
Castresana‑Aguirre et al. 
Breast Cancer Research           (2024) 26:38  
https://doi.org/10.1186/s13058‑024‑01797‑7

RESEARCH

Clinically relevant gene signatures provide 
independent prognostic information in older 
breast cancer patients
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Linda S. Lindström1,2 and Nicholas P. Tobin1,2* 

Abstract 

Background The clinical utility of gene signatures in older breast cancer patients remains unclear. We aimed 
to determine signature prognostic capacity in this patient subgroup.

Methods Research versions of the genomic grade index (GGI), 70‑gene, recurrence score (RS), cell cycle score (CCS), 
PAM50 risk‑of‑recurrence proliferation (ROR‑P), and PAM50 signatures were applied to 39 breast cancer datasets 
(N = 9583). After filtering on age ≥ 70 years, and the presence of estrogen receptor (ER) and survival data, 871 patients 
remained. Signature prognostic capacity was tested in all (n = 871), ER‑positive/lymph node‑positive (ER + /LN + , 
n = 335) and ER‑positive/lymph node‑negative (ER + /LN−, n = 374) patients using Kaplan–Meier and multivariable 
Cox‑proportional hazard (PH) modelling.

Results All signatures were statistically significant in Kaplan–Meier analysis of all patients (Log‑rank P < 0.001). This 
significance remained in multivariable analysis (Cox‑PH, P ≤ 0.05). In ER + /LN + patients all signatures except PAM50 
were significant in Kaplan–Meier analysis (Log‑rank P ≤ 0.05) and remained so in multivariable analysis (Cox‑PH, 
P ≤ 0.05). In ER + /LN− patients all except RS were significant in Kaplan–Meier analysis (Log‑rank P ≤ 0.05) but only the 
70‑gene, CCS, ROR‑P, and PAM50 signatures remained so in multivariable analysis (Cox‑PH, P ≤ 0.05).

Conclusions We found that gene signatures provide prognostic information in survival analyses of all, ER + /LN + and 
ER + /LN‑ older (≥ 70 years) breast cancer patients, suggesting a potential role in aiding treatment decisions in older 
patients.

Background
Human life expectancy is predicted to increase glob-
ally by 4.4 years for both men and women in the coming 
two decades [1]. This will result in a larger population of 
older adults and as cancer is generally a disease of aging, 
it is estimated that 60% of newly diagnosed cancers in 
2035 will come from adults aged 65 + [2]. Older cancer 
patients are however typically underrepresented in clini-
cal trials [3–6] and may also be undertreated relative to 
younger patient populations [7, 8]. This implies that there 
is a lack of data on whether the tools used to guide treat-
ment decisions in younger (< 70  years) cancer patients 
are also applicable to older patient populations.
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Treatment decisions in early breast cancer are based on 
tumour size, lymph node involvement, stage and prog-
nostic and predictive biomarkers including the estrogen, 
progesterone and human epithelial growth factor 2 recep-
tors (ER, PR and HER2) and expression of the prolifera-
tion marker Ki67 [9]. A patient’s age is also recommended 
to be taken into consideration under the provision that it 
should not be used as a reason to withhold specific treat-
ments [9]. This is in line with data from the Early Breast 
Cancer Trialists Collaborative Group (EBTCG) showing 
that the relative benefit from chemotherapy is independ-
ent of age [10], and international treatment guidelines for 
older breast cancer patients (> 70 years) which state that 
endocrine treatment should be offered to postmenopau-
sal women irrespective of age [11]. It is important to note 
however that treatments should only be offered after an 
initial screening assessment for frailty [11].

In addition to routine pathological staging and clini-
cal biomarkers, recent years have also seen an increase 
in the use of multigene signatures to aid in risk stratifi-
cation of early breast cancer patients. The signature field 
is most mature in breast cancer with the 21-gene recur-
rence score (RS) and 70-gene signatures demonstrating 
prognostic capacity in large scale randomized clinical 
trials [12–14]. Moreover, these signatures along with oth-
ers can be used to guide treatment decisions primarily in 
postmenopausal early breast cancer patients with node 
negative or positive (1–3 nodes) invasive tumours [15]. 
The use of gene signatures in older breast cancer patients 
remains controversial however as there is currently insuf-
ficient evidence to support their use [11]. As such, we 
aimed to perform the first comprehensive comparison of 
the additional prognostic capacity of clinically relevant 
breast cancer gene signatures beyond that of routine bio-
markers in a single older breast cancer cohort. Specifi-
cally, we apply the genomic grade index (GGI), 70-gene, 
21-gene recurrence score (RS), cell cycle score (CCS), 
PAM50 Risk of Recurrence score—Proliferation (ROR-
P), and PAM50 signatures to 39 open access breast can-
cer datasets with a combined total of 871 patients aged 
70 years or older.

Methods
Cohort description
The data for this study was extracted from the R pack-
age MetaGxBreast [16], a gene expression database of 
39 open access breast cancer datasets with manually-
curated and standardized clinical, pathological, survival, 
and treatment metadata for breast cancer totalling 9583 
patients. After first selecting patients who were aged 
70  years or older (n = 1399), samples were subsequently 
excluded on the basis of: lacking information on ER sta-
tus (n = 62), lacking survival information (n = 323), or 

insufficient coverage of gene signature genes (n = 143, 
further described below), 871 patients remained in total 
(see CONSORT diagram in Fig. 1). We further stratified 
these patients into clinically relevant subgroups of ER + /
LN + (N = 335) and ER + /LN− (N = 374) to analyse the 
prognostic capacity of gene signatures taking ER and 
lymph node statuses into account. Information regard-
ing the number of positive lymph nodes was not avail-
able. Importantly, in this study we define older patients 
as those over the age of 69  years, in line with previous 
publications [17–21] and randomized clinical trials[22, 
23]. In order to compare older patients to a younger post-
menopausal breast cancer patient population we also 
selected ER + /LN− patients between 55 and 65 years of 
age (N = 478, labelled as “55–65” in subsequent analyses). 
This 5-year gap between 65 and 70 years was selected to 
have a clear separation by age and the 10  year interval 
was chosen in order to obtain a large enough cohort for 
comparison.

Gene expression signatures
Research versions of the Genomic Grade Index (GGI) 
[24], 70 gene [25], 21-gene recurrence score (RS) [26], 
Cell Cycle Score (CCS) [27]), PAM50 Risk of Recurrence 
score—Proliferation (ROR-P), and Prediction Analysis of 
Microarray 50 (PAM50) [28], were applied on an individ-
ual dataset basis to each of the 39 MetaGxBreast studies 

Fig. 1 Consort diagram of older breast cancer patient selection 
from the 39 datasets in the MetaGxBreast database. Patients were 
excluded owing to lacking information on ER, being under the age 
of 70 years old, lacking survival information or having insufficient 
coverage of gene signature genes. * See methods for a full 
description



Page 3 of 11Castresana‑Aguirre et al. Breast Cancer Research           (2024) 26:38  

as described in the original publications. Signature classi-
fications were subsequently pooled with clinical data for 
statistical analysis. For GGI, tumour grade was not avail-
able for all patients (missing in 38%), as such, we used a 
variation of the tool to compute the tumour grade [29] 
and then ran the conventional research version of GGI. 
The original RS signature cutoffs (Low < 18, Intermedi-
ate 18–31, High > 31) were used throughout the study, 
however the updated cutoffs from the TAILORx clini-
cal trial (Low < 10, Intermediate 11–25, High > 26) were 
also assessed for the sake of completeness, as specified in 
the results section. PAM50 and ROR-P work most accu-
rately if the dataset is ER status-balanced [30], however 
population based breast cancer datasets have a higher 
proportion of ER + tumours (as this tumour type is more 
common). To address this skew in the MetaGxBreast 
studies (ER proportions shown in Additional file 1: Sup-
plementary Table  1) we used Monte Carlo sampling to 
have equal proportions of ER + and ER− patients per 
dataset. Specifically, we compute the frequencies of 
ER + and ER-patients and then subsampled patients from 
the predominant group to ensure that the frequencies of 
ER + and ER− cases were equal within datasets. This bal-
ancing process involved conducting 100 subsamples for 
each dataset, thereby facilitating the computation of the 
median expression levels of the probes for data centering. 
This methodology has been previously applied by us and 
others [31–33] and full code to reproduce our signature 
calls and statistical analyses can be found in the follow-
ing code repository (https:// bitbu cket. org/ tobin group/ 
elder ly). The gene signatures were chosen owing to their 
relevance in randomized clinical trials such as MIND-
ACT [13], ASTER70 [22], TAILORX [34] and also in real 
world evaluation [35]. This article was performed and is 
reported in accordance with REMARK guidelines [36].

Gene expression and gene mapping
Gene expression data extracted from MetaGxBreast 
comes pre-processed and normalized, a detailed descrip-
tion of this can be found in the original publication [16]. 
Probe to gene mapping was achieved by merging anno-
tation sources from MetaGxBreast, supplementary 
files from the original signature publications and Bio-
conductor 3.15 in R. Probes mapping to the same gene 
were combined by averaging their expression values. 
MetaGxBreast combines datasets from different gene 
expression array platforms, the majority of which are 
Affymetrix. This means that all genes are not found in 
all datasets. The 70-gene signature is derived on an Agi-
lent array platform, and approximately 75% of the sig-
nature’s genes are mappable to the Affymetrix platform. 
For this reason, we excluded datasets if less than 75% of 
the 70-gene signature probes were present and similarly 

if any non-reference genes for the RS were absent. Con-
sequently, the median gene coverage for GGI was 100%, 
100% for PAM50, 91% for the 70-gene signature, 100% for 
RS, and 96% for CCS.

Statistical analysis
Kaplan–Meier and multivariable Cox proportional haz-
ard analyses were used to assess older patient survival 
in the context of gene expression signature subgroups. 
We used the R package survminer version 0.4.9 for 
Kaplan–Meier and the R package survival version 3.4–0 
for multivariable Cox proportional hazard analyses. The 
latter was adjusted for ER status, lymph node status, 
tumour grade, tumour size and whether the patients had 
received hormonal therapy or not. We did not adjust for 
treatment with chemotherapy as few patients received 
it (N = 50). These methodologies were applied to All 
patients as well the subgroups of ER + /LN+ and ER + /
LN – patients. Subgroups were adjusted for tumour size, 
grade, and hormonal therapy only. The clinical endpoint 
used was Recurrence Free Survival (RFS) defined as the 
time from date of curative surgery to the time recurrence 
(distant metastatic events and loco-regional recurrences). 
RFS was censored at 10 years and the median follow-up 
time was 6.2 years. MetaGxBreast does not provide RFS 
data for METABRIC, so this information was instead 
extracted from the supplementary data of Rueda et  al. 
[37]. The likelihood ratio (LR) and the concordance index 
(c-index) were computed using univariable models as a 
measure of signature prognostic capacity. In general, the 
LR is a useful metric for comparing variables with differ-
ing numbers of subgroups (e.g. GGI has two subgroups 
and PAM50 has five) as it provides a single overall value 
alongside a χ2 test statistic. It has been previously used by 
us and others for head to head signature and immunohis-
tochemical biomarker comparisons [27, 33, 38, 39]. For 
determination of the additional prognostic capacity of 
signatures beyond clinico-pathological markers we calcu-
lated the delta likelihood ratio (∆LR), by comparing the 
LR of a multivariable model that included the adjustment 
variables noted above with and without the gene expres-
sion signature. This allows us to explicitly quantify the 
prognostic capacity of the models when gene signatures 
are included and more directly compare the prognostic 
value of each signature. To assess if there was any statis-
tical difference in the classification of patients by gene 
signatures between younger postmenopausal patients 
(between 55 and 65 years of age) and older patients, we 
performed Chi-squared tests. Tests used are indicated in 
table legends. All statistical tests were two-sided and a 
significance level ⍺ of 5% was used. All statistical analyses 
were performed using R statistical software version 4.1.2.

https://bitbucket.org/tobingroup/elderly
https://bitbucket.org/tobingroup/elderly
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Results
Cohort clinico‑pathological characteristics and gene 
signature distribution
To assess the prognostic capacity of gene expression sig-
natures in older (≥ 70  years) breast cancer patients, we 
applied research versions of the GGI, 70 gene, RS, CCS, 
ROR-P, and PAM50 signatures to expression array data 
from 39 open access breast cancer datasets individually. 
Signature classifications and clinico-pathological vari-
ables were then merged into a single dataset. After limit-
ing the cohort to an older population only and filtering on 
the basis of exclusion criteria (see methods), 871 patients 
remained (CONSORT diagram, Fig. 1). The median age 
of these patients was 75 years old (range 70–96) and as 
expected, a decrease in age frequency is readily appar-
ent as patients tend towards the upper age range (Addi-
tional file 2: Supplementary Fig. 1). Clinico-pathological 
characteristics for these patients are shown in Table  1. 
The majority of patients were ER-positive (87%), PR-
positive (47%) and HER2-negative (65%, Table 1, PR and 
HER2 status unknown in 23 and 27% of patients, respec-
tively). Half of all patients were negative for lymph node 
metastases and the majority of tumours were of larger 
size (69% ≥ 2 cm) and intermediate or high grade (81%). 
57% of patients received hormonal therapy but few 
received chemotherapy (< 6%), as anticipated given that 
many of the datasets used in this study are from cohorts 
assembled before the 2000s where treatments were less 
standardized. The number of patients categorized into 
subgroups on the basis of gene expression signatures 
is shown in Additional file  3: Supplementary Table  2. 
Binary signatures demonstrated an approximate even 
split into grouping patients into low and high-risk groups 
(see GGI and 70-gene, Additional file  3: Supplementary 
Table 2). No common pattern of sample distribution was 
noted for signatures with three levels (RS, CCS and ROR-
P) but PAM50 classified 80% of patients into luminal A 
or B subtypes, in line with the high level of ER-positive 
patients in the cohort.

Gene signatures provide independent prognostic 
information for older breast cancer patients
We next assessed the prognostic capacity of the GGI, 
70-gene, RS, CCS, ROR-P, and PAM50 gene signatures 
in All (N = 871), ER + /LN + (N = 335), and ER + /LN− 
patients (N = 374) using Kaplan–Meier analysis. All sig-
natures provided prognostic information in All patients 
(log-rank test, P < 0.05, Fig.  2). In the ER + /LN + sub-
group, all signatures except PAM50 were statistically 
significant (log-rank test, P < 0.05, Additional file  2: 
Supplementary Fig.  2). In the ER + /LN— subgroup, 
the GGI, 70-gene, CCS, ROR-P and PAM50 signatures 

were statistically significant (log-rank test, P < 0.05, 
Additional file 2: Supplementary Fig. 3) with a non-sig-
nificant trend observed for RS (log-rank test, P = 0.068, 
Additional file  2: Supplementary Fig.  3). In general, 
statistically significant gene signatures remained so in 
multivariable Cox proportional hazards analyses  in All 
and ER + /LN + subgroups after adjusting for tumour 
size, tumour grade, ER status, lymph node status, and 
whether the patient received hormonal therapy or not 
(Cox proportional hazards modeling, P < 0.05 vs. signa-
ture reference group. Table  2). In ER + /LN− patients 
however, only the 70-gene, CCS, ROR-P and PAM50 
signatures remained statistically significant in the same 
analysis (Table 2). Of note, we also analyzed ER + /LN−/

Table 1 Clinico‑pathological characteristics of the older breast 
cancer cohort

All patients (N = 871)

Number Percent

Primary tumour characteristics

Estrogen receptor status

 Positive 760 87.3

 Negative 111 12.7

Progesterone receptor status

 Positive 410 47.1

 Negative 265 30.4

 Unknown 196 22.5

HER2

 Positive 71 8.2

 Negative 566 64.9

 Unknown 234 26.9

Nodal status

 Negative 441 50.6

 Positive 366 42.1

 Unknown 64 7.3

Elston‑Ellis tumour grade

 1 96 11.0

 2 387 44.4

 3 323 37.1

 Unknown 65 7.5

Tumour size (cm)

 < 2 212 24.3

≥ 2 604 69.3

 Unknown 55 6.4

Treatment

 Chemotherapy 34 3.9

 Hormonal therapy 482 55.3

 Chemo + hormonal Therapy 16 1.8

 Untreated 264 30.4

 Unknown 75 8.6
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Fig. 2 Kaplan–Meier analysis of gene expression signatures in All patients of the older cohort. a Genomic Grade Index (GGI) b 70‑gene c recurrence 
score (RS) d cell‑cycle score (CCS) e PAM50 risk of recurrence score—proliferation (ROR‑P) f prediction analysis of microarray 50 (PAM50)
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HER2− patients and  observed similar trends (Addi-
tional file  3: Supplementary Table  3) as for ER + /LN− 
patients but only the 70-gene signature and PAM50 
showed statistically significant independent prognos-
tic information (P = 0.02 for 70-gene high vs. low risk 
and P = 0.002 for PAM50 Her2-enriched vs Luminal A). 
We also applied Likelihood ratio statistics to assess the 
additional prognostic capacity of signatures beyond the 
routine clinico-pathological markers ER, lymph node 
status, tumour grade, tumour size and hormonal ther-
apy received or not. This allows for a more direct com-
parison of signature prognostic capacity relative to each 
other. The largest ∆LRs were found for the RS, CCS and 
ROR-P signatures in All (∆LR = 14.11, 16.97, and 15.38) 
and ER + /LN + (∆LR = 13.6, 13.2 and 15.82) patients, 
respectively (LR−test, P < 0.01, Additional file  3: Sup-
plementary Table  4). Lower ∆LRs were found for sig-
natures in ER + /LN− patients where only the 70 gene 
and CCS remained statistically significant (∆LR = 6.18 
and 6.47 for the 70 gene and CCS signatures respec-
tively, LR-test, P < 0.05, Additional file  3: Supplemen-
tary Table 4).

Differences in signature risk stratification in comparison 
to a younger postmenopausal patient cohort
The clinical utility of gene signatures is most frequently 
discussed in relation to ER + /LN− postmenopausal 
breast cancer patients, however in our analysis all sig-
natures showed reduced prognostic capacity (∆LR) in 
this patient subgroup. To understand if there are differ-
ences in signature prognostic capacity between an older 
ER + /LN− patient cohort and a younger postmeno-
pausal ER + /LN− cohort, we ran the same analyses but 
this time selecting ER + /LN− patients between 55 and 
65  years old (N = 478). Patient characteristics for this 
subgroup are shown in Additional file  3: Supplemen-
tary Table  5. We found that all gene signatures except 
PAM50 provided independent prognostic information 
in ER + /LN− patients aged 55–65 years old (Additional 
file  3: Supplementary Table  6) and that the additional 
prognostic capacity of signatures beyond routine clin-
ico-pathological markers were in general higher in this 
younger subgroup relative to older (≥ 70  years) ER + /
LN− breast cancer patients (55–65 vs > 70, ∆LR; GGI: 
6.23 vs 1.43; 70-gene: 10.11 vs 6.18; RS: 6.59 vs 1.84; CCS: 
8.93 vs 6.47; ROR-P: 12.02 vs 5.25; PAM50: 4.58 vs 7.89, 
Additional file 3: Supplementary Tables 4 and 6). Of note, 
we also tested the TAILORx RS cutoffs in the same sub-
groups (55–65 and > 70 ER + /LN− patients) but found it 
to perform worse than the original RS cutoffs—it did not 
provide independent prognostic information in either 
subgroup (data not shown).

To assess whether the generally higher LRs in 
55–65  year olds could be owing to a difference in sig-
nature risk stratification (assignment of tumours into 
signature subgroups) we also compared signature sub-
group composition between older and younger ER + /
LN− patients. We found that only the ROR-P signa-
ture showed a statistically significant difference in risk 
stratification between these two groups (Chi-square 
test, P = 0.02, Additional file  3: Supplementary Table  7). 
This suggests that the difference in signature prognostic 
capacity between older and younger patients is unlikely 
to be related to signature stratification and may point to a 
need for re-optimization of signatures and their prognos-
tic cutoffs in older breast cancer populations.

Discussion
In this study we assessed the prognostic capacity of six 
gene expression signatures in a cohort of 871 older 
(≥ 70  years) breast cancer patients. We found that all 
gene signatures provided independent prognostic infor-
mation in All patients. In ER + /LN + patients all but 
PAM50 provided independent prognostic information 
while in ER + /LN− patients the 70-gene, CCS, ROR-P 
and PAM50 signatures remained statistically significant 
after adjusting for routine clinico-pathological variables. 
LR statistics showed lower additional prognostic capac-
ity of signatures beyond these routine variables in ER + /
LN− patients relative to All and ER + /LN + patients. Fur-
ther comparison of older ER + /LN− patients to a post-
menopausal ER + /LN− cohort of younger age (55–65) 
showed higher signature ∆LR values in the younger 
cohort despite similar signature subgroup stratification in 
both groups.

This is the first comprehensive study comparing the 
prognostic performance of multiple clinically relevant 
gene expression signatures in a single older breast can-
cer patient cohort, adjusting for clinco-pathological 
tumour and patient characteristics. Two studies have, 
however, focused on the prognostic or treatment pre-
dictive capacity of individual signatures in older breast 
cancer patients. In the first, the ASTER 70 s randomized 
phase III clinical trial demonstrated that GGI is prognos-
tic in older (≥ 70 years) breast cancer patients [40] with 
a similar age range to our study. The trial did not how-
ever find a statistically significant overall survival benefit 
with the addition of chemotherapy to endocrine therapy 
after surgery in ER + /HER2− patients whose tumours 
were classified as GGI high (GG3) [40]. In the second, 
Noordhoek et  al. found that patients with high clinical 
risk based on the St. Gallen risk classification, but clas-
sified as ultra-low risk by the 70-gene signature, had 
excellent prognosis [41] in a study of 418 older patients 
above 70 years old (median age 78). Other studies whilst 
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not focusing on prognosis or treatment predictive value, 
do provide some indications that gene signatures may be 
useful in older patients. A recent study of the 70-gene 
signature in 89 older patients showed no statistical dif-
ference in the proportion of patients classified into low 
and high-risk groups when compared to the MINDACT 
clinical trial implying that this signature could also be 
applied to older breast cancer patients [42]. Regarding 
RS, Iles et al. showed a decline in its usage with increas-
ing age and a higher prevalence of low-risk classifications 
in patients above 70  years old [43]. ER + /LN−/HER2− 
patients derive low or no benefit from chemotherapy 
if a tumour is classified as RS low [34] and in line with 
this, Barni et al. found a 38% relative reduction of chem-
otherapy usage in 230 older patients on the basis of RS 
[44]. Whilst the above studies focus on de-escalation, age 
alone should not be a contraindication for chemotherapy 
usage [45–47]. This implies that running gene signatures 
on older breast cancer patients could also identify those 
who would benefit from chemotherapy treatment but 
may not in the past have been treated owing to advanced 
age. RS has proved useful for escalation of chemotherapy 
in older patients, with a treatment decision change of 
18.6% mainly from no-chemotherapy to chemotherapy in 
a cohort of 237 patients [48]. Interestingly, in our study 
gene expression signatures classified between 25 and 53% 
of all tumours into high-risk groups however, only 6% of 
the patients received chemotherapy, none of whom were 
ER + /LN−.

Breast cancer clinical oncology guidelines support the 
use of the 70-gene (commercially MammaPrint) and RS 
(OncotypeDx) signatures to guide endocrine or chemo-
therapy treatment decisions in postmenopausal ER + /
LN−/HER2− patients (or with 1–3 positive lymph nodes) 
and PAM50 (Prosigna) in postmenopausal ER + /LN−/
HER2- patients [9, 15]. In our study, the 70-gene and 
PAM50 signatures provided independent prognostic 
information in ER + /LN− older patients (N = 374) and 
showed similar trends in ER + /LN−/HER2— patients 
(P ≤ 0.05, N = 222). However, we did note that the addi-
tional prognostic capacity of signatures beyond routine 
clinico-pathological markers was reduced in our older 
ER + /LN− patient cohort relative to those aged 55–65. 
The reason for this is not readily apparent but one poten-
tial concern is that the cutoffs for signature classification 
into prognostic groups were optimized on a younger 
patient population and may need to be re-optimised/
changed for application to an older cohort. Related to 
this, Jezequel et  al. noted a difference in the propor-
tions of patients classified into good/poor prognosis 
groups by GGI, 70-gene and RS when comparing the age 
groups ≤ 40, 40–70, and ≥ 70[49]. Similarly, Kruijf et  al. 
found differences in PAM50 subtype proportions and 

weaker signature prognostic capacity in older patients 
(≥ 65) when compared to a younger (< 65) patient popu-
lation [50]. In addition, an increase in the proportion of 
tumours classified as luminal subtypes and a decrease 
in basal-like subtypes has also been previously reported 
in older patients [49–51]. Taken together, these stud-
ies imply that biomarkers and cutpoints used in younger 
postmenopausal breast cancer population might not 
be directly transferable to older patients without modi-
fication. In the current study only the ROR-P signa-
tures showed a statistically significant difference in risk 
stratification when comparing older vs. younger post-
menopausal patients (Additional file  3: Supplementary 
Table 7), but non-significant trends were noted for GGI 
and PAM50. As such these differences are unlikely to 
explain the reduced additional prognostic capacity of sig-
natures in ER + /LN− older patients and this reduction 
could be owing to a difference in the biology of tumours 
from older populations. This is also supported by one 
study showing that luminal B tumours from patients over 
the age of 70 years were less aggressive than those from 
younger age groups and that this was related to differ-
ences in pathways for iron metabolism, mitochondrial 
oxidative phosphorylation and reactive stroma [49].

The strengths of our study are as follows. First, we 
provide a comprehensive analysis of the prognos-
tic capacity of six gene expression signatures in an 
older breast cancer patient cohort with a median age 
of 75.4 years old (52% of patients were over the age of 
75). This is notable as no patients above the age of 75 
were included in the TAILORx or MINDACT clinical 
trials and only 12% of patients were above 70 years old 
in the RxPONDER trial [14], despite 30% of the breast 
cancer diagnosis occurring in patients above 70 [52]. 
Second, we assess the additional prognostic capacity 
of these signatures beyond routine clinico-pathologi-
cal biomarkers—something that is currently lacking in 
published literature. There are also some limitations to 
this study. First, no clear definition of what constitutes 
a patient as “older” is routinely applied in a clinical set-
ting. Even though we defined this as patients ≥ 70 years 
of age, the usage of chronological age may ignore the 
diverse ways that time affects individuals. Since cancer 
is a disease of aging [53], a better definition of older 
could be obtained using the biological age which takes 
multiple biological and physiological developmental 
factors including genetics, lifestyle, diet and comorbidi-
ties [54]. Related to this, a second limitation is that we 
did not adjust our analyses for patient frailty which is 
known to negatively impact prognosis [55], owing to 
no data on this being available for this metric. Third, 
clinical survival endpoints were not identical across 
the 39 independent datasets we assessed; therefore, we 
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combined two different end points (RFS and DMFS) 
into a single survival metric. Of note, we chose not to 
use an overall survival (OS) endpoint owing to poten-
tial competing causes of death. Fourth, we relied on 
the research versions of gene-expression signatures in 
place of their commercial implementations, fifth, we 
lack patient numbers to assess the treatment predictive 
value of these signature and sixth the CCS risk stratifi-
cation cutoffs were derived from the METABRIC data-
set which is included in our study. Whilst we have never 
optimized the CCS cutoffs for prognostic capacity, 
there is still the potential for an overfit bias that could 
possibly impact our results for this signature only.

In conclusion, we show that gene expression signa-
tures provide independent prognostic information in All, 
ER + /LN + and ER + /LN− patients who are over the age 
of 70  years, supporting the rationale of the ASTER70s 
clinical trial. These results suggest a potential role for 
gene expression signatures in aiding treatment decisions 
in older breast cancer patients and indicate that further 
investigation is warranted in prospective clinical study to 
elucidate their treatment predictive value.
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