports the notion that the genetic etiologies of 
these two breast cancer subtypes are mostly distinct.

In our study, we discovered several genes including 
CHEK2 and TP53 that have historically been thought to 
contribute to breast cancer risk through rare, moderately 
or highly penetrant mutations and have thus far not been 
identified in other TWAS. CHEK2 is an enzyme involved 

in apoptosis in response to double stranded DNA dam-
age [59] that was associated only with ER + BC in both 
our expression- and splicing-based TWAS. Protein-
truncating or rare missense variants in coding regions of 
CHEK2, especially 1100delC (rs555607708), have been 
previously reported to have moderate penetrance for 
overall breast cancer risk and ER + breast cancer in famil-
ial studies [60] and population based studies [61–63]. We 
noted that the 12 SNPs used to predict CHEK2 expres-
sion across the 11 tissues had little to no correlation with 
rs555607708 (r2 < 0.009), as well as with the other 18 
reported GWAS index SNPs at the 22q12.1-q12.2 locus 
(Table S6 in Additional file 1) in the NHGRI-EBI GWAS 
Catalog [46]. Also these GWAS index SNPs remained 
statistically significant after adjusting for eQTL/sQTL 
of nearby genes including CHEK2 (Table S3 in Addi-
tional file 1). Together, the discovery of CHEK2 in our 
ER + TWAS, alongside the lack of overlap and correla-
tion between SNPs used in expression prediction models 
and GWAS index variants, suggest that common variants 
which modulate CHEK2 expression likely play a role in 
breast cancer risk, and these common variants are etio-
logically distinct from those identified in previous GWAS 
studies. These findings strongly support the notion that 
there may be a previously unidentified, polygenic basis by 
which CHEK2 expression contributes to the risk of devel-
oping ER + breast cancer.

While rare protein-truncating and missense muta-
tions in TP53 have been shown to exhibit moderate to 
high penetrance for both ER + and ER- breast cancer, 
they have only been implicated in prior GWAS but not 
TWAS studies of breast cancer [14, 38, 61, 63]. Even 
though TP53 has been recognized as the most common 
somatically mutated gene in ER- breast tumors [64], our 
expression-based TWASs of ER- breast cancer for the 
joint analysis of 11 tissues as well as breast tissue alone 
were the first TWAS to identify TP53. In addition, the 
PIP of 0.87 in breast and 0.87 in cultured fibroblasts for 
TP53 were relatively high, which are corroborated by 
numerous experimental studies showing that the expres-
sion of TP53 in these two tissues impacts breast cancer 
etiology [65, 66]. Moreover, the model SNP rs78378222 
which was used to predict overall TP53 expression, as 
well as of excised introns, across breast and several other 
tissues has been previously reported to associate with 
breast cancer risk [67]. These findings indicate that while 
missense and protein-truncating variants in TP53 have 
historically been observed to impact breast cancer risk, 
common variants which modulate TP53 expression can 
additionally contribute to the development of ER- breast 
cancer.

Our study identified 26 genes that were associated with 
both ER- and ER + subtypes, including TERT and TOX3 
which have not been reported in prior TWAS studies; 
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both genes were identified using our expression-based 
approaches. Though TERT has been primarily regarded 
as an ER- gene since several GWAS variants in TERT 
have been associated with ER- BC [16, 68], our study 
shown that the predicted expression of TERT was also 
significantly associated with ER + breast cancer risk. As 
these TWAS signals for both subtypes were no longer 
significant in our COJO analysis, the observed signals 
may be explained by nearby GWAS index SNPs. On the 
other hand, TOX3 has generally been regarded as a gene 
associated with ER + breast cancer since higher mRNA 
and protein expression of TOX3 have been observed 
in ER + BC cell lines compared to ER- cell lines, as well 
as larger SNP effect sizes for the risk of developing 
ER + compared to ER- BC [69–71]. We additionally dis-
covered TOX3 expression significantly associated with 
ER- BC in our study. For both ER+/- BC, TOX3 had a 
PIP of 1 in breast mammary tissue, supporting the notion 
that TOX3 causally impacts breast cancer etiology.

While our study was robust in replicating many pre-
viously identified susceptibility loci, our approach had 
several limitations. First, even though our splicing-based 
TWAS allowed us to combine the p-values for the asso-
ciations between different intron excision events, this 
method does not explicitly account for the direction 
of association between each intron excision event and 
BC risk. Future work into refining the splicing-based 
approach to account for directionality prior to combin-
ing p-values from alternatively spliced transcripts may 
help increase the power to detect breast cancer associ-
ated genes. Additionally, given that our study incorpo-
rated a meta-analysis and predictive expression models 
that both utilized primarily individuals with European 
ancestry, our findings may not be portable to individuals 
with non-European ancestral backgrounds. It has been 
shown that molecular subtypes, gene expression, and 
germline/somatic variants in breast cancer patients differ 
significantly between racial groups [72], and it is impera-
tive that future TWAS studies include individuals with 
diverse ancestral backgrounds.

Conclusions
In summary, our study identified many genes that are 
associated with ER + and ER- BC that have not been pre-
viously identified in TWAS by utilizing two joint-tissue 
TWAS approaches. More importantly, most of the genes 
for ER + and ER- breast cancer are distinct. We also dis-
covered one novel loci for ER + BC. Interestingly, though 
several breast cancer susceptibility genes including TP53 
and CHEK2 have been historically thought to play a role 
in breast cancer through rare, highly penetrant muta-
tions in coding regions, our study provides evidence that 
common variants in these genes which modulate expres-
sion also impact breast cancer etiology. Taken together, 

utilizing a comprehensive combination of expres-
sion- and splicing-based methods can help improve our 
understanding of breast cancer genetics. Functional char-
acterization of these candidate genes, in particular genes 
significant in the fine-mapping analysis, could shed some 
light on the etiology of ER + and ER- breast cancer as well 
as provide targets for treatment of breast cancer. eQTLs 
and sQTLs that are associated with expression of these 
candidate genes may be used in building polygenic risk 
prediction models to assess ER + and ER- breast cancer 
risk separately and to guide risk-adaptive breast cancer 
screening.
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