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Abstract 

Background The wide heterogeneity in the appearance of breast lesions and normal breast structures can confuse 
computerized detection algorithms. Our purpose was therefore to develop a Lesion Highlighter (LH) that can improve 
the performance of computer-aided detection algorithms for detecting breast cancer on screening mammograms.

Methods We hypothesized that a Cycle-GAN based Lesion Remover (LR) could act as an LH, which can improve 
the performance of lesion detection algorithms. We used 10,310 screening mammograms from 4,832 women 
that included 4,942 recalled lesions (BI-RADS 0) and 5,368 normal results (BI-RADS 1). We divided the data-
set into Train:Validate:Test folds with the ratios of 0.64:0.16:0.2. We segmented image patches (400 × 400 pixels) 
from either lesions marked by MQSA radiologists or normal tissue in mammograms. We trained a Cycle-GAN 
to develop two GANs, where each GAN transferred the style of one image to another. We refer to the GAN transferring 
the style of a lesion to normal breast tissue as the LR. We then highlighted the lesion by color-fusing the mammogram 
after applying the LR to its original. Using ResNet18, DenseNet201, EfficientNetV2, and Vision Transformer as backbone 
architectures, we trained three deep networks for each architecture, one trained on lesion highlighted mammograms 
(Highlighted), another trained on the original mammograms (Baseline), and Highlighted and Baseline combined 
(Combined). We conducted ROC analysis for the three versions of each deep network on the test set.

Results The Combined version of all networks achieved AUCs ranging from 0.963 to 0.974 for identifying the image 
with a recalled lesion from a normal breast tissue image, which was statistically improved (p-value < 0.001) over their 
Baseline versions with AUCs that ranged from 0.914 to 0.967.

Conclusions Our results showed that a Cycle-GAN based LR is effective for enhancing lesion conspicuity and this can 
improve the performance of a detection algorithm.

Keywords Lesion highlight, Convolutional neural network, Cycle generative adversarial network, Computer-aided 
detection

Background
Breast lesions show a wide variation in size and shape 
and mammographically normal breast structure shows 
wide heterogeneity between women and often within 
the breast. This makes some lesions appear obvious on 
a mammogram, while others are subtle and difficult to 
detect for radiologists or detection algorithms. Spe-
cifically, breast lesions can be hidden by normal dense 
breast tissue and such breast cancers are often missed 
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by radiologists and algorithms. If one can highlight 
such subtle lesions, it can improve the performance of 
lesion detection algorithms. On the other hand, global 
image highlights may cause some normal breast tissue 
to appear as a possible breast lesion, increasing the false 
detection rate. If we can highlight the appearance of a 
breast lesion while keeping a normal breast tissue as it 
is, we can reduce unwanted false positive detections.

In this study, we propose to use a Cycle Genera-
tive Adversarial Network (Cycle-GAN) [1] to develop 
a lesion highlighter. Zhu et  al. [1] introduced Cycle-
GAN to solve image-to-image translation (I2I) prob-
lems. I2I is about transferring images from a source 
domain to a target domain, while preserving the con-
tents of the given images. I2I typically needs paired 
images, one from a source domain and another from 
a target domain. However, preparing paired images in 
both domains can be difficult, especially in the medi-
cal imaging field, as finding patients before and after a 
positive condition (e.g., cancer) is extremely difficult.

Unlike other algorithms for solving I2I (e.g., [2–4]), 
Cycle-GAN does not need paired datasets. If one has 
a mapping function of G:X → Y, such that G(X) and 
Y have similar characteristics, we can then define an 
inverse mapping F:Y → X, and a cycle consistency loss 
to keep F(G(X)) similar to X. Using this framework, 
Zhu et  al. showed that Cycle-GAN can learn charac-
teristics of two domains from unpaired image datasets 
and transfer the style of one domain to another and vice 
versa.

With properly curated image datasets from two differ-
ent but related domains, we can train a Cycle-GAN to 
transfer the style of one image domain to another. Specifi-
cally, if we prepare image datasets of normal breast tissue 
and those of breast lesions from mammograms, then we 
can teach a Cycle-GAN to be a breast lesion remover, i.e., 
making an image with a breast lesion appear as an image 
with only normal breast tissue. If we then contrast the 
lesion removed image with its original, we can highlight 
that lesion. Through this action, we can use the lesion 
remover as a lesion highlighter. Hence, we hypothesized 
that a Cycle-GAN based lesion remover can be used as a 
lesion highlighter, which can improve the performance of 
computer-aided detection (CADe) algorithms in screen-
ing mammograms.

Since its first appearance, there have been numer-
ous implementations and applications of Cycle-GAN on 
natural scene data (e.g., image to paint in various styles 
[1], human to robot [5], and even de-noising OCR images 
[6]). In the field of radiology, researchers have actively 
adopted Cycle-GAN to solve various tasks (diagnosis [7, 
8] and segmentation [9]) for different image types (e.g., 
MRI [9, 10], chest X-ray [7], and mammography [8]).

Cohen et  al. [10] showed that Cycle-GAN can add 
and remove a tumor in brain MRI images. Using the 
BRATS2013 synthetic MRI dataset [11, 12], they inves-
tigated how sampling bias in positive (with tumor) and 
negative (normal) data for training a Cycle-GAN could 
cause artifacts or hallucinations in GAN generated 
images. They prepared 1,700 MRI slices (50% with a brain 
tumor and another 50% without) for training and test-
ing a Cycle-GAN for I2I between two domains, Flair and 
T1 weighted images. They found that the trained Cycle-
GAN created unwanted artifacts (created a new tumor 
or removed existing tumors) in the resulting images, 
when there was a heavy sampling bias in the dataset, i.e., 
images with a specific condition (e.g., brain tumor) were 
dominant (90% or higher) in only one image domain.

Zhou et  al. [8] studied the adversarial attack of com-
puter-aided diagnosis (CADx) artificial intelligence (AI) 
algorithms in breast mammograms; how intentionally 
modifying the malignancy of breast lesions in mammo-
grams (benign to malignant and vice versa) could fool a 
CADx-AI. They first trained a VGG11 network [13] as 
their example CADx-AI with an area under the ROC 
curve (AUC) of 0.82 using a dataset of screening mam-
mograms with biopsy proven benign and malignant 
lesions from 1,284 women (918 women with benign 
lesions and 366 women with malignant lesions). They 
then built a Cycle-GAN to adversarially change the 
appearance of malignant lesions to benign lesions or 
vice versa. They found that the Cycle-GAN modified 
images easily fooled their CADx algorithm, resulting in 
an approximately 70% incorrect diagnoses on previously 
correct diagnoses by the same algorithm.

Note that the above two previous studies investigated 
the adversarial, unwanted, and unexpected effects of 
a Cycle-GAN on medical image analysis. Specifically, 
Cohen et  al. considered removing existing tumors or 
adding a new tumor as artifacts or hallucinations that 
one should avoid, especially when medical professionals 
(e.g., radiologists) read the resulting images for assessing 
a medical condition. Zhou et al. warned the community 
about the vulnerability of CADx-AI from adversarial or 
unwanted attacks by a Cycle-GAN, which should be pre-
vented and avoided by carefully inspecting the images 
used for training and testing them for the tasks of 
interest.

However, with proper curation of datasets and choice 
of tasks, Cycle-GAN can allow researchers to develop 
simulation tools that create and remove specific medi-
cal conditions, which could potentially improve many 
automated computer-aided algorithms in medicine. 
Specifically, we can develop lesion simulators and lesion 
removers by training a Cycle-GAN on two image data-
sets in two domains, one with a lesion and another with 
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normal tissue. For example, a lesion simulator could be 
used as an augmentation tool for improving the perfor-
mance of CADx and Computer-aided detection (CADe) 
algorithms for given tasks. In this study, we focused on 
the usage of a lesion remover for improving the detection 
performance of CADe algorithms in mammograms.

Methods
Dataset
Under an approved IRB protocol, we collected 10,310 
screening Full Field Digital Mammograms (FFDMs) 
from 4,832 women who visited the University of Pitts-
burgh Medical Center (UPMC) for routine breast cancer 
screening. The Selenia Dimension system (Hologic Inc, 
Marlborough, MA, USA) was used for all mammogram 
exams. We used four standard views including left–
right Cranio-Caudal (CC) and left–right Medio-obilque 
(MLO) for this study. The dataset included 4,942 mam-
mograms that showed a recalled lesion (BI-RADS 0) 
from 2,416 women and 5,368 mammograms randomly 
selected from exams with normal readings (BI-RADS 1) 
from 2,416 women. MQSA radiologists marked the loca-
tion of the lesion for the recalled cases. Note that we had 
the BI-RADS classification information at the time of 
the screening only. As a result, further details about the 
lesions, such as pathology (benign, malignant) and types 
(masses, calcifications), were not available at the time of 
the data acquisition.

To develop the lesion remover and test its potential as 
a lesion highlighther for improving the performance of 
the lesion detection algorithm, we divided our dataset 
into the development and independent testing, where 
the development set include 3,959 mammograms of 
1,909 women with recalled lesions and 4,263 mammo-
grams of 1,429 women with normal/healthy breasts, 
while the testset include 983 mammograms of 507 
women with recalled lesions and 1105 mammograms of 
987 women with normal and healthy breasts. We fur-
ther divided our development set into testing and vali-
dation with the ratio of 8:2.

Preprocessing
Using the lesion locations marked by MQSA radi-
ologists, we segmented the patches to a size of 400 
by 400 pixels (2.8 cm by 2.8 cm in size), including the 
recalled lesions for the cases. For normal controls, we 
segmented the same 400 by 400 pixel patch from the 
centroid of the breast area. We treated patches from 
the same woman, but different views (e.g., MLO and 
CC), as independent samples for the development data-
set (training and validation). For testing, we randomly 
selected only one image patch from each patient to pre-
vent possible data correlation between two different 
views of the same lesion. Figure 1 illustrates the above 
preprocessing process.

Fig. 1 Example lesion and normal patches. This figure illustrates how we extracted 400 by 400 pixel patches from mammograms. For the cases 
with recalled lesions, we segmented the patch including the lesion. For normal controls, we extracted the centroid of the breast area
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Cycle‑GAN
A Cycle-GAN consists of two generators, one for the 
mapping function G:X → Y and another for the mapping 
function F:Y → X, where X and Y are two different image 
domains. We set the dataset of normal patches as the 
source domain X, and recalled lesion patches as the tar-
get domain Y.

The loss function of the Cycle-GAN for this study is 
given as:

where  LGAN,  LCyc, and  LIdentity refer to the adversarial loss, 
the cycle-consistency loss, and the identity loss, respec-
tively. In addition, λ1 and λ2 are the weights that control 
the relative importance of  LCyc and  LIdentity compared to 
 LGAN.

With associated generator Gen, discriminator Dis, 
and images in two domains,  LGAN can be formulated as 
follow:

where Gen and Dis refer to generator and discrimina-
tor. x and y are samples from two image distributions X 
and Y. Gen and Dis are optimized adversarially, that is, 
minGenmaxDis LGAN (Gen,Dis,A,B) . In this study, we 
used G−DY and F−DX as Gen and Dis pairs, and X and Y 
as images in two different distributions/domains.

LCyc was introduced to ensure the consistency of style-
transferred images, i.e., images translated from X to Y, 
and then back again to X, should be similar to X and vice 
versa.  LCyc can be formulated as:

LIdentity is the loss that restricts the mapping within the 
same domain as nearly identical when providing the real 
samples from one domain to the corresponding genera-
tor (i.e., G:Y → Y and F:X → X). This loss preserves the 
original characteristics of the real samples after the gen-
erator.  LIdentity can be formulated as:

Lesion remover
Once the Cycle-GAN is trained, the two mapping func-
tions G and F can transfer the style from one domain to 

L(G, F ,DX ,DY ) = LGAN (G,DY ,X ,Y )+ LGAN (F ,DX ,Y ,X)
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another domain. As we used patches with normal tissue 
and with a recalled lesion as the images in two inde-
pendent domains, the generator with mapping function 
G will work as the lesion simulator by translating the 
normal patch to be similar to the lesion patch. Likewise, 
the generator with the mapping function F will work as 
the lesion remover by changing the style of the lesion 
patch to that of a normal patch. We refer to generator 
G as the lesion simulator and generator F as the lesion 
remover. Note that the focus of this paper is using the 
lesion remover as the lesion highlighter to improve the 
detection performance of CADe algorithms in mam-
mograms. Discussing the potential use of the lesion 
simulator is beyond the scope of this paper.

We optimized the Cycle-GAN using an Adam opti-
mizer [14] with a learning rate of 0.0002, and momen-
tum parameters of β1 = 0.5, β2 = 0.999. In addition, we 
set the maximum epoch as 100 and the weights for L1 
regularization, λ1 and λ2, as 10 and 0.5, and a mini-
batch size of 4. We used a random left–right vertical 
flip as data augmentation. We used a Nvidia Titan X 
GPU with a 12 GB memory for training the networks. 

Fig. 2 The lesion remover outcomes over the course of the training. 
Images in the first column show the patch with a recalled lesion 
for epochs 5, 50 and 100, and images in the second column are 
their corresponding output results. As the training epoch number 
increases, the lesion remover starts working as expected; the lesion 
remover removes or makes the existing lesion subtle
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Figure  2 shows the simulation results from the lesion 
remover over the course of the training.

Lesion remover as lesion highlighter
Once trained, the lesion remover can remove the exist-
ing lesion in a given mammogram. We hypothesized that 
one can combine an image with a lesion removed with its 
original to highlight the existing lesion, such that a CADe 
algorithm can detect the lesion better from the combined 
images than that from the original.

We used the color fusion scheme (imfuse in MAT-
LAB) to combine the lesion removed image with its 
original. The color fusion scheme we used colorizes the 
pixel value (green or magenta) if the image pixel values 
from two images were different, while retaining the gray 
value for those with the same pixel values. As the lesion 
remover should remove the lesion only, while keeping the 
other tissue intact, the resulting color fused image should 
highlight the lesion as shown in Fig. 3. Hence, the lesion 
remover can be used as a lesion highlighter if we com-
bine the lesion removed with its original.

Note that one may think the lesion remover is not 
effective on images with normal tissue, as it was trained 
to remove lesion-like appearances in a mammogram, 
which may create a false positive detection by falsely 

enhancing normal tissue. However, the Cycle-GAN has 
an identity loss to ensure the F(x) ≈ x and G(y) ≈ y as 
shown in Eq. (4), such that the generator F is unlikely to 
remove any lesion-like normal breast tissue.

We applied the above lesion highlighter scheme on 
both image patches with normal and recalled lesions. Fig-
ure 3 illustrates how we applied the lesion highlighter for 
improving computer-aided detection of lesions.

Lesion detector
We used various state-of-the-art deep learning archi-
tectures for image classification as our lesion detector 
to classify the given image patch as a recalled lesion or 
normal. We employed ResNet18 [15], DenseNet201 [16], 
EfficientNetV2 [17], and Vision Transformer (ViT) [18]. 
All the networks we used were pretrained on ImageNet 
[19].

We updated the last few layers of each ImageNet 
pretrained network to match our purpose; to classify 
the patch as a recalled lesion or not. We then used the 
images from the training set to train each network. 
We refer to these networks trained on original mam-
mogram patches as baseline. Likewise, we trained 
each network using the training set after the lesion 
highlighter was applied. We refer to these networks 

Fig. 3 Explanation of the Lesion Highlighter. This figure illustrates how we used the lesion remover as a lesion highlighter to increase the contrast 
of a given lesion to its background. The left side of this figure shows when the lesion highlighter was applied to a case that contains a lesion, 
while the right side of the figure shows a normal control image. The yellow arrow indicates the location of a recalled lesion. After applying the lesion 
remover on the given input image, we fused the image with its original to create a lesion highlighted image, as shown in the bottom left. Note 
that the lesion remover on the normal tissue kept the original characteristics intact such that there was no highlight shown in the resulting image 
on the bottom right
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as highlighted. We validated the networks after each 
training epoch using the validation set. As the input 
size of all networks was 224 by 224 pixels, we ran-
domly segmented 224 by 224 patches from the original 
patch images with 400 by 400 pixels. In addition, we 
employed random vertical and horizontal flips, random 
rotation with ± 30º, and random scales with ± 25%.

For training ResNet18 and DenseNet201, we used the 
MATLAB training environment. Specifically, we used 
the Adam optimizer [14] with an initial learning rate of 
0.001, a learning rate dropping factor of 0.1 for every 
10 epochs, and momentum parameters of β1 = 0.5, 
β2 = 0.999. In addition, we set the maximum epoch as 
50 and a minibatch size of 128. We also employed early 
stopping when the validation accuracy at each epoch 
dropped more than 5 times. For training EfficientNetV2 
and ViT, we used the Pytorch training environment [20] 
with a similar augmentation setup to that of MATLAB, 
except for the number of epochs for ViT, which we set 
to 100 epochs. We used a Nvidia Titan X GPU with a 
12 GB memory for training all networks.

Evaluation methods
We refer to the network trained solely on original mam-
mograms as baseline (or base), and those which trained on 
lesion highlighted mammograms as highlighted (or hi-lited). 
It is possible that mammograms before and after applying 
the lesion highlighter would provide different but comple-
mentary information for lesion detection. Therefore, we 
developed a logistic regression classifier to combine the diag-
nostic information between the baseline and the highlighted 
versions. Specifically, we trained the logistic regression 
classifier using the scores of both versions on the valida-
tion set. We then referred the resulting logistic regression 
classifier for each network that we considered as combined 
(or comb). Figure 4 illustrates how we constructed baseline, 
highlighted, and Combined lesion detectors for this study. 

We used the Area under the Receiver Operating Curve 
(AUC) for classifying a given patch as containing a lesion 
or not as our figure of merit. Note that our hypothesis 
is that the lesion highlighter would increase the AUC 
of a classifier in identifying patches containing a lesion. 
Hence, for each CNN architecture, we compared the 

Fig. 4 Explantion of lesion detectors. This figure illustrates how we train lesion detectors using the original and lesion highlighted lesions. We used 
four different deep network architectures including ResNet18, DenseNet201, EfficientNetV2, and Vision Transformer (ViT) as our lesion detector. 
For each detector, we built Baseline model using original patch, Highlighted model using highlighted patch, and Combined by combining the scores 
from Baseline and Highlighted using logistic regression
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performances of the highlighted and combined models 
over the baseline model using Delong’s method [21].

Results
Evaluation on the effectiveness of the lesion highlighter
Figure  5 and Table  1 show the ROC curves and their 
AUCs for Baseline, Highlighted, and Combined versions 

of deep networks we employed on the test set, including 
504 patches with recalled lesions and 936 patches with 
normal breast tissue. Among all architectures and their 
versions, ViT performed generally best (Table 1) on the 
test set, although we cannot claim a statistical signifi-
cance of its performance over other networks.

Fig. 5 The ROC curves and associated AUCs of lesion detection networks on the test set. The test set included 507 recalled lesion and 987 normal 
tissue patches. Among deep network architectures considered in this study, ViT performed best over other architectures, regardless of its versions 
(Baseline, Highlighted, and Combined). We found the effectiveness of our proposed lesion highlighter for all architectures. Specifically, for ResNet18, 
both Highlighted and Combined versions performed better than its Baseline version (p < 0.0001, Table 1). For other more advanced and complex 
state-of-the-art networks, Combined versions performed better than their Baselines (p < 0.0001, Table 1)
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We found the most significant performance improve-
ment on ResNet18 by using our lesion highlighter. Spe-
cifically,  ResNet18Base (i.e., without the lesion highlighter) 
achieved an AUC of 0.914. After applying the lesion 
highlighter, the detection performance of  ResNet18Hi-lited 
improved to an AUC of 0.963. By combining the High-
lighted and Baseline versions using a logistic regression, 
the resulting network  (ResNet18Comb) achieved an AUC 
of 0.963. We found that the Highlighted and Combined 
versions of ResNet18 performed similarly to each other. 
However, both networks performed statistically better 
(p < 0.0001, Table 1) than its Baseline with differences in 
AUC of 0.049.

We found higher sensitivity for high specificity lev-
els compared to those at lower specificity for ResNet18. 
Specifically, the sensitivity at a specificity of 0.98 (SE@
SP98) for ResNet18 Hi-lited was 0.681 and SE@SP98 for 
 ResNet18Comb was 0.677, while that of  ResNet18Base was 
only 0.345. Their differences were 0.331 and 0.329, which 
were statistically significant (p < 0.0001). This suggests 
that our lesion highlighter was effective on highlighting 
subtle breast lesions where the baseline ResNet18 was 
not able to detect the lesion.

For other state-of-the-art architectures, we found 
that the detection performances before and after apply-
ing the lesion highlighter were similar to each other 
(p-value > 0.426, Table  1). However, we found that the 
highlighted and baseline versions were processing dif-
ferent information in the mammogram such that they 
complemented each other for the lesion detection task. 
Specifically, the detection performance of the combined 
version (highlighted + baseline) with logistic regression 
was statistically better than that of its baseline (p-val-
ues < 0.001, Table 1). These results indicate that the lesion 
highlighter is effective regardless of the choice of network 

architectures, as it could provide additional information 
for lesion detection.

For EfficientNetV2 and ViT architectures, we found 
a higher improvement in the specificity value for a high 
sensitivity level, when their baseline and highlighted net-
works were combined. Specifically, the specificity value 
at a sensitivity of 0.98 (SP@SE98) for  EfficientNetV2Comb 
was 0.760 and the SP@SE98 of  ViTComb was 0.815. How-
ever, their baseline models achieved only SP@SE98 val-
ues of 0.620 and 0.569. Their differences (Combined 
– Baseline) were 0.145 for EfficientNetV2 and 0.246 for 
ViT, which were statistically significant (p < 0.0001). 
These results suggest that our lesion highlighter could 
provide additional information over the original mam-
mograms such that it helped advanced deep models to 
discern a difficult normal case better than before the 
lesion highlight.

Indepth analysis on the effectiveness of the Lesion 
Highlighter for recalled lesions
To evaluate how the lesion highlighter effectively high-
lighted possible lesions, we conducted post-hoc analysis 
using the test data. To do so, we first evaluated how the 
detector’s lesion score changed after applying the lesion 
highlighter. Figure 6 shows the scatter plots of the scores 
of the highlighted and baseline versions of each model 
for the recalled lesions. For this analysis, we focused on 
the score differences between the highlighted and base-
line versions, as we can identify in which cases the lesion 
highlighter is effective or provides different but additional 
information over its baseline when they (i.e., baseline and 
highlighted) are combined.

For ResNet18, we found that the lesion scores of 77% 
(60% + 14% + 3%) of the recalled lesion cases in the test 
set increased (i.e., improved) after applying our lesion 

Table 1 Detection performances of various CNN architectures on non-highlighted and highlighted versions, and their differences

* Statistically significant after Bonferroni correction with adjusted critical p-value of 0.006

Model Type AUC on Test set Diff. over base [95% CI] p‑value

ResNet18 Baseline 0.914 N/A

Highlighted 0.963 0.049 [0.036, 0.062]  < 0.0001*

Combined 0.963 0.050 [0.038, 0.061]  < 0.0001*

DenseNet201 Baseline 0.966 N/A

Highlighted 0.969 0.003 [-0.004, 0.010] 0.426

Combined 0.974 0.008 [0.004, 0.012]  < 0.001*

EfficientNetV2 Baseline 0.96 N/A

Highlighted 0.963 0.003 [-0.005, 0.011] 0.476

Combined 0.968 0.008 [0.004, 0.012]  < 0.001*

ViT Baseline 0.967 N/A

Highlighted 0.969 0.002 [-0.005, 0.009] 0.553

Combined 0.973 0.006 [0.003, 0.010]  < 0.001*
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highlighter. Scores for 16% (upper right quadrant and 
below diagonal line) of the lesion cases decreased 
after applying the lesion highlighter, but the resulting 
scores were still higher than 0.5, making them a cor-
rect identification of the lesion using 0.5 as the thresh-
old. Note that many cases were concentrated at the top 
end, where the scores of  ResNet18Hi-lited were close to 

1, while those of  ResNet18Base were clearly less than 1, 
indicating the effectiveness of the proposed method in 
highlighting the lesion location.

For other models, there were less lesion cases with 
significantly improved scores compared to those of 
ResNet18 ((a)14% vs. (b)2%, (c)4%, and (d) 3%, see upper 
left quadrant of each subplot in Fig. 6). In addition, the 

Fig. 6 The scatter plots of Highlighted and Baseline scores on recalled lesions. This figure shows the scatter plots of scores by all models on images 
with recalled lesions before (x-axis) and after (y-axis) applying the lesion remover as a lesion highlighter. The points above the diagonal line indicate 
the cases where the lesion remover effectively highlighted the lesion such that the corresponding lesion scores were increased
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scores for most lesion cases were concentrated in the 
upper right quadrant (80% or higher), indicating both 
versions correctly identified most lesion cases using 
0.5 as the threshold. These results partially confirm the 
results on the ROC curves and AUC values in Fig. 6. That 
is, unlike ResNet18 with the most significant lesion score 
improvement (14%, upper left quadrant in Fig.  6a), the 
performances of the highlighted and baseline versions 
of the other models were similar to each other for iden-
tifying recalled lesions (see the area of high specificity 
area, i.e., the left portion of ROC curves in Fig. 6c–d. As 
a result, there was less improvement in classifying more 
recalled lesions correctly when its combined version was 
applied on those cases.

We then visually inspected a few cases where the lesion 
highlighter effectively highlighted lesions that were previ-
ously missed by the lesion detector. For this visual inspec-
tion, we used ResNet18 as the representative model, as 
the results of other models were similar. Figure 7 shows 
two cases in the higher right quadrant in Fig.  6, which 
were false negative detections by  ResNet18Base on non-
highlighted images (i.e., original images) but became 
true positives by  ResNet18Hi-lited after the lesion high-
lighted. The images in the first and third columns show 
the input image for lesion detectors and the images in the 
second and fourth columns are the attention map (using 
Grad-CAM [22]) of each lesion detector. We found that 
the cases that initially were false negative before apply-
ing our lesion highlighter were too subtle to be detected. 

However, our lesion highlighter effectively highlighted 
them by increasing their contrast to the background by 
increasing pixel intensity (first column) or applying dif-
ferent colors (third column) such that the detector was 
able to locate the lesion correctly with a high lesion score.

Indepth analysis on the effectiveness of the Lesion 
Highlighter for normal controls
We repeated the post-hoc analysis as the above on nor-
mal controls. Figure  8 shows the scatter plots of the 
scores by the highlighted and baseline versions of all con-
sidered models on the normal controls in the test set. The 
points below the diagonal line are the cases that the pro-
posed lesion highlight was effective.

For ResNet18, we found that our lesion highlight 
method was effective for a total of 63% (52% + 7% + 4%) of 
normal controls (Fig. 8a). Specifically, 7% of normal con-
trols (lower right quadrant) that were falsely identified as 
positive cases (false positive) before were correctly clas-
sified as normal controls after applying the lesion high-
lighter. Most normal controls (31%) where the proposed 
method was less effective were located in the lower left 
quadrant, especially near the origin. This indicates that, 
although the lesion highlighter increased the lesion score 
of the normal controls, such negative impact is minimal 
as they are still lower than the traditional lesion threshold 
of 0.5.

For DenseNet201 and ViT models, we found a similar 
trend for the case of ResNet18; the scores for 58% and 

Fig. 7 False negative lesion cases that changed to true positive after applying the lesion highlighter. This figure shows two lesion cases that were 
false negative before applying the lesion highlighter but changed to true positive after applying the lesion highlighter. The first and third column 
show the images with recalled lesions after (top row) and before (bottom row) applying the lesion highlighter. The second and last column 
show the attention map by the detector. The yellow arrows indicate the location of the recalled lesions. Before applying the lesion highlighter, 
the detector was not able to localize the lesion but after the lesion highlight, it correctly localized the lesion
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64% of the normal controls decreased (i.e., improved) 
after the lesion highlighter, respectively. For Efficient-
NetV2, although there was a smaller number of improved 
cases for the normal controls (47%), all scores were con-
centrated at the origin, showing the similar performance 
of both versions. In addition, 5% or higher of normal 

controls (lower right quadrant in Fig.  8b–d) that were 
falsely identified as positive cases (false positive) before 
were correctly classified as normal controls after the 
lesion highlighter, which was less than the number of 
opposite cases (2% vs. 6% for DenseNet201, 4% vs. 5% for 
EfficientNetV2, and 3% vs 6% for ViT, Fig. 8b–d).

Fig. 8 The scatter plot of Highlighted and Baseline scores on normal controls. This figure shows the scatter plot of scores by all models 
on the normal control images before (x-axis) and after (y-axis) applying the lesion remover as a lesion highlighter. The points below the diagonal 
line indicate the cases where the lesion highlighter effectively changed the appearance of lesion-like normal tissue such that the corresponding 
lesion scores decreased
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Like the recalled lesion cases, we visually inspected a 
few normal controls where our lesion highlighter was 
effective on the samples that had previous false positive 
findings. Similarly, we used ResNet18 as a representa-
tive model for this visual inspection. Specifically, Fig. 9 
shows two cases in the lower right quadrant in Fig.  8, 
which were false positive detections by  ResNet18Base 
on non-highlighted images (i.e., original images) but 
became true negative by  ResNet18Hi-lited after apply-
ing the lesion highlighter. The images in the first and 
third column show the input image for lesion detectors 
and the images in the second and fourth columns are 
the attention map of each lesion detector. We found 
that the detector was falsely focused on normal tis-
sue as lesions before applying the lesion highlighter. 
But after applying the lesion highlighter, the detector’s 
attention was moved away from the areas where it was 
falsely focused for incorrect decisions (i.e., false posi-
tive detection). We found that wide areas of breast tis-
sue were highlighted lightly in green, which made the 
detector correctly identify them as normal tissue.

Based on the above post-hoc analysis (Figs. 6, 7, 8, 9), 
when it is effective, our lesion highlighter successfully 
located recalled lesions and highlighted their location 
without falsely highlighting the location of lesion-like 
normal tissue; instead, it helped the detector to make 
correct decisions on previously false positive findings.

Discussion
In this study, we developed a Cycle-GAN based lesion 
remover by training it on image patches with recalled 
lesions and normal breast tissue. We showed that the 
lesion remover can be used as a lesion highlighter by 
contrasting the resulting images to their originals. Spe-
cifically, the lesion remover removed existing lesions, 
such that we highlighted the existing lesion location in 
mammograms by color-fusing the lesion removed image 
with its original. To show the effectiveness of the lesion 
remover as a lesion highlighter, we developed four 
lesion patch detectors using state-of-the-art deep net-
work architectures, including ResNet18, DenseNet201, 
EfficientNetV2, and ViT, one trained on images after 
the lesion highlighter was applied (highlighted), another 
without the lesion remover (baseline), and those two 
combined (combined) by training a logistic regression 
classifier on top of two networks. We found that the com-
bined version of all considered networks achieved statis-
tically better detection performance than their baseline 
versions, which were trained on original mammograms 
without the lesion highlighter applied.

It is important to note that our lesion highlighter is 
computationally effective. One can find that the most 
significant improvement was shown for ResNet18 
(Fig.  5 and Table  1). Its baseline performance was low-
est compared to other networks. However, with the 

Fig. 9 False positive normal controls that changed to true negative after applying the lesion highlighter. This figure shows two normal controls 
which were false positive before applying the lesion highlighter but changed to true negative after applying the lesion highlighter. The first 
and third column show the images with normal tissue with (top row) and without (bottom row) applying the lesion remover. The second and last 
column show the attention map by the detector. Before applying the lesion highlighter, the detector was falsely focused on the normal tissue 
as a lesion, but after the lesion highlighter, the detector’s attention was moved away from the previously falsely focused area. Note that the normal 
breast tissue after applying the lesion highlighter show pixels in green lightly but widely spread in the image, which made the detector correctly 
identify as normal tissue
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lesion highlighter applied, its performance (AUC of 
 ResNet18Hi-lited was 0.963) was comparable to those of 
more complex and deeper network architectures, such 
as ViT (AUC of  ViTHi-lited was 0.969). Considering the 
amount of computational power consumed to optimize 
those advanced networks, our lesion highlighter is effec-
tive, as it made the simple and low computational cost 
network show comparable performance to those of state-
of-the-art architectures.

However, there were occasions when our proposed 
method was less effective, or even failed. Specifically, 
there were 5% to 9% of recalled lesion cases (lower left 
and right quadrants and below the diagonal line of each 
subplot in Fig. 6) where our approach was less effective. 
However, half of them (lower left quadrant but below 
diagonal line) were difficult cases to detect, as both the 
highlighted and baseline versions estimated them as non-
lesions. The remaining half indicates the cases when the 
lesion highlighter failed; the true positive detection was 
incorrectly changed to false negative after applying the 
lesion highlighter.

We then sampled and visually inspected two repre-
sentative lesion cases among those that failed in Fig. 10. 
Like previous visual inspections, we used ResNet18 for 
this analysis. We found that the lesion remover failed to 
localize the lesions (which were located at the center of 
the image) and, therefore, it removed normal tissue more 
than it was supposed to do. As a result, a wider area of 
breast tissue than the lesion was highlighted (in green), 

which moved the correct focus of the lesion detector on 
the lesion (attention maps in the bottom row, Fig.  10) 
away from its true location (attention maps in the top 
row, Fig. 10).

We found that our lesion highlighter was less effective 
for only 1% to 4% of normal controls (upper left quadrant 
of each subplot in Fig. 8). Like the above lesion cases, we 
inspected two representative normal controls where the 
lesion remover failed (Fig. 11). We found that the lesion 
remover falsely identified normal breast tissue as a lesion 
such that it was incorrectly highlighted in green.

The reason for the above failed cases was due to an 
error made by the lesion remover on the given images, 
i.e., false negative and false positive detections, resulting 
in the false highlighting of normal tissue. Specifically, the 
detector made false negative predictions when lesions 
and normal background tissue were highlighted together 
(Fig.  10). For normal controls, lesion like normal tissue 
was falsely highlighted (Fig. 11). These false highlights of 
normal tissue could be a limitation of our approach.

A possible reason for the false highlighting of normal 
tissue could be due to the limited number of samples 
we used to train our lesion remover. Although we used 
over 10 k samples to train the model, it could not cover 
the characteristics of all possible lesions and normal tis-
sues. Specifically, we segmented the center of the breast 
area to prepare image datasets for normal controls. We 
can include other breast areas with dense tissue for train-
ing. For this, one can utilize breast density segmentation 

Fig. 10 True positive lesion cases that changed to false negative after applying the lesion highlighter. This figure shows two lesion cases which 
were true positive detection before applying the lesion highlighter but changed to false negative after applying the lesion highlighter. The first 
and third column show the images with recalled lesions with (top row) and without (bottom row) applying the lesion highlighter. The second 
and last column show the attention map by the detector. We found that our method failed to locate the lesion such that it falsely highlighted 
a wider area of the breast tissue in green. As a result, the lesion detector failed to recognize the lesion from the image
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algorithms (e.g., [23–25]) to identify challenging breast 
dense tissue for our purpose. Having more recalled 
lesions and normal breast tissue samples will improve 
our lesion remover, such that it could reduce the above 
false highlighting of normal tissue. We will investigate 
this in a future study.

In addition, the ground truth (or labeling) of the posi-
tive samples was noisy, as we used recalled lesions, which 
included lesions with different malignancy levels (straight 
benign, biopsied benign, malignant) and different lesion 
types (masses, calcifications, architectural distortions, 
etc.). As we mentioned earlier, we only knew the lesion 
truth (BI-RADS 0 or 1) at the time of screening. We will 
investigate the lesion details from radiology and pathol-
ogy reports in the future. Having such lesion details will 
allow us to develop various lesion removers specialized 
for each lesion malignancy level and type. For example, 
we can develop a malignancy mass (or calcs) remover to 
develop a malignancy mass (or calcs) highlighter to help 
CADx algorithms.

There is room for improvement in our method. Specifi-
cally, we developed a lesion remover using image patches 
with the size of 400 by 400 pixels (2.8  cm × 2.8  cm). It 
is big enough to include various types of lesions, but it 
is still patch based and therefore, additional work is 
required to scale our findings to the level of a full mam-
mogram. There are two possible ways to realize lesion 
removers (as well as lesion highlighters) in full mammo-
grams. First, we can directly apply our method on full 

mammograms via windowing, but within the breast area 
only, as our lesion remover may not work on the breast 
boundary (close to breast skin), since our current lesion 
remover was never trained on such areas. Second, we can 
directly develop a lesion remover directly from full size 
mammograms, like the work of Zhou et  al. [8]. In fact, 
our previous study already showed that simulating high 
resolution mammograms using GAN is possible [26]. 
Thus, we will develop a lesion remover (and supsequently 
lesion highlighter) for full mammograms by investigating 
the above options.

Conclusions
We developed a lesion remover using a Cycle-GAN 
trained on image patches from recalled lesions and nor-
mal breast tissue. We showed that the lesion remover 
can be operated as a lesion highlighter if we contrast the 
images after the lesion is removed with their original. For 
shallow networks, like the ResNet18 detector, a lesion 
highlighter can help the detector by finding more lesions 
that were previously missed while reducing false posi-
tive detections. For more advanced architectures, like 
the Vision Transformer detector, a lesion highlighter can 
help the detector by discerning difficult normal cases that 
were previously identified as lesions. In addition, a lesion 
highlighter is computationally effective as it improves the 
performance of a shallow ResNet18 to the level of a state-
of-the-art architecture.

Fig. 11 True negative normal controls that changed to false positive after applying the lesion highlighter. This figure shows two normal controls 
which were true negative before applying the lesion highlighter but changed to false positive after applying the lesion remover. The first and third 
column show the images with normal tissue with (top row) and without (bottom row) applying the lesion highlighter. The second and last column 
show the attention map by the detector. We found that our method falsely identified the normal breast tissue as lesions such that it was falsely 
highlighted in green, which made the lesion detector identify it as a lesion



Page 15 of 16Lee and Nishikawa  Breast Cancer Research           (2024) 26:21  

Abbreviations
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GAN  Generative Adversarial Network
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