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Abstract

Background: Mammographic breast density is a well-established strong risk factor for breast cancer. The
environmental contributors to geographic variation in breast density in urban and rural areas are poorly
understood. We examined the association between breast density and exposure to ambient air pollutants
(particulate matter <2.5 μm in diameter (PM2.5) and ozone (O3)) in a large population-based screening registry.

Methods: Participants included women undergoing mammography screening at imaging facilities within the
Breast Cancer Surveillance Consortium (2001–2009). We included women aged ≥40 years with known residential
zip codes before the index mammogram (n = 279,967). Breast density was assessed using the American College of
Radiology’s Breast Imaging-Reporting and Data System (BI-RADS) four-category breast density classification. PM2.5

and O3 estimates for grids across the USA (2001–2008) were obtained from the US Environmental Protection
Agency Hierarchical Bayesian Model (HBM). For the majority of women (94%), these estimates were available for the
year preceding the mammogram date. Association between exposure to air pollutants and density was estimated
using polytomous logistic regression, adjusting for potential confounders.

Results: Women with extremely dense breasts had higher mean PM2.5 and lower O3 exposures than women with
fatty breasts (8.97 vs. 8.66 ug/m3 and 33.70 vs. 35.82 parts per billion (ppb), respectively). In regression analysis,
women with heterogeneously dense vs. scattered fibroglandular breasts were more likely to have higher exposure
to PM2.5 (fourth vs. first quartile odds ratio (OR) = 1.19, 95% confidence interval (CI) 1.16 − 1.23). Women with
extremely dense vs. scattered fibroglandular breasts were less likely to have higher levels of ozone exposure (fourth
vs. first quartile OR = 0.80, 95% CI 0.73–0.87).

Conclusion: Exposure to PM2.5 and O3 may in part explain geographical variation in mammographic density.
Further studies are warranted to determine the causal nature of these associations.
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Background
Mammographic breast density is a well-established inde-
pendent risk factor for breast cancer [1]. Previous studies
suggest there are differences in breast density among
women living in urban and rural areas [2, 3]. A recent re-
port suggested that women in urban areas may have

higher breast density as compared to those living in the
rural environment, but these results may have been con-
founded by body mass index (BMI); these differences were
more prominent among women age 45–54 years [3]. The
etiology of higher density in urban areas is unclear and
whether environmental exposures could contribute to
these patterns is unknown. Environmental factors such as
air pollution may contribute to geographic variation in
breast density because urban and rural areas have distinct
air pollution patterns [4–7] and some air pollutants are
known to have endocrine-disrupting properties [8–13].
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The evidence on association between air pollution and
breast cancer is limited. In some previous studies there
have been reports of positive associations between risk
of breast cancer and nitrogen dioxide (NO2), fine parti-
cles <2.5 μm in diameter (PM2.5), polycyclic aromatic hy-
drocarbons (PAHs), carbon monoxide, sulfur dioxide,
and volatile organic compounds [14–17], and a positive
association between PM2.5 and risk of death from breast
cancer [18]. In other studies there has been no associ-
ation between breast cancer and PM2.5, total suspended
particles, ozone, or particles 2.5–10 μm in diameter
(PM10) [19, 20]. In analyses stratified by tumor subtype,
some of the air pollutants were associated with estrogen-
receptor-positive and progesterone-receptor-positive
(ER+ and PR+) tumors; other constituents have been asso-
ciated with receptor-negative subtypes only. Positive asso-
ciations have been identified between ER+/PR+ tumors
and ambient levels of NO2, acrylamide, benzidine, carbon
tetrachloride, ethylidene dichloride, and vinyl chloride,
and between ER-negative/PR-negative (ER-/PR-) subtypes
and ambient levels of benzene, cadmium, and inorganic
arsenic [19, 21, 22].
Whether air pollution could contribute to high breast

density is unknown. In the only study in which the asso-
ciation between breast density and nitrogen oxides or
NO2 was investigated, there was a borderline inverse as-
sociation between air pollution and the risk of mixed/
dense breast density patterns [23]. To add to the limited
knowledge on the association between air pollution and
mammographic breast density, we examined the associ-
ation between breast density and PM2.5 and ozone (O3)
in a large consortium of population-based mammog-
raphy registries. We further examined the interactions of
PM2.5 and ozone with menopausal status and use of
postmenopausal hormones, family history of breast can-
cer, and BMI.

Methods
Study population
Women in this study were selected from participants in
the Breast Cancer Surveillance Consortium (BCSC)
(http://www.bcsc-research.org/), which is funded by the
National Cancer Institute, and is a population-based pro-
spective cohort of women undergoing mammographic
screening at facilities affiliated with a network of breast
imaging registries throughout the USA. Five BCSC regis-
tries were included in this analysis: New Hampshire
Mammography Network, Vermont Breast Cancer Surveil-
lance System, New Mexico Mammography Project, San
Francisco Mammography Registry, and Group Health
Cooperative in western Washington State.
The BCSC has been described in detail elsewhere

[24–26]. Briefly, each BCSC registry collects clinical infor-
mation on diagnostic and screening mammography

examinations in their defined catchment areas. Information
on demographics and risk factors is collected by question-
naire administered at each mammographic examination.
Information on malignant and benign diagnoses is retrieved
via linkage of the registry data with the state tumor registry
or regional Surveillance Epidemiology and End Results pro-
grams and with pathology databases.
Women were included in our analysis if they had a

screening mammogram between 2001 and 2009 with
data available on breast density, were age ≥40 years, had
no previous history of breast cancer, had a known
residential zip code for at least 3 years prior to the
index mammogram date, and non-missing data on
the covariates used in the analysis. For women with
multiple mammograms, we randomly selected one
mammogram for which residential zip code data were
available that satisfied the 3-year residential zip code
requirement. The final study population included
279,967 women (Fig. 1).
Each mammography registry and the Statistical Coord-

inating Center (SCC) have received Institutional Review
Board approval for either active or passive consenting
processes or a waiver of consent to enroll participants,
link data, and perform analytic studies. All procedures
comply with the Health Insurance Portability and Ac-
countability Act, and all registries and the SCC have re-
ceived a Federal Certificate of Confidentiality and other
protection for the identities of women, physicians, and
facilities studied by this research.

Mammographic breast density
Categorical mammographic breast density was defined
using the American College of Radiology’s Breast
Imaging-Reporting and Data System (BI-RADS) breast
density classification recorded by the clinician on the

Fig. 1 Participant selection diagram. O3 ozone, PM2.5 particulate
matter <2.5 μm in diameter
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woman’s screening mammogram (category 1 (BI-RADS
I) - predominantly fat, category 2 (BI-RADS II) - fat with
some fibroglandular tissue (reference), category 3 (BI-
RADS III) - heterogeneously dense, and category 4 (BI-
RADS IV) - extremely dense). In the fourth edition of
the BI-RADS manual (2003) [27], the percentage of
glandular material was added to the density definition as
follows: <25% glandular (category 1), 25–50% glandular
(category 2), 51–75% glandular (category 3), and >75%
glandular (category 4). As our study included mammo-
grams performed between 2001 and 2009, density
definitions from both the third and fourth editions
were used [28].

Air pollution exposure assessment
Exposure data for PM2.5 and O3 estimates for grids
across the USA from 2001 to 2008 were obtained from
the US Environmental Protection Agency Hierarchical
Bayesian Model (HBM), which combines monitoring
data with numerical output from the Community Multi-
scale Air Quality model [29]. For both pollutants, the smal-
lest grids available for each year were used (2001–2006:
36 km; 2007–2008: 12 km). Daily 24-hour mean concen-
trations of PM2.5 and 8-hour maximum concentrations
of O3 were used to calculate annual concentrations
for each grid. Yearly mean exposures of PM2.5 and O3

for each subject were calculated using the inverse
distance-weighted method based on their zip code
centroid and HBM grid centroids. For each zip code
centroid, the distance to the centroids of the four
closest HBM grids were calculated based on the
“Haversine” great circle distance using the latitude
and longitude coordinates. The four closest distances
were assigned a weight:

wi ¼
1
d2
iX4

i¼1
1
d2
i

where di is the distance between the zip code centroid
and each of the four closest HBM grid centroids. The
yearly mean exposure for the zip code was then calcu-
lated as the weighted average:

X4

i¼4

wi � Pi

where Pi is the pollutant concentration.
PM2.5 and O3 exposures for the year preceding the

mammogram were retrieved for analysis. Data were un-
available for the preceding year in 6% of the study sam-
ple, and thus the exposure estimates were retrieved for
the year of the mammogram. The PM2.5 and O3 expo-
sures were modeled as continuous variables and as quar-
tiles based on their distribution in the study population

(<7.91, 7.91 to <8.81, 8.81 to <9.86, and ≥9.86 ug/m3

for PM2.5; <29.73, 29.73 to <36.05, 36.05 to <37.92,
and ≥37.92 parts per billion (ppb) for O3). In a sec-
ondary analysis, we also used the exposure data from
the year of the mammogram in all women to examine
the association between exposure and breast density.

Covariates
Information on covariates was available from the date of
the index mammogram. We included the following poten-
tial confounders in the models: age, race/ethnicity, BMI,
study site, menopausal status/use of hormone replacement
therapy, age at menarche, parity and age at first birth, his-
tory of breast biopsy, family history of breast cancer, and
median household income for the zip code.

Statistical analysis
We used multivariate polytomous regression to examine
the associations between categorical data on breast dens-
ity and exposure to PM2.5 and O3. In these models,
women with predominantly fat, heterogeneously dense,
or extremely dense breasts were compared to women
with scattered fibroglandular density (BI-RADS II). Each
air pollution variable was modeled as a continuous vari-
able and as quartiles based on the distribution in the
study population. The lowest exposure category was
used as the reference in all analyses. A two-sided test for
trend was performed, modeling each air pollutant as an
ordinal variable and using the median air pollutant level
in each category. The risk estimates in all analyses were
adjusted for age (40–49, 50–59, 60–69, 70–79, or 80–89
years), race/ethnicity (white, black, Asian/Pacific Islander,
American Indian, Hispanic, or mixed/other), BMI (≤18.4,
18.5–24.9, 25.0–29.9, 30.0–34.9, 35.0–39.9, or ≥40 kg/m2),
study site, menopausal status/use of hormone replacement
therapy (premenopausal, perimenopausal, postmeno-
pausal not using hormone replacement therapy, post-
menopausal currently using hormone replacement
therapy), age at menarche (≤12, 13, 14, or ≥15 years),
parity and age at first birth (nulliparous, parous with
age at first birth ≤29 years, or parous with age at first
birth ≥30 years), history of breast biopsy (yes or no),
first-degree family history of breast cancer (yes or
no), and median household income for the zip code
(≤US$46,075, US$46,076–54,093, US$54,094–66,322,
or ≥US$66,323).
We next examined the two-way interactions between

each of the exposures and BMI, family history of breast
cancer, history of breast biopsy, or menopausal status/
postmenopausal hormone use. To test these interactions,
we implemented different approaches by using both con-
tinuous exposure variables and the respective medians
within each of the exposure categories, to model the
interaction term. The results were similar with both

Yaghjyan et al. Breast Cancer Research  (2017) 19:36 Page 3 of 10



approaches. BMI was modeled as a binary variable
(<30 kg/m2 vs. ≥30 kg/m2) and both family history of
breast cancer and menopausal status/hormone replace-
ment therapy use were modeled as nominal data. Statis-
tical significance in all analyses was assessed at the 0.05
level. Finally, for variables that had significant interac-
tions, we examined the association between exposure
and breast density separately across the variable strata.
The analyses were performed using SAS software (ver-
sion 9.3, SAS Institute, Cary, NC, USA).

Results
Characteristics of the 279,967 women included in this
study are presented in Table 1. The mean age of the par-
ticipants was 57 years (range 40–102) and the majority
of the women were postmenopausal (70.9%). The distri-
bution of BI-RADS density categories was 10.8%, 41.7%,
39.4%, and 8.2% for BI-RADS I, II, II, and IV, respect-
ively, and was consistent with previously reported distri-
butions in women of screening age [24, 30–33]. Among
all women, 60.3% were living in urban areas and 39.7%
in rural areas. Mean concentrations of PM2.5 were higher
in women with higher breast density (8.77, 8.88, 9.24,
and 9.34 ug/m3 for BI-RADS I, II, III, and IV respect-
ively) and concentrations of O3 were lower in women
with higher density (35.95, 35.22, 34.04, and 33.72 ppb
for BI-RADS I, II, III, and IV respectively).
In multivariate regression analysis, women with het-

erogeneously dense vs. scattered fibroglandular breasts
were more likely to have been exposed to higher concen-
trations of PM2.5 (fourth vs. first quartile odds ratio
(OR) = 1.19, 95% confidence interval (CI) 1.16–1.23;
third vs. first quartile OR = 1.19, 95% CI 1.16–1.22) and
women with fatty breasts were less likely to have been
exposed to higher levels of PM 2.5 (fourth vs. first quar-
tile OR = 0.88, 95% CI 0.85–0.92; third vs. first quartile
OR = 0.85, 95% CI 0.81–0.88) (Table 2). A one-unit in-
crease in PM2.5 concentration was associated with 4% in-
creased chance of having heterogeneously dense breasts
and 2% lower chance of having fatty breasts vs. scattered
fibroglandular breasts. Women with extremely dense
breasts vs. scattered fibroglandular breasts were less
likely to have been exposed to higher levels of O3 (fourth
vs. first quartile OR = 0.80, 95% CI 0.73–0.87) and
women with fatty breasts were more likely to have been
exposed to higher O3 concentrations (fourth vs. first
quartile OR = 1.12, 95% CI 1.04–1.20) (Table 2). A one-
unit increase in O3 concentration was associated with
3% lower chance of having extremely dense breasts and
2% higher chance of having fatty breasts, vs. scattered
fibroglandular breasts.
We found significant interactions of both exposure

variables with menopausal status/hormone replacement
therapy use (p for interaction 0.02 and <0.0001 for PM2.5

and O3, respectively) and BMI p for interaction <0.01
and <0.0001 for PM2.5 and O3, respectively) (Table 3).
Despite the statistical significance of the interactions,
there did not appear to be substantial, clinically relevant
differences in the direction or magnitude of the associa-
tions across the strata of the effect modifier. The find-
ings were similar in a secondary analysis using the
exposure data from the year of the mammograms (data
not shown).

Discussion
We examined the associations between PM2.5 or O3 and
mammographic breast density in a large population-
based sample of cancer-free women in the Breast Cancer
Surveillance Consortium. We found positive associations
between breast density and PM2.5 and inverse associa-
tions between breast density and O3.
In a recent study in the Danish Diet, Cancer and

Health cohort (1993–1997) the association between
mammographic breast density (defined as mixed/dense
or fatty breasts) and traffic-related air pollution (mod-
eled as levels of nitrogen oxides (NOx) and nitrogen di-
oxide (NO2)) was evaluated among 4769 women [23].
There was a borderline-significant inverse association
between long-term exposure and breast density (OR
0.96, 95% CI 0.93–1.01 per 20 μg/m3 of NOx and OR
0.89, 95% CI 0.80–0.98 per 10 μg/m3 of NO2) and no
interaction between the exposure and menopause, smok-
ing, or obesity [23]. In contrast, in our analyses we ex-
amined the association between breast density and
PM2.5 or O3 levels. Further, we used the BI-RADS dens-
ity classification in our study with BI-RADS II (scattered
fibroglandular breasts) as the reference group, rather
than collapsing four density categories into two groups.
We also observed significant interactions of both air pol-
lutants with menopausal status and hormone therapy
use and BMI. These differences between studies could
be potentially explained by the significantly larger sam-
ple size in our study, the different classification of dens-
ity and the approaches used to characterize air pollution.
The chemical composition of PM2.5 is diverse and is

represented by a variety of compounds, including those
with endocrine-disrupting and carcinogenic properties.
Specifically, PAHs that represent a relatively small mass
percentage in PM2.5, are known to have endocrine-
disrupting properties and cause adverse effects [8–10].
PAHs also interfere with normal DNA repair processes by
forming persistent DNA adducts [34–36]. Among other or-
ganic compounds found in PM2.5 polychlorinated dibenzo-
dioxins (dioxin), dibenzofurans (PCDF), and biphenyls
(PCB) have also been shown to interfere with normal endo-
crine function [9, 11]. Finally, some of the heavy metals
such as cadmium, arsenic and mercury that are found in
fine particulate matter also have endocrine-disrupting
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Table 1 Characteristic of the study population (n = 279,967), by breast density category (number [percentage])

Characteristics Almost entirely fat
(BI-RADS I) n = 30,249

Scattered fibroglandular densities
(BI-RADS II) n = 116,666

Heterogeneously dense
(BI-RADS III) n = 110,181

Extremely dense
(BI-RADS IV) n = 22,871

Age at mammogram, years

40–49 4526 (15.0) 27,195 (23.3) 38,172 (34.6) 11,261 (49.2)

50–59 9548 (31.6) 37,768 (32.4) 37,004 (33.6) 7432 (32.5)

60–69 8749 (28.9) 28,004 (24.0) 19,960 (18.1) 2536 (11.1)

70–79 5388 (17.8) 16,712 (14.3) 10,331 (9.4) 1069 (4.7)

80–89 2038 (6.7) 6987 (6.0) 4714 (4.3) 573 (2.5)

Race/ethnicity

White 25,879 (85.6) 101,078 (86.6) 92,698 (84.1) 18,170 (79.4)

Black 703 (2.3) 2031 (1.7) 1873 (1.7) 352 (1.5)

Asian/Pacific Islander 842 (2.8) 4085 (3.5) 7416 (6.7) 2662 (11.6)

American Indian 117 (0.4) 442 (0.4) 373 (0.3) 45 (0.2)

Hispanic 2056 (6.8) 6248 (5.4) 5122 (4.6) 1115 (4.9)

Mixed/other 652 (2.2) 2782 (2.4) 2699 (2.4) 527 (2.3)

Body mass index, kg/m2

≤18.4 142 (0.5) 956 (0.8) 1808 (1.6) 1198 (5.2)

18.5–24.9 5383 (17.8) 36,175 (31.0) 53,604 (48.7) 15,974 (69.8)

25.0–29.9 8846 (29.2) 38,576 (33.1) 33,316 (30.2) 4283 (18.7)

30.0–34.9 7548 (25.0) 23,267 (19.9) 13,803 (12.5) 1038 (4.5)

35.0–39.9 4361 (14.4) 10,501 (9.0) 5028 (4.6) 273 (1.2)

≥40 3969 (13.1) 7191 (6.2) 2622 (2.4) 105 (0.5)

Age at menarche, years

≤12 14,400 (47.6) 51,281 (44.0) 44,093 (40.0) 7989 (34.9)

13 9211 (30.5) 37,191 (31.9) 35,622 (32.3) 7516 (32.9)

14 3626 (12.0) 15,203 (13.0) 15,816 (14.4) 3682 (16.1)

≥15 3012 (10.0) 12,991 (11.1) 14,650 (13.3) 3684 (16.1)

Parity/age at first child

Nulliparous 4019 (13.3) 14,264 (12.2) 18,085 (16.4) 5727 (25.0)

Parous/≤29 years 23,317 (77.1) 88,215 (75.6) 74,309 (67.4) 11,896 (52.0)

Parous/≥30 years 2913 (9.6) 14,187 (12.2) 17,787 (16.1) 5248 (22.9)

Menopausal status/HRT

Premenopausal 3776 (12.5) 24,161 (20.7) 35,502 (32.2) 10,855 (47.5)

Postmenopausal/current HRT use 3064 (10.1) 14,627 (12.5) 15,995 (14.5) 2840 (12.4)

Postmenopausal/no current HRT use 22,908 (75.7) 75,358 (64.6) 55,548 (50.4) 8378 (36.6)

Perimenopausal 501 (1.7) 2520 (2.2) 3136 (2.8) 798 (3.5)

Family history of breast cancer

Yes 5099 (16.9) 19,787 (17.0) 18,946 (17.2) 3860 (16.9)

No 25,150 (83.1) 96,879 (83.0) 91,235 (82.8) 19,011 (83.1)

History of breast biopsy

Yes 5250 (17.4) 23,387 (20.0) 26,687 (24.2) 6255 (27.3)

No 24,999 (82.6) 93,279 (80.0) 83,494 (75.8) 16,616 (72.7)

Residential area

Urban 17,673 (59.1) 63,393 (54.6) 72,210 (65.6) 14,933 (65.4)

Rural 12,244 (40.9) 52,816 (45.4) 37,794 (34.4) 7916 (34.6)

Yaghjyan et al. Breast Cancer Research  (2017) 19:36 Page 5 of 10



properties [12, 13]. As mammographic breast density is a
reflection of relative amounts of epithelial, stromal and fat
tissue and as epithelial proliferation is regulated by a variety
of hormonal influences including estrogens and growth fac-
tors, these chemical constituents could potentially influence
breast density by interfering with normal proliferation, thus
increasing the relative amount of fibroglandular tissue in
the breast, and subsequently, breast density.
Previous studies have consistently linked higher levels

of O3 to higher levels of oxidative stress and demon-
strated that biological properties of O3 can cause many
deleterious effects, including cellular death, in distant
tissues [37]. Recent studies suggest inhibition of cellular
growth in tumor tissue from different organs, including

the breast, at the level of 0.3 ppm [38]. It is possible that
the effect of O3 on breast tissue could result from these
inhibitory processes resulting in a lower percentage of
fibroglandular structures, and subsequently, lower breast
density. However, the causal links, if any, and the under-
lying biological mechanisms behind the associations of
air pollution with breast density need to be elucidated
and confirmed.
Previous studies suggest that associations between breast

density and risk factors for breast cancer differ by meno-
pausal status, hormone use, family history of breast cancer,
and BMI [39–42]. Premenopausal and postmenopausal
women differ with respect to the endogenous and exogen-
ous hormonal influences and proliferative activity in the

Table 1 Characteristic of the study population (n = 279,967), by breast density category (number [percentage]) (Continued)

Median household income

≤US$46,075 8811 (29.1) 33,011 (28.3) 24,474 (22.2) 4591 (20.1)

US$46,076–54,093 7871 (26.0) 31,185 (26.7) 25,607 (23.2) 5324 (23.3)

US$54,094–66,322 7051 (23.3) 28,168 (24.1) 30,237 (27.4) 5897 (25.8)

≥US$66,323 6516 (21.5) 24,302 (20.8) 29,863 (27.1) 7059 (30.9)

PM2.5 (ug/m
3)

Mean (SD) 8.77 8.88 9.24 9.34

Range 2.86–19.63 2.39–19.83 2.19–23.05 2.54–18.57

Ozone (ppb)

Mean (SD) 35.95 35.22 34.04 33.72

Range 24.54–53.65 22.30–57.39 24.54–54.22 25.46–50.81

Abbreviations: BI-RADS American College of Radiology’s Breast Imaging-Reporting and Data System; HRT hormone replacement therapy, PM2.5 particulate matter
<2.5 μm in diameter

Table 2 Associations of PM2.5 and O3 with breast density

Exposure BI-RADS I OR (95% CI) BI-RADS III OR (95% CI) BI-RADS IV OR (95% CI)

PM2.5 quartile (median, ug/m3)a

1st (7.18) Referent Referent Referent

2nd (8.44) 0.95 (0.92–0.98) 1.08 (1.05–1.11) 0.90 (0.86–0.94)

3rd (9.27) 0.85 (0.81–0.88) 1.19 (1.16–1.22) 1.00 (0.95–1.05)

4th (10.68) 0.88 (0.85–0.92) 1.19 (1.16–1.23) 0.97 (0.92–1.02)

P for trend <0.0001 <0.0001 <0.0001

Continuous PM2.5 0.98 (0.97–0.99) 1.04 (1.03–1.04) 1.00 (0.99–1.01)

O3 quartile (median, ppb)a

1st (28.48) Referent Referent Referent

2nd (32.94) 0.86 (0.81–0.90) 1.13 (1.10–1.16) 1.08 (1.03–1.14)

3rd (37.03) 0.85 (0.79–0.91) 1.11 (1.07–1.16) 0.99 (0.92–1.07)

4th (39.05) 1.12 (1.04–1.20) 0.98 (0.94–1.03) 0.80 (0.73–0.87)

P for trend <0.0001 <0.0001 <0.0001

Continuous O3 1.02 (1.01–1.03) 1.00 (1.00–1.01) 0.97 (0.96–0.98)

For breast density, American College of Radiology’s Breast Imaging-Reporting and Data System (BI-RADS) II (scattered fibroglandular densities) is the reference category;
risk estimates are adjusted for age at mammogram, body mass index at mammogram, race, study site, age at menarche, parity and age at first birth, menopausal
status/hormone use, family history of breast cancer, history of breast biopsy, and median household income for the zip code. aQuartiles defined as <7.91, 7.91 to <8.81,
8.81 to <9.86, and ≥9.86 ug/m3 for particulate matter <2.5 μm in diameter (PM2.5) and <29.73, 29.73 to <36.05, 36.05 to <37.92 and ≥37.92 ppb for ozone (O3)
CI confidence interval, HRT hormone replacement therapy, OR odds ratio. Note: BI-RADS II is the reference group
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Table 3 Associations of PM2.5 and O3 with breast density, stratified by body mass index, family history of breast cancer, and
menopausal status/postmenopausal hormone use

Pollutant
quartilea

PM2.5 (ug/m
3) O3 (ppb)

Analytical strata BI-RADS I
OR (95% CI)

BI-RADS III
OR (95% CI)

BI-RADS IV
OR (95% CI)

BI-RADS I
OR (95% CI)

BI-RADS III
OR (95% CI)

BI-RADS IV
OR (95% CI)

BMI <30b

1st Referent Referent Referent Referent Referent Referent

2nd 1.01 (0.96–1.06) 1.06 (1.03–1.09) 0.88 (0.84–0.92) 0.97 (0.90–1.04) 1.15 (1.11–1.20) 1.10 (1.04–1.16)

3rd 0.93 (0.88–0.98) 1.16 (1.13–1.20) 0.98 (0.94–1.03) 0.87 (0.79–0.96) 1.14 (1.09–1.20) 1.02 (0.94–1.10)

4th 0.95 (0.90–1.01) 1.16 (1.12–1.20) 0.94 (0.89–0.99) 1.12 (1.01–1.25) 1.02 (0.96–1.07) 0.85 (0.78–0.93)

BMI ≥30b

1st Referent Referent Referent Referent Referent Referent

2nd 0.91 (0.86–0.95) 1.16 (1.10–1.22) 1.20 (1.02–1.41) 0.78 (0.73–0.84) 1.07 (1.01–1.12) 1.03 (0.88–1.21)

3rd 0.79 (0.75–0.84) 1.27 (1.20–1.33) 1.05 (0.89–1.24) 0.84 (0.76–0.93) 1.06 (0.97–1.15) 0.94 (0.73–1.20)

4th 0.85 (0.81–0.91) 1.27 (1.20–1.34) 1.09 (0.91–1.30) 1.13 (1.02–1.25) 0.93 (0.85–1.02) 0.62 (0.46–0.82)

Premenopausalc

1st Referent Referent Referent Referent Referent Referent

2nd 0.96 (0.87–1.06) 1.06 (1.01–1.12) 0.92 (0.85–0.99) 0.85 (0.72–1.00) 1.17 (1.09–1.26) 1.16 (1.06–1.26)

3rd 0.82 (0.74–0.91) 1.25 (1.19–1.32) 1.06 (0.98–1.15) 0.82 (0.67–1.00) 1.25 (1.14–1.37) 1.16 (1.03–1.32)

4th 0.86 (0.77–0.96) 1.20 (1.13–1.26) 0.97 (0.89–1.05) 1.04 (0.84–1.28) 1.21 (1.10–1.33) 0.99 (0.86–1.13)

Postmenopausal/no HRTc

1st Referent Referent Referent Referent Referent Referent

2nd 0.94 (0.91–0.98) 1.08 (1.05–1.12) 0.90 (0.84–0.97) 0.85 (0.80–0.90) 1.10 (1.06–1.14) 1.06 (0.99–1.13)

3rd 0.83 (0.79–0.87) 1.15 (1.11–1.19) 0.97 (0.90–1.04) 0.83 (0.77–0.90) 1.05 (0.99–1.11) 0.87 (0.78–0.98)

4th 0.88 (0.84–0.92) 1.21 (1.17–1.25) 1.01 (0.94–1.09) 1.11 (1.02–1.21) 0.88 (0.83–0.94) 0.69 (0.61–0.79)

Postmenopausal/with HRTc

1st Referent Referent Referent Referent Referent Referent

2nd 0.98 (0.87–1.10) 1.14 (1.06–1.22) 0.88 (0.77–1.00) 0.90 (0.77–1.06) 1.21 (1.12–1.30) 1.04 (0.91–1.19)

3rd 0.96 (0.84–1.09) 1.29 (1.20–1.39) 1.08 (0.95–1.24) 0.86 (0.70–1.07) 1.19 (1.06–1.33) 1.08 (0.87–1.33)

4th 1.00 (0.87–1.14) 1.15 (1.06–1.24) 0.96 (0.83–1.10) 1.02 (0.81–1.30) 1.03 (0.90–1.18) 0.80 (0.62–1.03)

Perimenopausalc

1st Referent Referent Referent Referent Referent Referent

2nd 0.97 (0.74–1.28) 0.98 (0.83–1.15) 0.93 (0.72–1.21) 0.83 (0.54–1.27) 0.94 (0.78–1.14) 0.93 (0.70–1.23)

3rd 1.06 (0.79–1.41) 1.16 (0.98–1.37) 1.03 (0.79–1.34) 0.95 (0.54–1.65) 0.89 (0.68–1.17) 0.75 (0.48–1.16)

4th 0.95 (0.69–1.30) 1.34 (1.12–1.60) 1.07 (0.80–1.42) 1.29 (0.72–2.31) 0.76 (0.56–1.03) 0.62 (0.38–1.02)

No Family history of breast cancerd

1st Referent Referent Referent Referent Referent Referent

2nd 0.93 (0.89–0.97) 1.08 (1.05–1.12) 0.90 (0.85–0.94) 0.87 (0.82–0.92) 1.12 (1.09–1.16) 1.10 (1.04–1.16)

3rd 0.83 (0.80–0.87) 1.20 (1.16–1.23) 1.00 (0.95–1.05) 0.85 (0.79–0.92) 1.11 (1.06–1.16) 0.99 (0.91–1.07)

4th 0.87 (0.83–0.91) 1.21 (1.17–1.25) 0.95 (0.90–1.01) 1.11 (1.03–1.21) 0.98 (0.93–1.03) 0.80 (0.73–0.88)

Family history of breast cancerd

1st Referent Referent Referent Referent Referent Referent

2nd 1.05 (0.96–1.14) 1.05 (0.99–1.12) 0.92 (0.82–1.03) 0.79 (0.70–0.90) 1.15 (1.08–1.24) 1.02 (0.90–1.14)

3rd 0.90 (0.82–0.99) 1.17 (1.10–1.24) 0.99 (0.88–1.11) 0.82 (0.69–0.98) 1.15 (1.04–1.28) 1.02 (0.85–1.22)

4th 0.93 (0.84–1.03) 1.12 (1.05–1.20) 1.05 (0.94–1.18) 1.13 (0.94–1.35) 1.01 (0.90–1.13) 0.77 (0.63–0.94)
aQuartiles defined as <7.91, 7.91 to <8.81, 8.81 to <9.86, and ≥9.86 ug/m3 for particulate matter <2.5 μm in diameter (PM2.5) and <29.73, 29.73 to <36.05, 36.05 to
<37.92 and ≥37.92 ppb for ozone (O3).

bAdjusted for age at mammogram, race, study site, age at menarche, parity and age at first birth, menopausal status/hormone use, family
history of breast cancer, history of breast biopsy, and median household income for the zip code. cAdjusted for age at mammogram, body mass index (BMI) at mammogram, race,
study site, age at menarche, parity and age at first birth, family history of breast cancer, history of breast biopsy, and median household income for the zip code
dAdjusted for age at mammogram, BMI at mammogram, race, study site, age at menarche, parity and age at first birth, menopausal status/hormone use, family history
of breast cancer, history of breast biopsy, and median household income for the zip code. American College of Radiology’s Breast Imaging-Reporting and Data System
(BI-RADS) II (scattered fibroglandular densities) is the reference group. CI confidence interval, OR odds ratio. P values for two-way interactions: PM2.5 with BMI p < 0.01; PM2.5

with menopausal status/hormone replacement therapy (HRT) p = 0.02; PM2.5 with family history of breast cancer p = 0.21; O3 with BMI p < 0.0001; O3 with menopausal
status/HRT p < 0.0001; O3 with family history of breast cancer p = 0.56
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breast tissue and thus menopausal status/hormone use
may potentially modify the association between air pollu-
tion and breast density. Family history of breast cancer and
BMI may reflect the differences in individuals’ genetic fac-
tors and xenobiotic metabolism rates. Further, some of the
lipophilic xenobiotics, such as PAHs, dioxin, and PCBs
may accumulate in adipose tissue, including that in the
breast, and as a result, the associations between these che-
micals and breast density may differ by BMI. Even though
we found statistically significant interactions of both
exposures with menopausal status/hormone use and
BMI, the observed differences in the risk estimates
for PM2.5 across the strata were small. The findings
suggested a stronger association between O3 and
breast density in women with BMI ≥30. The patterns
of association across categories of menopausal status/
hormone use, however, were inconsistent.
Our study utilized an established consortium of

population-based mammography registries with infor-
mation on breast cancer risk factors, demographics, resi-
dential history, and breast density. To our knowledge,
this is the largest study to date to examine the associ-
ation between air pollution and breast density and the
first study to explore the associations between breast
density and PM2.5 or O3.
Our study has a few limitations. We controlled for

known determinants of density in our analysis; however,
residual confounding cannot be ruled out. The risk esti-
mates in our study were not adjusted for smoking status.
However, the findings on associations between smoking
and breast density in previous studies have been inconsist-
ent [41–46]. Further, the additional adjustment for smok-
ing status in the study of air pollution and breast density
by Huynh et al. did not change the risk estimates [23]. In
our study the risk estimates for PM2.5 for BI-RADS IV
were not statistically significant. Even though BI-RADS IV
represented the smallest density group, the absolute num-
ber of women in this category was sufficiently large to de-
tect significant associations. The biological explanation for
an association with BI-RADS III density but not BI-RADS
IV density is unclear and confirmation of these findings in
other populations is warranted.
We used data from Environmental Protection Agency

(EPA) air monitoring rather than individual-level exposure
data; thus, exposure misclassification cannot be excluded,
as our model assumed that the pollutant concentrations
were equal throughout each HBM grid. However, this ex-
posure misclassification would likely be non-differential
and thus could drive our results towards the null. Using
an exposure assessment model with a higher spatial reso-
lution, like land use modeling, was not feasible with only
zip code information from the women. Using the commu-
nity multiscale air quality (CMAQ) model allowed us to
assess exposure for locations and days that might be

otherwise missing from monitoring stations. Furthermore,
the CMAQ model has been shown to be more accurate
and precise than interpolation of monitoring data with or-
dinary kriging regression [29].

Conclusions
In conclusion, in this large population-based sample of
cancer-free women, we found positive associations be-
tween and PM2.5 and mammographic breast density and
inverse associations between ozone and mammographic
breast density. Our findings suggest that previously re-
ported geographic variation in breast density could in
part be explained by different air pollution patterns in
urban and rural areas. Future studies are warranted to
determine the causal nature of these associations and to
explore whether breast density mediates the ffect of air
pollution on breast cancer risk.
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