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Abstract

Background: Several anthropometric measures have been associated with hormone-related cancers. However,
it is unknown whether estrogen metabolism plays an important role in these relationships. We examined whether
measured current body mass index (BMI), waist-to-hip ratio (WHR), height, and self-reported BMI at age 18 years
were associated with serum estrogens/estrogen metabolites using baseline, cross-sectional data from 1835
postmenopausal women enrolled in the Women’s Health Initiative Observational Study.

Methods: Fifteen estrogens/estrogen metabolites were quantified using liquid chromatography-tandem mass
spectrometry. Geometric means (GMs) of estrogens/estrogen metabolites (in picomoles per liter) were estimated
using inverse probability weighted linear regression, adjusting for potential confounders and stratified on
menopausal hormone therapy (MHT) use.

Results: Among never or former MHT users, current BMI (≥30 vs. <25 kg/m2) was positively associated with parent
estrogens (multivariable adjusted GM 432 vs. 239 pmol/L for estrone, 74 vs. 46 pmol/L for estradiol; p-trend < 0.001 for
both) and all of the 2-, 4-, and 16-pathway estrogen metabolites evaluated (all p-trend ≤ 0.02). After additional adjustment
for estradiol, unconjugated methylated 2-catechols were inversely associated (e.g., 2-methoxyestrone multivariable GM 9.3
vs. 12.0 pmol/L; p-trend < 0.001). Among current MHT users, current BMI was not associated with parent estrogens but
was inversely associated with methylated catechols (e.g., 2-methoxyestrone multivariable GM 216 vs. 280 pmol/L;
p-trend = 0.008). Similar patterns of association were found with WHR; however, the associations were not independent
of BMI. Height and BMI at age 18 years were not associated with postmenopausal estrogens/estrogen metabolite levels.

Conclusions: Our data suggest that postmenopausal BMI is associated with increased circulating levels of parent
estrogens and reduced methylation of catechol estrogen metabolites, the estrogen metabolism patterns that
have previously been associated with higher breast cancer risk.

Keywords: BMI, WHR, Height, Estrogen, Estrogen metabolites, Sex hormones, Postmenopausal

* Correspondence: hannah.oh@nih.gov
1Division of Cancer Epidemiology and Genetics, National Cancer Institute,
9609 Medical Center Drive, 6E332, Bethesda, MD 20892, USA
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Oh et al. Breast Cancer Research  (2017) 19:28 
DOI 10.1186/s13058-017-0810-0

http://crossmark.crossref.org/dialog/?doi=10.1186/s13058-017-0810-0&domain=pdf
http://orcid.org/0000-0002-8368-3032
mailto:hannah.oh@nih.gov
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Several anthropometric measures have been associated
with increased risk of various hormone-related cancers
(endometrial, ovarian, and postmenopausal breast can-
cers) [1–7]. Authors of meta-analyses have estimated a
54% increased risk of endometrial cancer [1] and a 12%
increased risk of postmenopausal breast cancer [6] asso-
ciated with every 5 kg/m2 increase in body mass index
(BMI). Abdominal adiposity estimated by waist-to-hip
ratio (WHR) has also shown strong positive associations
with endometrial and postmenopausal breast cancer risk
[1, 4], although it is unclear whether the associations are
independent of BMI. Further, every 10-cm increase in
height has been associated with a 15% higher risk of
endometrial [1] and ovarian cancers [3]. One of the hy-
pothesized mechanisms for the BMI associations is that
overweight and obese postmenopausal women have
elevated levels of circulating estrogens [8], because adi-
pocytes produce estrogens via aromatase activity [9].
Height may indicate early-life nutritional status and
exposure to high levels of endogenous proliferative
hormones such as estrogens in preadolescence [10].
Estrogens play a key role in endometrial, ovarian,

and breast carcinogenesis [11, 12]. Parent estrogens
(estradiol and estrone) stimulate cell proliferation
largely via estrogen receptor-mediated mechanisms
[13]. Parent estrogens are metabolized via the 2-, 4-,
and 16-hydroxylation pathways, leading to an array of
metabolites in each pathway. Experimental studies
have shown that these metabolites can also stimulate
cell proliferation via estrogen receptor-mediated mech-
anisms, and catechols of 2- and 4-pathways, if not
methylated, can induce DNA damage directly by form-
ing quinone DNA adducts or indirectly via redox cyc-
ling [14–16]. In recent epidemiologic studies, higher
levels of parent estrogens and most estrogen metabo-
lites have consistently been associated with higher risk of
endometrial and postmenopausal breast cancers [17–20].
Parent estrogens and estrogen metabolites may play an

important role in the associations between anthropomet-
ric measures and cancer risk. However, beyond parent
estrogens [8, 21–23], little is known about the associa-
tions between anthropometric measures and circulating
estrogen metabolites in postmenopausal women. Fur-
ther, although current menopausal hormone therapy
(MHT) users have higher circulating estrogen/estrogen
metabolite levels [24, 25], it is unknown whether an-
thropometrics are associated with further differences in
circulating levels. Using cross-sectional data from the
Women’s Health Initiative (WHI) Observational Study
(OS), we examined whether current BMI, WHR, height,
and BMI at age 18 years were associated with circulating
levels of 15 estrogens/estrogen metabolites in postmeno-
pausal women by MHT use.

Methods
Study population
This study includes participants in a case-control study
of ovarian and endometrial cancers nested within the
WHI-OS [20, 26]. The WHI-OS is a prospective cohort
study in which researchers recruited 93,676 postmeno-
pausal women aged 50–79 years at 40 clinical centers
in the United States between 1993 and 1998 [27, 28].
At the baseline clinic visit, anthropometric measures
(height, weight, and waist and hip circumferences) were
measured and blood samples were collected. Addition-
ally, baseline self-administered questionnaires were
used to collect information on participants’ demo-
graphics, medical history, and health behaviors.
Details of the nested case-control study are described

elsewhere [20, 26]. In brief, cases were women with
ovarian or endometrial cancer diagnosed between study
enrollment and 2012. Control subjects were selected
from among those women who remained cancer-free at
the date of case diagnosis and were frequency-matched
to cases on the basis of age at baseline (5-year categor-
ies), year of blood draw (1993–1996, 1997–1998), race/
ethnicity (white, black, Hispanic, other/unknown), hys-
terectomy at baseline or during follow-up prior to the
index date (for ovarian control subjects only), and
MHT use (never, ≤1 year since last MHT use, >1 year
since last MHT use, current). Participants had no his-
tory of cancer (except nonmelanoma skin cancer), bilat-
eral oophorectomy, or hysterectomy (for endometrial
control subjects only), and had ≥1.1 ml of serum
available.
A total of 1835 women (507 cases and 450 control

subjects among never/former MHT users, 457 cases and
421 control subjects among current MHT users), repre-
senting 56,109 women when weighted back to the entire
cohort, were included in the study. Because all serum
samples were collected at baseline prior to cancer diag-
nosis (mean 6.7 years from baseline to cancer diagnosis),
we included both cases and control subjects in this
cross-sectional analysis.

Exposure assessment
Baseline measured height and weight as well as waist
and hip circumferences were used to calculate current
BMI (in kilograms per meter squared) and WHR, re-
spectively. BMI at age 18 years was estimated using
height and weight at age 18 years recalled via baseline
questionnaire. Current BMI was categorized into three
groups using the World Health Organization classifica-
tion cutpoints for overweight and obesity: <25.0 kg/m2

(normal), 25.0–29.9 kg/m2 (overweight), and ≥30 kg/m2

(obese) [29]. In secondary analyses, we subdivided the
obesity category by class (class 1: 30.0–34.9 kg/m2, class
2: 35.0–39.9 kg/m2, class 3: ≥40 kg/m2) [29] to further
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examine the potential dose-response relationship between
current BMI and estrogens/estrogen metabolites. WHR,
adult height, and BMI at age 18 years were categorized
into tertile groups based on the distributions in the entire
study population as follows: WHR <0.76, 0.76–0.82, ≥0.83;
height <160 cm, 160–164.9 cm, ≥165 cm; and BMI at age
18 years <20 kg/m2, 20–21.9 kg/m2, ≥22 kg/m2.

Laboratory assays
Aliquoted and batched serum samples were trans-
ferred to the Laboratory of Proteomics and Analytical
Technologies, Cancer Research Technology Program,
Leidos Biomedical Research, Inc. (Frederick, MD, USA),
for testing. The assay quantifies the combined concentra-
tions of conjugated and unconjugated forms of 2 parent
estrogens (estrone, estradiol) and 13 estrogen metabolites
(2-hydroxyestrone, 2-hydroxyestradiol, 2-methoxyestrone,
2-methoxyestradiol, 2-hydroxyestrone-3-methyl ether,
4-hydroxyestrone, 4-methoxyestrone, 4-methoxyestradiol,
16α-hydroxyestrone, estriol, 16-ketoestradiol, 16-epiestriol,
17-epiestriol), as well as the unconjugated concentration of
5 analytes (estrone, estradiol, estriol, 2-methoxyestrone, 2-
methoxyestradiol), in serum using a stable isotope dilution
liquid chromatography-tandem mass spectrometry
(LC-MS/MS) assay [25]. For the five estrogens/estro-
gen metabolites with unconjugated measurements,
their conjugated concentration was calculated by sub-
tracting the unconjugated concentration from the mea-
sured (combined) concentration. For the other ten
estrogen metabolites, unconjugated concentration was
not separately measured, owing to their low abundance
in unconjugated forms. (When we do not specify unconju-
gated or conjugated form, we refer to the combined mea-
sured concentration throughout the paper.) Assay reliability
was monitored using masked technical replicates across
batches. Coefficients of variation were <6% for all analytes;
intraclass correlation coefficients (ICCs) ranged from 0.93
to 0.996 (median 0.98) [20, 26]. Correlations among
the estrogens/estrogen metabolites ranged from 0.34
to 0.99 [20].

Statistical analyses
Because estrogen/estrogen metabolite levels vary by
MHT use [24, 25], all analyses were stratified on MHT
use (n = 957 never/former users, n = 878 current users).
Inverse probability sampling weights were used to ad-
just the data to represent the population in the entire
cohort using methods for secondary phenotype ana-
lysis of case-control data described by Li and Gail [30].
Sampling weights were calculated by taking the inverse
of sampling fractions: 1 for all cases, and varying
weights for control subjects, depending on their strata
as defined by matching factors. After log transform-
ation of data to improve normality, geometric means

(GMs) in picomoles per liter of individual serum estro-
gen/estrogen metabolite concentration by exposure
categories were estimated using inverse probability
weighted linear regression, adjusting for potential con-
founders: age at blood draw, blood draw year, race,
smoking status (never, former, current), and time since
menopause (<10 years, 10–19 years, ≥20 years, missing).
Additional adjustments for soy and alcohol intake did not
change the results and thus were not included in the final
models. For current BMI and WHR, we additionally ad-
justed for physical activity (0, 0.1–9.9, ≥10.0 metabolic
equivalents of task-h/week). We performed a test for
trend by including the exposure in the model as a
continuous variable. The percentage change in GMs
between the highest and the lowest categories was
estimated by taking the ratio of the GM difference
between the two categories over the GM of the lowest
category, multiplied by 100. We statistically tested for
the difference using a Wald test.
Several secondary analyses were performed. First, for

WHR and BMI at age 18 years (Spearman’s r ≤ 0.48 with
current BMI), we estimated the associations after add-
itional adjustment for current BMI to examine their
independent associations. Second, for current BMI
among never/former MHT users, we additionally ad-
justed for unconjugated estradiol to examine whether
the associations with individual estrogen metabolites
were driven by their correlations with unconjugated
estradiol, the estrogen/estrogen metabolite most strongly
correlated with current BMI (Spearman’s r = 0.46). Next,
using pathway groups, we investigated whether current
BMI was associated with altered patterns of estrogen me-
tabolism. We compared the mean proportions of parent
estrogens out of summed estrogens/estrogen metabolites
across BMI categories, with adjustment for the summed
concentration of estrogens/estrogen metabolites. Further,
because 2-, 4-, and 16-pathway metabolites (“child
metabolites”) are metabolized from a limited pool of
shared precursors (parent estrogens), an increase in
the level of one downstream pathway indicates a
reduction in levels of other competing pathways. To
address this, we modeled proportions of each child
metabolite pathway group (2-catechols [2-hydroxyestrone,
2-hydroxyestradiol]; methylated 2-catechols [2-meth-
oxyestrone and 2-methoxyestradiol]; 4-catechols [4-hydro-
xyestrone]; methylated 4-catechols [4-methoxyestrone,
4-methoxyestradiol]; 16-pathway metabolites [16α-
hydroxyestrone, estriol, 16-ketoestradiol, 16-epiestriol,
17-epiestriol]) out of summed child metabolites, with
adjustment for the summed concentration of child
metabolites. This approach estimates the association
with replacement of one pathway group for other path-
way groups while holding summed child metabolites
constant. We tested for any difference across BMI
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categories using a global F test; if there was a significant dif-
ference (p < 0.05), we performed pairwise t tests for three
different combinations of BMI comparisons (25–
29.9 kg/m2 vs. <25 kg/m2; ≥30 kg/m2 vs. <25 kg/m2; ≥30 kg/
m2 vs. 25–29.9 kg/m2).
Finally, because subclinical or underlying diseases may

influence the associations, we performed sensitivity ana-
lyses after excluding endometrial and ovarian cancer
cases (n = 507 never/former MHT users, n = 457 current
MHT users); excluding women with a history of diabetes
at baseline (n = 57 never/former MHT users, n = 28
current MHT users); excluding women with low BMI
(<18.5 kg/m2; n = 14 never/former MHT users, n = 14
current MHT users); and, among never/former MHT
users, excluding women using any potential hormone-
related medications (e.g., antiestrogens, glucocorticoid
steroids; n = 303). To test the robustness of our results,
we also repeated analyses after excluding outliers (≤10
values for never/former MHT users, ≤10 values for
current MHT users) identified using the extreme Stu-
dentized deviate many-outlier procedure [31] and after
further stratifying by never vs. former MHT users (n =
645 never MHT users, n = 312 former MHT users).
All statistical tests were two-sided with a 5% type I

error rate. Q values reflecting the false discovery rates
(FDRs) were calculated to account for multiple compari-
sons (25 tests per exposure). Analyses were conducted
with SAS version 9 software (SAS Institute, Cary, NC,
USA).

Results
Study population characteristics
The mean age was 64.6 years for never/former MHT
users and 61.3 years for current MHT users (Table 1).
Most women were white (89% among never/former
users, 94% among current users). Compared with never/
former MHT users, current users were more likely to
have been postmenopausal for <10 years (44% vs. 32%).
Mean current BMI, BMI at age 18 years, height, and
WHR were similar between the two groups. As ex-
pected, serum concentrations of all evaluated estrogens/
estrogen metabolites were higher in current MHT users
than in never/former users (Tables 2 and 3).

Current body mass index
Among never/former MHT users, higher current BMI
(≥30 vs. <25 kg/m2) was significantly associated with
higher levels of parent estrogens (GM 432 vs. 239 pmol/L
for estrone, 73.9 vs. 45.9 pmol/L for estradiol; p-trend <
0.001) and all of the 2-, 4-, and 16-pathway metabolites
evaluated (all p-trend ≤ 0.02) (Table 2). However, after
adjustment for unconjugated estradiol, these patterns did
not persist, and inverse associations were observed for un-
conjugated methylated 2-catechols (9.29 vs. 12.0 pmol/L,

p-trend < 0.001 for unconjugated 2-methoxyestrone; 1.88
vs. 2.37 pmol/L, p-trend = 0.002 for unconjugated 2-
methoxyestradiol) (Table 2). Similar dose-response trends
were found across classes 1–3 obesity (Additional file 1:
Table S1).
Among current MHT users, current BMI (≥30 vs. <25 kg/

m2) was not associated with parent estrogens (3201 vs.
3201 pmol/L for estrone; 414 vs. 444 pmol/L for estra-
diol; p-trend ≥ 0.13), but it was inversely associated with
methylated catechols (216 vs. 280 pmol/L, p-trend = 0.008
for 2-methoxyestrone; 73.7 vs. 92.6 pmol/L, p-trend = 0.02
for 2-methoxyestradiol; 23.1 vs. 28.9 pmol/L, p-trend =
0.02 for 4-methoxyestrone) (Table 3).
In secondary analyses among never/former MHT

users, the proportion of parent estrogens was signifi-
cantly higher in obese women (BMI ≥30 vs. <25 kg/
m2, 50.8% vs. 46.7%, respectively; p = 0.006) (Fig. 1).
Further, obese women had lower proportions of methyl-
ated 2-catechols (15.4% vs. 17.7%; p = 0.001) and methyl-
ated 4-catechols (1.5% vs. 1.8%; p = 0.003) and higher
proportions of 16-pathway metabolites (60.3% vs. 57.8%;
p = 0.0002) (Fig. 2). Similar results were found in over-
weight women; however, there was no statistically signifi-
cant difference in proportions between overweight and
obese women. Results were similar among current
MHT users, although the association with proportion
of parent estrogens was statistically nonsignificant (BMI
≥30 vs. <25 kg/m2, 56.4% vs. 54.3%, respectively; overall F
test p = 0.40) (Additional file 2: Figure S1, Additional file
3: Figure S2).

Waist-to-hip ratio
Among never/former MHT users, WHR (≥0.83 vs. <0.76)
was positively associated with parent estrogens (348
vs. 286 pmol/L for estrone, 62.5 vs. 50.2 pmol/L for
estradiol; p-trend ≤ 0.01) and nearly all of the 16-
pathway metabolites; however, in models mutually
adjusting for current BMI and WHR, only current
BMI remained significantly associated (Table 4). Among
current MHT users, WHR was not associated with
parent estrogens but was inversely associated with
methylated catechols, namely 2-methoxyestrone (219
vs. 272 pmol/L, p-trend = 0.03), 2-hydroxyestrone-3-
methyl ether (35.4 vs. 44.1 pmol/L, p-trend = 0.03),
and 4-methoxyestrone (22.8 vs. 28.6 pmol/L, p-
trend = 0.04); the associations did not remain signifi-
cant after adjustment for current BMI (Additional
file 4: Table S2).

Height
Height (≥165 vs. <160 cm) was not associated with circu-
lating estrogens/estrogen metabolites in postmenopausal
women, except for inverse associations with conjugated 2-
methoxyestrone (27.0 vs. 33.2 pmol/L, p-trend = 0.01) and
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4-methoxyestrone (3.90 vs. 4.59 pmol/L, p-trend = 0.03)
among never/former MHT users (Table 5).

Body mass index at age 18 years
Among never/former MHT users, BMI at age 18 years
(≥22 vs. <20 kg/m2) was positively associated with estra-
diol (64.1 vs. 49.8 pmol/L; p-trend = 0.04) but was not
associated with other estrogens/estrogen metabolites
(Additional file 5: Table S3). The association with estra-
diol did not remain after adjustment for current BMI
(data not shown), suggesting that the association may be
accounted for by current BMI. Among current MHT
users, BMI at age 18 years was not associated with estro-
gens/estrogen metabolites (Additional file 5: Table S3).

There was no statistically significant interaction between
BMI at age 18 years and current BMI (p-interaction >0.05)
(data not shown).
Most associations remained at 5% FDR (Tables 2, 3, 4

and 5, Additional file 1: Table S1, Additional file 4:
Table S2, Additional file 5: Table S3). Results were simi-
lar after excluding endometrial or ovarian cancer cases
at the time of last follow-up (Additional file 6: Table
S4), after excluding women who reported a history of
diabetes at baseline (data not shown), after excluding
women with low BMI (<18.5 kg/m2) (data not shown),
after excluding women using any potential hormone-
related medications (data not shown), and after further
stratifying by never vs. former MHT users (data not

Table 1 Characteristics of study population in the Women’s Health Initiative Observational Study

Characteristic Never or former menopausal hormone therapy users (n = 957) Current menopausal hormone therapy users (n = 878)

n % Weighted %a n % Weighted %a

Age at baseline blood draw

<55 years 82 8.6 8.7 101 11.5 16.8

55–59 years 177 18.5 17.3 194 22.1 25.8

60–64 years 230 24.0 21.0 218 24.8 23.9

65–69 years 201 21.0 23.1 178 20.3 18.3

70–74 years 170 17.8 19.3 135 15.4 11.2

75–79 years 97 10.1 10.6 52 5.9 4.0

Race

White 841 87.9 89.4 825 94.0 93.5

Year at blood draw

1993–1996 586 61.2 61.4 544 62.0 61.9

1997–1998 371 38.8 38.6 334 38.0 38.1

Smoking status

Never 488 51.0 50.2 427 48.6 45.9

Former 402 42.0 41.3 416 47.4 48.8

Current 67 7.0 8.5 35 4.0 5.3

Time since menopause

<10 years 299 32.9 31.5 349 39.7 44.0

10–19 years 359 39.5 38.7 330 37.6 34.8

≥ 20 years 250 27.5 29.9 199 22.7 21.1

Moderate- to vigorous-intensity physical activity

0 MET-h/week 205 21.4 19.9 145 16.5 18.4

0.1–9.9 MET-h/week 304 31.8 30.9 279 31.8 34.2

≥10.0 MET-h/week 448 46.8 49.3 454 51.7 47.4

Characteristic n Weighted na Weighted mean (SD) n Weighted na Weighted mean (SD)

Current BMI, kg/m2 953 30,814 27.0 (0.27) 877 25,152 26.6 (0.28)

BMI at age 18 years, kg/m2 933 30,149 20.6 (0.15) 859 24,661 20.5 (0.12)

Waist-to-hip ratio 952 30,720 0.81 (0.004) 877 25,152 0.79 (0.004)

Height, cm 956 30,817 162.2 (0.30) 877 25,152 163.1 (0.34)

BMI Body mass index, MET Metabolic equivalent of task
aWeighted percentages and weighted n reflect weighted counts and refer to the study cohort
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shown). Results also did not change after excluding
outliers (data not shown).

Discussion
To the best of our knowledge, this study is the first to
examine the relationships of anthropometric measures
with detailed serum estrogen/estrogen metabolite

measures in postmenopausal women by MHT use. In
this cross-sectional analysis, current measured BMI was
positively associated with parent estrogens and all estro-
gen metabolites evaluated among never/former MHT
users. Adjusted for unconjugated estradiol, current BMI
was inversely associated with methylated 2-catechols but
not with the other estrogen metabolites measured,

Table 3 Geometric means (pmol/L) and 95% CIs of serum estrogens/estrogen metabolites by current body mass index in
postmenopausal women currently using menopausal hormone therapy in the Women’s Health Initiative Observational Study

Geometric means (95% CI)a p-trendb %Δc p-diffd

<25 kg/m2 25–29.9 kg/m2 ≥30 kg/m2

Median (kg/m2) 22.4 27.2 33.1

n 445 257 175

Weighted ne 11,498 7844 5810

Estrone 3201 (2433–4212) 2668 (1960–3632) 3201 (2291–4472) 0.46 0.0 1.00

Conjugated 2930 (2208–3887) 2473 (1801–3396) 2896 (2046–4098) 0.48 −1.2 0.94

Unconjugated 227 (186–277) 191 (150–244) 205 (158–264) 0.18 −9.7 0.38

Estradiol 444 (339–582) 390 (292–522) 414 (300–572) 0.13 −6.8 0.62

Conjugated 368 (273–497) 327 (237–450) 341 (238–486) 0.13 −7.3 0.63

Unconjugated 42.5 (33.8–53.5) 42.9 (33.1–55.7) 50.8 (38.5–66.9) 0.15 19.5 0.17

2-Hydroxyestrone 462 (378–565) 382 (300–486) 422 (331–539) 0.21 −8.7 0.42

2-Hydroxyestradiol 109 (90.6–131) 89.1 (70.9–112) 98.3 (77.7–124) 0.16 −9.8 0.35

2-Methoxyestrone 280 (236–333) 219 (180–266) 216 (174–268) 0.008 −22.9 0.02

Conjugated 174 (142–215) 135 (108–169) 139 (109–177) 0.04 −20.1 0.05

Unconjugated 78.8 (62.4–99.5) 62.5 (45.6–85.8) 56.3 (41.3–76.8) <0.001f −28.6 0.02

2-Methoxyestradiol 92.6 (72.7–118) 70.1 (54.1–90.8) 73.7 (57.4–94.6) 0.02 −20.4 0.03

Conjugated 80.9 (62.0–105) 58.3 (43.8–77.5) 60.8 (46.3–79.7) 0.001g −24.8 0.01

Unconjugated 8.90 (7.56–10.5) 8.43 (6.86–10.4) 8.08 (6.49–10.1) 0.19 −9.2 0.38

2-Hydroxyestrone-3-methyl ether 44.2 (36.7–53.2) 34.8 (28.3–42.6) 36.8 (29.3–46.3) 0.04 −16.7 0.09

4-Hydroxyestrone 61.6 (50.2–75.5) 51.3 (40.2–65.4) 57.0 (44.4–73.1) 0.26 −7.5 0.50

4-Methoxyestrone 28.9 (24.2–34.6) 23.1 (19.0–28.0) 23.1 (18.7–28.6) 0.02 −20.1 0.04

4-Methoxyestradiol 12.3 (9.51–16.0) 9.61 (7.26–12.7) 9.98 (7.52–13.2) 0.04 −18.9 0.07

16α-Hydroxyestrone 247 (200–304) 200 (155–257) 227 (177–292) 0.28 −8.1 0.48

Estriol 1136 (897–1438) 966 (740–1261) 1075 (812–1424) 0.36 −5.4 0.67

Conjugated 988 (772–1264) 844 (638–1117) 914 (680–1227) 0.35 −7.5 0.57

Unconjugated 129 (106–158) 113 (89.3–142) 116 (90.3–148) 0.12 −10.1 0.29

16-Ketoestradiol 286 (231–354) 229 (178–295) 262 (203–339) 0.30 −8.4 0.47

16-Epiestriol 86.7 (71.1–106) 70.2 (56.5–87.3) 79.5 (62.7–101) 0.21 −8.3 0.44

17-Epiestriol 58.2 (47.6–71.3) 46.5 (37.2–58.1) 51.9 (40.6–66.4) 0.28 −10.8 0.31
aAdjusted for age at blood draw (<55, 55–59, 60–64, 65–69, 70–74, 75–79 years), blood draw year (1993–1996, 1997–1998), race (white, nonwhite), smoking status
(never, former, current), time since menopause (<10 years, 10–19 years, ≥20 years, missing), moderate- to vigorous-intensity physical activity (0, 0.1–9.9, ≥10 meta-
bolic equivalents of task-h/week)
bp-trend was estimated using the Wald test for continuous body mass index (BMI; kilograms per meter squared)
c%Δ indicates the percentage change in estrogen/estrogen metabolite levels, comparing women with current BMI ≥30 vs. <25 kg/m2, and was estimated by
taking the ratio of the geometric mean difference in estrogen/estrogen metabolite levels between women with current BMI ≥30 vs. <25 kg/m2 to the geometric
mean of women with current BMI <25 kg/m2, multiplied by 100
dp-diff was estimated using the Wald test and indicates a p value for comparing estrogen/estrogen metabolite levels of women with current BMI ≥30 vs. <25 kg/m2

eWeighted n reflects weighted counts and refers to the study cohort
fFalse discovery rate (FDR) q value <0.01
gFDR q values <0.05 and ≥0.01
Note: Italized p-values indicate nominal statistical significance at 0.05
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suggesting that associations with individual estrogen me-
tabolites among never/former MHT users were driven
largely by their correlations with unconjugated estradiol.
Associations with measured WHR were not independent
of current BMI, suggesting that the associations were
driven by overall adiposity rather than by fat distribution
per se. BMI at age 18 years and height were not associ-
ated with postmenopausal estrogen/estrogen metabolite
levels.
Our findings of positive associations between current

BMI and parent estrogens are consistent with those
from previous studies [8, 21–23, 32–34]. A pooled
analysis of eight studies estimated 83% higher levels of
circulating total estradiol and 60% higher levels of total
estrone in postmenopausal obese women (BMI ≥30 kg/m2)
compared with lean women (BMI <22.5 kg/m2) [8]. These
findings are also in line with biological evidence that
supports the major source of estrogens in postmeno-
pausal women being via aromatization of androgens in
adipose tissue [35, 36]. Further, although few studies
have examined the associations in current MHT users,
our findings are consistent with data from the Nurses’
Health Study regarding unconjugated estradiol BMI
(≥30 vs. <25 kg/m2) associations in both never/former
and current MHT users and the finding of stronger positive
associations in never/former users (62% vs. 22% change in

estradiol levels) [23]. In the present study, unconju-
gated estradiol was consistently positively associated
with current BMI (≥30 vs. <25 kg/m2) among both
never/former (130% change) and current MHT users
(20% change), although the association was not statisti-
cally significant in current MHT users. The differential
associations between BMI and parent estrogens by
MHT use mirror the similar differential associations of
BMI with cancer risk [37, 38], further supporting the
notion that endogenous estrogens may mediate the
BMI-cancer association, although alternative mechanisms
may also exist [24, 39, 40]. The positive associations of
BMI with postmenopausal breast cancer [37, 38] and
endometrial cancer [41, 42] risk have been found consist-
ently in women not using MHT; however, the associations
have been weakly positive or near null among current
MHT users [37, 38, 41, 42], possibly owing to a threshold
effect of circulating estrogens in current MHT users.
Current MHT users have higher circulating levels of
estrogens; thus, increased estrogen production by adi-
pose tissue may not contribute to further increase in
cancer risk. Moreover, given the high estrogen levels in
current MHT users, the association with BMI on the
relative scale may be masked, whereas an absolute dif-
ference in estrogen concentration may be apparent, as
in never/former users.

Fig. 1 Percentages of parent estrogens (estradiol and estrone) and child estrogen metabolites (2-, 4-, and 16-hydroxylation pathway metabolites)
out of summed estrogens/estrogen metabolites by current body mass index (BMI) among never or former menopausal hormone therapy usersa.
Adjusted for age at blood draw (<55, 55-59, 60-64, 65-69, 70-74, 75-79 years), blood draw year (1993-1996, 1997-1998), race (white, non-white),
smoking status (never, former, current), time since menopause (<10, 10-19, ≥20 years, missing), moderate- to vigorous-intensity physical activity (0,
0.1-9.9, ≥10 MET-hr/wk), summed concentration of estrogens/estrogen metabolites (continuous, pmol/L).
Note: Summed estrogens/estrogen metabolites include the summed concentration of parent estrogens (estrone, estradiol) and child metabolites
(2-hydroxyestrone, 2-hydroxyestradiol, 2-methoxyestrone, 2-methoxyestradiol, 2-hyroxyestrone-3-methyl ether, 4-hydroxyestrone, 4-methoxyestrone,
4-methoxyestradiol, 16α-hydroxyestrone, estriol, 16-ketoestradiol, 16-epiestriol, 17-epiestriol).
aOverall F-test p=0.02.
bP-value for comparing percent parent estrogens between women with current BMI 25-29.9 vs. <25 kg/m2 was 0.11.
cP-value for comparing percent parent estrogens between women with current BMI ≥30 vs. 25-29.9 kg/m2 was 0.10. P-value for comparing percent par-
ent estrogens between women with current BMI ≥30 vs. <25 kg/m2 was 0.006.
BMI body mass index
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To date, few studies have examined current BMI in re-
lation to estrogen metabolism beyond parent estrogens.
Earlier studies measured only two estrogen metabolites
that have been thought to be the most and the least
carcinogenic: 16α-hydroxyestrone and 2-hydroxyestrone,
respectively [43–46]. These earlier studies have shown
an inverse association between adiposity and the ratio of
urinary 2-hydroxyestrone to 16α-hydroxyestrone in both
pre- and postmenopausal women [44, 45, 47]. In a more
recent analysis in the Prostate, Lung, Colorectal, and
Ovarian Cancer Screening Trial cohort, self-reported
BMI was positively correlated with all 15 serum estro-
gens/estrogen metabolites among postmenopausal women
who had never used MHT [34]; however, whether the
associations with estrogen metabolites remained after
accounting for correlations with parent estrogens was
not assessed. Although we observed similar positive
associations with estrogens/estrogen metabolites using
measured BMI among never/former MHT users in the
present study, the associations did not remain after
adjustment for unconjugated estradiol. Similarly to our
findings of inverse associations between BMI and meth-
ylated 2-catechols after adjusting for unconjugated
estradiol in postmenopausal women, researchers in a
study of premenopausal women found that BMI was

inversely associated with most methylated catechols mea-
sured in urine [48]. In our secondary analyses, we also ob-
served that obese women appeared to be less likely to
metabolize parent estrogens into child metabolites in
general but more likely to favor metabolism of parent es-
trogens into 16-pathway estrogen metabolites over 2- or
4-methylated catechols. Our findings provide novel, add-
itional detailed information about patterns of estrogen
metabolism. They are in line with results from a previous
study that evaluated 12 estrogens/estrogen metabolites in
prepubertal girls and observed higher levels of 16α-
hydroxyestrone and lower levels of 2-methoxyestradiol in
obese girls (BMI >95th percentile vs. 10th–85th percent-
ile) [49]. Although the exact mechanisms for this relation-
ship are not clear, reduced catechol-O-methyltransferase
(COMT) activity associated with obesity [50] and/or sup-
pressed COMT activity by estradiol [51, 52] may explain
the decreased methylation of catechols with increased
BMI observed in the present study. Methylation prevents
catechols from metabolizing into quinones, which can
form quinone adducts and induce oxidative DNA
damage [53]. Further, reduced levels of methylated 2-
catechols in obese women (BMI ≥30 vs. <25 kg/m2) are also
in line with studies that have consistently shown lower
ratios of 2-pathway metabolites to parent estrogens to be

Fig. 2 Percentages of each pathway estrogen metabolites (2-catechols, methylated 2-catechols, 4-catechols, methylated 4-catechols, 16-pathway
metabolites) out of summed child estrogen metabolites by current body mass index (BMI) among never/former menopausal hormone therapy users.
Adjusted for age at blood draw (<55, 55-59, 60-64, 65-69, 70-74, 75-79 years), blood draw year (1993-1996, 1997-1998), race (white, non-white), smoking
status (never, former, current), time since menopause (<10, 10-19, ≥20 years, missing), moderate- to vigorous-intensity physical activity (0, 0.1-9.9, ≥10
MET-hr/wk), summed concentration of child estrogen metabolites (continuous, pmol/L). Note: Summed child estrogen metabolites include the following
estrogen metabolites: 2-catechols (2-hydroxyestrone, 2-hydroxyestradiol), methylated 2-catechols (conjugated and unconjugated 2-methoxyestrone,
conjugated and unconjugated 2-methoxyestradiol, 2-hyroxyestrone-3-methyl ether), 4-catechols (4-hydroxyestrone), methylated 4-catechols (4-methox-
yestrone, 4-methoxyestradiol), 16-pathway metabolites (16α-hydroxyestrone, conjugated and unconjugated estriol, 16-ketoestradiol, 16-epiestriol,
17-epiestriol). aFor 2-catechols, overall F-test p=0.89. bFor methylated 2-catechols, overall F-test p=0.001. P-values for comparing women with
current BMI 25-29.9 vs. <25 kg/m2 was 0.002, comparing women with current BMI ≥30 vs. 25-29.9 kg/m2 was 0.57, and comparing women with current
BMI ≥30 vs. <25 kg/m2 was 0.001. cFor 4-catechols, overall F-test p=0.59. dFor methylated 4-catechols, overall F-test p=0.0002. P-values for comparing
women with current BMI 25-29.9 vs. <25 kg/m2 was <0.0001, comparing women with current BMI ≥30 vs. 25-29.9 kg/m2 was 0.82, and comparing
women with current BMI ≥30 vs. <25 kg/m2 was 0.003. eFor 16-pathway metabolites, overall F-test p<0.0001. P-values for comparing women with
current BMI 25-29.9 vs. <25 kg/m2 was 0.0003, comparing women with current BMI ≥30 vs. 25-29.9 kg/m2 was 0.78, and comparing women with
current BMI ≥30 vs. <25 kg/m2 was 0.0002.BMI body mass index
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associated with higher postmenopausal breast cancer risk
[17–19].
In the present study, we did not observe associations

of WHR with estrogens/estrogen metabolites after ad-
justment for current BMI. Similarly, in studies where
body fat distribution was measured by dual-energy X-ray
absorptiometry [32] or measured WHR [33], central
obesity was not associated with circulating unconjugated
estradiol independent of BMI among postmenopausal
women not using MHT, suggesting that body fat distri-
bution does not provide additional information about
circulating estradiol beyond what overall adiposity (as
measured by BMI) provides.
In the present study, adult height and BMI at age

18 years were not associated with estrogens/estrogen
metabolites after adjustment for current BMI. BMI at
age 18 years and height may indicate early-life nutri-
tional status, which may not influence estrogen me-
tabolism in postmenopausal women. In a study of
premenopausal women, BMI at age 18 years was not
associated with urinary estrogen/estrogen metabolite
levels; however, contrary to our findings, height was
inversely associated with urinary parent estrogens and
2-pathway metabolites in the same study [48]. The dif-
ference in results may be due to the variation in study
populations (e.g., age, menopausal status) or biospeci-
men used (circulating vs. excreted levels).
We acknowledge several limitations of this study. We

measured circulating estrogens/estrogen metabolites in a
single baseline serum sample. However, in a previous
study using the same assay we used, researchers showed
moderate to high 1-year ICCs in postmenopausal
women for parent estrogens (0.72 for estrone, 0.65 for
estradiol) and most estrogen metabolites of 2-, 4-, and
16-pathways (range 0.35–0.53), with the exception of 2-
methoxyestrone (0.10) and 2-hydroxyestrone-3-methyl
ether (0.14) [17], suggesting that measured serum estro-
gens/estrogen metabolites may also adequately represent
postmenopausal levels over at least 1 year. BMI at age
18 years was based on self-reported height and weight.
However, measurement error in this context is unlikely
to be related to serum estrogen levels and, if present,
would likely underestimate the associations. Although
we cannot exclude the possibility of false-positives, most
associations with current BMI remained at 5% FDR.
Despite these limitations, this study has important

strengths. Whereas most epidemiologic studies have
used self-reported measures, measurement error in the
present study was reduced by using measured height,
weight, and waist and hip circumferences. Use of a
high-performance LC-MS/MS assay also allowed com-
prehensive evaluation of individual estrogens/estrogen
metabolites with high reliability, sensitivity, and specifi-
city. By stratifying the analysis by MHT use, we were

able to take into account variations in estrogen/estro-
gen metabolite levels by exogenous hormone use. Fur-
ther, use of a large sample size and careful adjustment
for potential confounders assessed at blood collection
increased the validity of the results.

Conclusions
In this comprehensive analysis of measured anthropo-
metrics and serum estrogens/estrogen metabolites, we
observed strong positive associations between current
BMI and parent estrogens in postmenopausal women
not using MHT. Adjusted for unconjugated estradiol,
current BMI was also associated with lower levels of
methylated catechols among both never/former and
current MHT users. Similar estrogen metabolism pat-
terns have previously been associated with higher breast
cancer risk; thus, these findings further support the need
to prospectively evaluate the roles of endogenous estro-
gens/estrogen metabolites in the BMI-breast cancer risk
association.
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