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Abstract

Introduction: Transforming growth factor beta (TGF{) plays a major role in the regulation of tumor initiation,
progression, and metastasis. It is depended on the type Il TGF{3 receptor (TBRII) for signaling. Previously, we have
shown that deletion of TBRII in mammary epithelial of MMTV-PyMT mice results in shortened tumor latency and
increased lung metastases. However, active TGF(3 signaling increased the number of circulating tumor cells and
metastases in MMTV-Neu mice. In the current study, we describe a newly discovered connection between
attenuated TGFf{3 signaling and human epidermal growth factor receptor 2 (HER2) signaling in mammary tumor
progression.

Methods: All studies were performed on MMTV-Neu mice with and without dominant-negative TBRII (DNIIR) in
mammary epithelium. Mammary tumors were analyzed by flow cytometry, immunohistochemistry, and
immunofluorescence staining. The levels of secreted proteins were measured by enzyme-linked immunosorbent
assay. Whole-lung mount staining was used to quantitate lung metastasis. The Cancer Genome Atlas (TCGA)
datasets were used to determine the relevance of our findings to human breast cancer.

Results: Attenuated TGF( signaling led to a delay tumor onset, but increased the number of metastases in
MMTVNeu/DNIIR mice. The DNIIR tumors were characterized by increased vasculogenesis, vessel leakage, and
increased expression of vascular endothelial growth factor (VEGF). During DNIIR tumor progression, both the levels
of CXCL1/5 and the number of CD11b+Gr1+ cells and T cells decreased. Analysis of TCGA datasets demonstrated a
significant negative correlation between TGFBR2 and VEGF genes expression. Higher VEGFA expression correlated
with shorter distant metastasis-free survival only in HER2+ patients with no differences in HER2-, estrogen receptor
+/- or progesterone receptor +/- breast cancer patients.

Conclusion: Our studies provide insights into a novel mechanism by which epithelial TGF signaling modulates the
tumor microenvironment, and by which it is involved in lung metastasis in HER2+ breast cancer patients. The effects of
pharmacological targeting of the TGF(3 pathway in vivo during tumor progression remain controversial. The targeting
of TGF{ signaling should be a viable option, but because VEGF has a protumorigenic effect on HER2+ tumors, the
targeting of this protein could be considered when it is associated with attenuated TGF@3 signaling.
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Introduction

Transforming growth factor-beta (TGEp) is a homodimeric
polypeptide, which includes three isoforms: TGEp1, TGF[2
and TGEP3. Secreted TGEP binds to TGEP receptor II
(TPRI) and forms a heterodimeric complex with TGEp re-
ceptor I (TPRI). The activated TPRI phosphorylates intra-
cellular Smad2 and Smad3 (canonical TGEB pathway).
Simultaneously, phosphorylation of TPRII activates PI3K,
MAP3k1, PP2A, RHOA and others (non-canonical path-
way) [1]. TGEB plays a major role in the regulation of
tumor initiation, progression, and metastasis, which re-
quires TPRII for signaling [1].

It has been published that decreased expression or loss
of TPRII correlates with an increased risk of developing
invasive breast cancer [2]. Contrary to this fact, in
mouse models of cancer, the inhibition of TGEp signal-
ing with the expression of dominant-negative TPRII
(DNRII) or deletion of TPRII increases cellular prolifera-
tion without initiating tumor development [3,4]. There-
fore, the assumption is that attenuated TGEp signaling
alone is insufficient for transformation. In our previous
research article it was indicated that deletion of TPRII in
mammary epithelial of mouse mammary tumor virus
(MMTV)-polyoma middle T antigen (PyMT) mice re-
sults in shortened tumor latency and a five-fold increase
in lung metastases compared to MMTV-PyMT tumors
with intact TGEp signaling [5,6]. The mechanisms be-
hind this phenotypic difference are correlated with the
increased expression of CXCL1, CXCL5 and CCL20
[7,8]. Abrogated TGFp signaling in carcinoma cells can
indirectly promote progression of MMTV-PyMT tumor
and metastasis by polarization T cells to Th17 cells via
accumulation of CD11b"Gr1" cells [9]. Additionally, epi-
thelial TGEp signaling regulates fibroblast recruitment
and activation. Our recent article confirmed the fact that
fibroblast-stimulated carcinoma cells utilize TGEP sig-
naling to drive single-cell migration, but migrate collect-
ively in the absence of TGFp signaling, which promotes
mammary tumor invasion [10].

Mammary tumorigenesis has been examined through
the use of numerous transgenic mouse models with wide
utilization of the MMTYV promoter/enhancer to drive
expression in mammary epithelium. Overexpression of
ErbB2 (Neu, human epidermal growth factor 2 (HER2))
or a constitutively active version of this receptor in the
mammary epithelium leads to the development of
metastatic mammary tumors [11-13]. Concurrently,
overactivation of the ErbB2 pathway correlates with
poor clinical prognosis in breast cancer patients [14].
Using Neu-induced mammary tumor models with in-
creased activity of TGEP signaling (MMTV/ALK5 and
MMTV/TGEBL), it was possible to induce that active
TGEP signaling accelerates metastasis and the number
of circulating tumor cells [15-17]. The loss-of-function
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experiments through the expression of soluble betagly-
can or a DNIIR has been reported to suppress metasta-
sis in Neu-induced mammary tumors [16,18].

Based on these data we decided to examine the connec-
tion between TGEFp and Neu signaling in mammary tumor
progression using MMTV-Neu and MMTV-Neu**2d
induced tumorigenesis [13]. The transgenic strains in con-
junction with mice expressing DNIIR were used in the
mammary epithelium to investigate the effect of attenu-
ated TGFp signaling on tumorigenesis and metastasis. We
found that attenuation of TGEp signaling with DNIIR pro-
longed tumor latency and dramatically enhanced pulmon-
ary metastasis. The mechanism was different from that
reported for the MMTV-PyMT model with conditional
deletion of TPRIL Increased chemokine secretion through
the knockout of carcinoma cells with resultant influx of
CD11b"Grl" myeloid cells increased metastasis [9]. In the
MMTV-Neu model with DNIIR, there was no difference
in chemokine secretion increase by the carcinoma cells
and no increase in immature myeloid cell infiltration. In-
stead, there was reported increased secretion of vascular
endothelial growth factor (VEGF), diminished pericyte
coverage of vessels, and increased vessel leakiness and vas-
culogenesis. These symptoms likely act as the mechanism
for the increased number of metastases. Lastly, analysis of
human breast cancer transcriptome databases demon-
strated a significant correlation between decreased TGFBR2
and increased VEGFA gene expression similar to what was
observed in the mouse models. Higher VEGFA gene ex-
pression was correlated with poor survival only in HER2-
positive (HER2+) patients.

Methods

Mice and cell lines

All studies were performed on 202Mul and NK1Mul mice.
To generate the mice with DNIIR-dominant-negative TBRII
(202Mul/DN and NK1Mul/DN) 202Mul or NK1Mul mice
ordered from Jackson Laboratory (Bar Harbor, ME, USA)
and mice with expressed dominant-negative TPRII
were crossed [19]. The mice are proven to be on
pure FVB background. The studies were approved by
IACUC at Vanderbilt University Medical Center, Nashville,
TN, USA.

The 202Mul and 202Mul/DN carcinoma cell lines were
derived from primary tumors of 202Mul and 202Mul/DN
mice, established and cultured in DMEM/F12 with 5%
adult bovine serum. These carcinoma cells were implanted
into the mammary fat pad of the #4 mammary gland via
collagen plugs (CP) (5 x 10> cells/plug). CP were prepared
by suspending carcinoma cells (5 x 10°/plug) in collagen
solution (50 mkl/plug), followed by pipette of this mixture
(50 mkl) to 12-well dishes and incubation at 37°C for 45
minutes to solidify the gel. Then CP were overlaid with
medium and incubated for an additional 4 to 18 hours at
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37°C. The collagen mixture contained rat-tail collagen type
I (BR Biosciences, San Jose, CA, USA), 10 x Earle’s Balanced
Salt Solution (EBSS, Gibco), NaHCO3, 1 M NaOH, and
sterile ddH,O. The size of tumors was determined by direct
measurement of tumor dimensions at 2 to 3 day intervals
using calipers.

Flow cytometry analysis

Single-cell suspensions were made from the spleens of
tumor-bearing mice [20,21], and tumor tissues [22]. Ex-
cised tumors were chopped into small pieces, incubated
in DMEM (Gibco, Life Technologies, Grand Island, NY,
USA) with no serum, 1 mg/mL collagenase I (Sigma, St.
Louis, MO, USA), and 1 mg/mL Dispase II (Roche) for
2 hours at 37°C, and then passed through a cell strainer.
Total cell numbers were counted, and CD45" cell po-
pulations that represented tumor-infiltrating host im-
mune cells were analyzed by flow cytometry. After
treatment with FcR Blocking Reagent (Miltenyi Biotec
Inc., Auburn, CA, USA), tumor single-cell suspensions
(10° cells/mL) were labeled using fluorescein-conjugated
antibodies (Abs) (Biolegend, eBiosciense, BD, all from
San Diego, CA, USA) for 20 minutes on ice. Data acqui-
sition was performed on a LSRII flow cytometer (BD
Immunocytometry Systems, Franklin Lakes, NJ, USA),
and the data were then analyzed with FlowJo software.
Nonviable cells were excluded using 4',6-diamidino-2-
phenylindole (DAPI). Antigen negativity was defined as
having the same fluorescent intensity as the isotype
control.

ELISA

Cytokine levels in conditional media and tissue lysates were
measured using the mouse CXCL1, CXCL5, MCP-1, VEGE,
and IL-6 ELISA Duo kits (R&D Systems, Minneapolis, MN,
USA) following the manufacturer’s protocol.

Histology, IHC, and IF staining

Tissues were embedded directly in an optimal cutting
temperature compound without fixation or placement in
10% formalin overnight, and then embedded in paraffin
and sectioned at 5 um. Sections were de-waxed in xylene
and rehydrated in successive ethanol baths. For immuno-
histochemistry (IHC), the MOM kit was used (Vector).
H&E and CD34 staining were performed in Translational
Pathology Shared Resources (Vanderbilt University,
Nashville, TN, USA). For immunofluorescence (IF) staining,
primary and secondary antibodies were diluted in 12% BSA,
and then mounted in DAPI that contained a SlowFade
medium (Invitrogen). Antibodies used for staining were
NG2 (1:200; Abcam), CD31 (1:200; BD Biosciences),
5-bromo-2’-deoxyuridine (BrdU) (BD Biosciences). Quanti-
fication of staining was performed using Image] software
(National Institutes of Health, Bethesda, MD, USA) in
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accordance with the recommended guidelines. H&E and
IHC sections were photographed using the OLYMPUS
BX41 microscope and OLYMPUS DP2-BSW software.
Slides for H&E and CD34 staining of lungs were scanned
using the Leica SCN400 slide scanner with 20 x objective.
Slides were photographed using a ZEISS Axioplan 2 micro-
scope, and then numbered using MetaMorph software.

Whole-lung mounting

Mice were sacrificed by anesthetic overdose. Lungs were
processed as described in the previously published article
[23]. The tumor nodules in lungs were then counted.

Cytokine antibody array

Cells (10°) were plated on a 6-wells plate in 3 mL of
DMEM/F12 with 5% of adult bovine serum. Condi-
tional medium was collected after 18 hours, and se-
creted proteins were screened using the RayBio Mouse
Cytokine Antibody Array C Series 1000 (RayBiotech
Inc., Norcross, GA, USA) according to the manufac-
turer’s instructions.

Western blot analysis

Cells or tissue were lysed in radioimmunoprecipitation
assay buffer containing protease inhibitors cocktail (Roche
Diagnostics, Indianapolis, IN, USA). Total protein con-
centrations were quantified with the Pierce BCA Protein
Assay Kit (Pierce Biotechnology, Rockford, IL, USA).
Equal amounts of protein (30 to 60 pg/well) were resolved
in NuPAGE Novex 4 to 12% Bis-Tris polyacrylamide
gel in the presence of 1 x MES buffer (2-(N-morpho-
lino)ethanesulfonic acid; Invitrogen) and transferred to
a polyvinylidene fluoride membrane Immobilon-FL
(Millipore Bioscience Research Reagents, Temecula, CA,
USA). Anti-Akt (Cell Signaling, 9272), ph-Akt (Cell signal-
ing, 4060), actin (Sigma, A2066) and secondary anti-Rabbit
(Thermo Scientificm 31462) were used at 1:1,000, 1:1,000,
1:2,000 and 1:5,000 dilutions, respectively. After treatment
with appropriate peroxidase-conjugated secondary anti-
body, the bands were visualized with an enhanced chemilu-
minescence method [24]. The intensity of protein bands
was quantified by a densitometer using Image] 1.45 s soft-
ware (National Institutes of Health).

Proliferation assays

For in vivo experiments BrdU incorporation was used
by injecting 100 pL of 1 mg/mL BrdU 2 hours prior to
performing euthanasia of animals. For in vitro experi-
ments *H-thymidine incorporation was performed for
2 hours prior to conducting measurement with a scin-
tillation counter, whereby mean cpm were normalized
to untreated cells. Cells were plated in 24-well culture
dishes at 4x10* per well. TGEBl (R&D Systems,
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Minneapolis, MN, USA) treatment was performed in
normal serum-containing media for 24 hours.

Statistical analysis

Data were presented as mean + standard error of the
mean (SEM). Multiple comparisons between the treat-
ment groups and the control untreated group were per-
formed using one-way analysis of variance (ANOVA)
followed by Dunnett’s procedure for multiplicity adjust-
ment. Two-group comparisons were performed using
the two-sample ¢-test. Among the 1,056 human breast
tumor tissue samples from The Cancer Genome Atlas
Breast Cancer (TCGA BRCA) depository, 531 samples
have both gene expression and clinical data available and
were therefore used for the following analysis. Samples
with low versus high TPRII expression were compared
to their CXCL1, CXCL5, MCP-1, IL-6, and VEGF ex-
pression levels usingthe Wilcoxon rank-sum test for all
patients as well as stratified by estrogen receptor (ER),
progesterone receptor (PR), and HER2 status separately.
The findings were validated using six independent GEO
datasets (4992, 6532, 2990, 12093, 3494, and 10886). How-
ever, HER2 status was not available in these GEO datasets.
Breast cancer subtype classifiers were available in the litera-
ture. In this study patient subtype was predicted using the
PAMS50 classifier (R package, genefu 1.0.9 [25-27]). The as-
sociation between distant metastasis-free survival (DMFS)
and VEGF was analyzed using publicly available databases
(GEO, EGA, and TCGA) for breast, ovarian, and human
lung tumors from [28]. All tests are two-sided and signifi-
cant at the 5% level. All statistical analysis for human breast
cancer data was performed in R 3.0.2 [29].

Results
Attenuated TGFp signaling increases tumor latency and
metastasis in neu-induced mammary tumorigenesis
In our study, we used two MMTV-Neu-induced genetically
engineered mouse (GEM) models of mammary cancer.
Mice expressing inactivated ErbB2 (202Mul) [11] and mice
expressing constitutively activated ErbB2 (NK1Mul) [13]
were crossed with mice expressing a DNIIR [30]. Mice
with intact TGEp signaling in the mammary gland were
the control group (202Mul, NK1Mul), and mice with
modified TGEP signaling comprised the experimental
group (202Mul/DN, NK1Mul/DN). Our tumor models
were slightly different compared to the models published
several years ago by other investigators (Figure 1A) [16],
where the authors used the MMTV-Neu mouse model
with Y1144 (YB) and Y1227 (YD) mutation in ErbB2 to
activate specific HER2 signaling pathway - Shc or Grb2, re-
spectively [31].

Median tumor latency for 202Mul mice was 220 days
(Figure 1B) and for activated Neu it was 161 days
(Figure 1C). The addition of a DNIIR increased tumor
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latency to 301 days, P = 0.04, for 202Mul/DN mice and
to 220 days, P =0.02, for NK1Mul/DN mice. Morph-
ology of tumor tissue was analyzed at 5, 9, and 12 weeks
after tumor palpation. No significant difference was
observed in tumor weight at the last time point
(12 weeks) between control and experimental groups
(Figure 1D). Nonetheless, during initial stages of the
experiment (5 weeks), tumors appeared to grow slower
in DNIIR mice in comparison with the control mice.

In parallel with spontaneous tumorigenesis, we estab-
lished mammary carcinoma cell lines and implanted
them into mammary fat pads via CP. We observed simi-
lar kinetics to our spontaneous model where tumors
expressing DNIIR grew slowly in the beginning of ex-
periment, but achieved the same size as those without
DNIIR expression by the time of sacrifice (Figure 1E).

To analyze lungs for metastasis, we sacrificed mice
12 weeks after conducting tumor palpation or implant-
ation of carcinoma cells to the mammary fat pad. In all
models, we observed a significant increase in the num-
ber of lung metastasis: 5.5 times higher in 202Mul mice
(P <0.001), almost 12 times higher in mice with activated
Neu (P =0.02) and 6.7 times higher in mice with orthotopic
implantation of mammary carcinoma cells (P=0.01)
(Figure 1F, 1G). IHC staining for CD34 showed that
most metastases were extravascular with increased vasculo-
genesis in mice with DNIIR (Additional file 1: Figure S1).

Attenuated TGFp signaling in the mammary gland
increases tumor angiogenesis

Tumor latency was the only significant difference ob-
served in the two different Neu-induced tumor models
NK1Mul versus 202Mul and NK1Mul/DN versus 202Mul/
DN (Figure 1B, C). Upon sacrifice, we found that vessels
coming into and out of the tumor tissue are significantly
larger in mice with DNIIR than in MMTV-Neu mice
(Figure 2A). In orthotopically implanted CP with carcinoma
cells, we found visually more abundant vasculature in mice
with NKIMul/DN tumors versus NK1Mul (Figure 2B).
Examination of the histopathology of the primary tumor
showed typical adenocarcinoma common to the MMTV-
Neu models for both type of mice (Figure 2C). NK1Mul/
DN tumors exhibited multiple zones of necrosis.

Also, we analyzed vessel structure by IHC staining for
CD31, as a marker of endothelial cells, (Figure 2D) and
found that vessels in DNIIR mice are larger in diameter
with necrosis between them. Number of large vessels was
dramatically increased in mice with DNIIR (Additional file
1: Figure S2). Similar to the primary tumor, lung metastases
of DNIIR tumors have also increased vessel presence as ob-
served in CD34 staining (Additional file 1: Figure S1). Vis-
ual increase in angiogenesis in mice with DNIIR
(Figure 2B), encouraged us to analyze pericyte cover-
age of vessels in tumor tissue. We found fewer vessels
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Figure 1 Tumor latency and metastasis in mouse mammary tumor virus (MMTV)-Neu mice with dominant-negative (DN) transforming
growth factor 8 (TGFp) receptor Il (DNIIR). (A) Differences in two MMTV-Neu tumor models between a previously published model [16] and
the models used in the current study. (B) Mammary tumor latency in 202Mul versus 202Mul/DN mice and (C) NK1Mul versus MK1Mul/DN mice.
Age of onset is the time that a palpable mammary tumor first appears. Ts, denotes the age at which 50% of mice first possess a tumor, and n is
the number of mice examined. (D) Weight of tumor tissue in NK1Mul and NK1Mul/DN mice at different time points after tumor palpation. The
total weight of tumors from all 10 mammary glands is indicated. (E) Tumor volume measured by caliper every 3 days after implantation into mammary
fat pad via collagen plugs containing MMTV-Neu or MMTV-Neu/DNIIR carcinoma cell lines from NK1Mul or NKTMul/DN mice, respectively. Five mice per
group were used. (F) Representative H&E sections illustrated metastasis in lungs of 202Mul and 202Mul/DN mice. Black box indicates area selected to
represent CD34 IHC staining in Additional file 1: Figure S1. (G) Number of metastatic foci in lungs by using different tumor models: 202Mul mice, Nk1Mul
mice and orthotopic implantation of carcinoma cells. Data shown on a scatter plot with median and interquartile range; n is the number of mice
examined; percentage indicates number of mice with metastasis; non-parametric Mann-Whitney test.

wrapped by pericytes in DNIIR mice (Figure 2E). To non-epithelial (Ep-CAM™) cells and detected as
confirm this finding, we performed flow cytometry PDGFRB'PDGFRa. The number of these cells was
analysis of pericyte number in tumor tissue (Figure 2F, decreased two-fold in NK1Mul/DN tumors versus
Additional file 1: Figure S2). Single-cell suspensions of =~ NK1Mul tumors (P = 0.005). Based on increased angio-
tumor tissue were gated for non-immune (CD457), genesis, larger vessels, and deceased number of
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Figure 2 Increased angiogenesis and proliferation in mammary carcinomas of mouse mammary tumor virus (MMTV)-Neu mice with
dominant-negative (DN) transforming growth factor B (TGF) receptor Il (DNIIR). (A) Autopsy of mice with spontaneous tumor formation
of the mammary gland, which indicates increased tumor vasculature in mice with DNIIR expression. (B) Isolated tumor tissue on 12" week after
implanted carcinoma cells via collagen plugs to the mammary fat pad. (C) H&E staining indicated morphological changes in control (NK1Mul)
and experimental mice (NKTMul/DN). (D) Immunohistochemistry (IHC) staining of frozen sections for endothelial cell marker CD31. Staining was
performed with hematoxylin (blue) to counterstain all nuclei. (E) Immunofluoresence staining of frozen sections for the endothelial cells CD31
(green), pericyte marker NG2 (red) and nuclei by 4',6-diamidino-2-phenylindole (DAPI) (blue). (F) Representative fluorescence-activated cell sorting
plots and quantitative analysis of pericyte percentage (PDGFRRPDGFRa”) in tumor tissue. Cells were gated as non-immune, non-epithelial
(CD457CD3267). (G) Formalin-fixed paraffin-embedded sections of fluorescein isothiocyanate (FITC-)dextran (green)-perfused tumor tissue
for indication of vessel leakage. DAPI (blue) was used to counterstain all nuclei. (H) IHC for 5-bromo-2"-deoxyuridine (BrdU) on primary
tumors, which indicate newly synthesized DNA in proliferating cells. Quantification of IHC (right) BrdU-positive cells indicates 2.5 times
more positive cells in mice with DNIIR than control tissue section. (Scale bars: C, D, E, J, K, 500 uM; F, 1,000 pM).
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pericytes, we hypothesized that vessels in DNIIR mice
would be leakier. To test this hypothesis, we performed
intravenous injection of fluorescein isothiocyanate
(FITC)-dextran and analyzed tumor tissue after tumor per-
fusion. IF imaging clearly indicated that Neu-induced tu-
mors with DNIIR increased vessel leakage (Figure 2G).
Thus, we propose that this is a potential factor for multipli-
cation of lung metastases in DNIIR mice.

As we observed earlier, tumor weight and size were
the same on the day of mouse sacrifice (Figure 1). How-
ever, we found that the proliferation rate on BrdU stain-
ing increased in mice with DNIIR (Figure 2H). DNIIR
tumors grew slower after delayed tumor latency, but
then presented increased tumor proliferation, potentially
due to increased angiogenesis. As a result, DNIIR tu-
mors caught up in size with MMTV-Neu tumors.

Attenuation of TGFf signaling reduces chemokine, but
not VEGF expression, in the tumor microenvironment

A classically defined role of TGEp is the induction of
cell-cycle arrest. To test the ability of DNIIR expression to
attenuate this phenotype, we incubated established mam-
mary carcinoma cell lines from 202Mul and 202Mul/DN
mice with TGEp for 24 hours at different concentrations.
Starting from 0.5 ng/mL of TGFp, we observed inhibition
of cellular proliferation in the presence of intact TGEp sig-
naling. In 202Mul/DN cells, TGFf had an inhibitory effect
compared with untreated cells, but a smaller magnitude of
change in comparison with 202Mul cells (Figure 3A).

In PyMT-induced mammary tumorigenesis, deletion
of TPRII was associated with a strong increase in secre-
tion of CXCL1 and CXCL5 chemokines from mammary
carcinoma cells [7-9] and significantly correlated with
increased tumor progression and metastasis formation.
We performed a protein array on tumor explant super-
natants and found a significant decrease of monocyte
chemotactic protein (1 MCP1) (CCL2), IL6, and tissue
inhibitor of metalloproteinase (1 TIMP1) expression in
cells expressing DNIIR (Figure 2B). To specify the cellu-
lar origin of chemokine changes, we used conditioned
medium from cultured 202Mul and 202Mul/DN cells
with/without TGFP stimulation (Figure 3C). As in the
tumor tissue, TGFp upregulated IL-6 and, VEGEF, and
downregulated MCP1, CXCL1, and CXCLS5 in cells with
and without DNIIR expression. Surprisingly, in cells with
attenuated TGFp signaling, we found dramatically de-
creased levels of CXCL1 and CXCL5, which were add-
itionally downregulated by TGF(. DNIIR expression had
a significant effect on VEGF secretion. Basal level of this
cytokine was increased in 202Mul/DN cells compared to
202Mul cells and was strongly upregulated by TGEf,
which correlated with the increased angiogenesis in mice
with DNIIR (Figure 2A). To determine to what extent
the levels of these chemokines change during tumor
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progression, we analyzed tumor tissue homogenates at 5
and 11 weeks after tumor palpation in NK1Mul and
NK1Mul/DN mice (Figure 3D). The same effect was ob-
served with CXCL1 and, more importantly, with VEGEF.
Comparison analysis of chemokines and VEGF secre-
tion in MMTV-PyMT cells versus MMTV-Neu cells
showed the same tendency, namely downregulation of
CXCL5 and upregulation of VEGF in cells with DNIIR ver-
sus deletion of this receptor (Additional file 1: Figure S3).

Attenuated TGFp signaling in the MMTV-Neu tumor
model decreases T cells and CD11b*Gr1* cells in

tumor tissue

In our previous work on MMTV-PyMT tumors, we
found that abrogation of TGE[ signaling in mammary
epithelium increased chemokine production and the
number of CD11b"Grl1" cells in tumor tissue, which cor-
related with the increased metastasis [7,8]. Attenuated
TGEP signaling in Neu-induced tumorigenesis leads to
different cellular responses, namely significant downreg-
ulation of CXCL1 and CXCL5. We analyzed tumor
tissue and spleen from mice at 12 weeks after tumor pal-
pation and found no differences in the number of T cells
(CD3) and B cells (CD19) in the spleen (Additional
file 1: Figure S4A). When we analyzed subsets of T cells
(CD4 and CDS8) we detected decreased number of T
helpers (CD4) as well as an altered ratio of CD4+ to
CD8+ cells (Additional file 1: Figure S4B). Expected
differences in CD11b"Grl" cells were not found in the
spleen (Additional file 1: Figure S4C).

In our analysis of tumor tissue, the total number of
immune cells (CD45") did not alter (Additional file 1:
Figure S2D). When we analyzed fluorescence-activated
cell sorting (FACS) plots for CD11b and Grl staining we
found no differences in the number of macrophages
(CD11b*Gr17F4/80"), but detected a decreased number
of CD11b"Grl" cells (Additional file 1: Figure S4E). This
result was predicted due to downregulation of CXCL1
and CXCL5. Analysis of lymphocytes showed a de-
creased number of T cells (CD3) in NK1Mul/DN mice
compared with the mice with intact TGEp signaling. Be-
cause of the decreased number of CD11b*Grl" cells that
can successfully inhibit T cell proliferation, we propose
that the mechanism driving the decrease in T cells is not
related to CD11b*Grl" function and may be linked to
the increase of VEGF in tumor tissue [32].

Attenuated TGFp signaling in HER2+ tumors leads to
increased pAKT

There are numerous molecular mechanisms for the
interaction between TGFP and HER signaling during
tumor growth, which were summarized in a recently
published review [33]. We performed analysis for known
components linking these two pathways. We then
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Figure 3 Cytokine and chemokine profile of Erbb2+ mammary carcinoma cells with intact and modified transforming growth factor 8
(TGFp) signaling. (A) Thymidine incorporation assay. Epithelial cells were treated with 0.5, 1 and 5 ng/mL TGF and analyzed for changes in
cell proliferation by (H) thymidine incorporation. Statistical significance was determined by P-values <0.05; *202Mul treated versus 202Mul
untreated, **202Mul/DN treated versus 202Mul/DN untreated, ***202Mul/DN treated versus 202Mul treated. (B) Representative mouse cytokine array
using tumor explant supernatants [45] from 202Mul and 202Mul/DN cell lines (left) quantification of the mouse cytokine array data for IL-6, monocyte
chemotactic protein 1 (MCP1) and tissue inhibitor of metalloproteinase 1 (TIMP1) (right). (C) ELISA of conditional medium from 202Mul and 202Mul/DN
cell lines untreated and treated for 24 hours with TGF@ 1 ng/mL. All changes in cytokine and chemokine secretion were significant (P <0.05) in 202Mul
versus 202Mul/DN cell lines and treated versus untreated with TGF{. (D) ELISA of protein extracts from tumor tissue homogenates

isolated from NK1Mul and NKTMul/DN mice on 5 and 11 weeks after tumor palpation. Five mice per group were used excluding vascular endothelial
growth factor (VEGF) measurement, where eight mice were used; *P <0.05. Data correspond to the mean + standard error of the mean.

AKT did not change, but we found increased pAKT
in 202Mul/DN tumors compared to 202Mul tumors
(Figure 4B). Quantitative data revealed significant

cultured carcinoma cells with TGEB1 (1 ng/mL) overnight
and found increased phosphorylated AKT in cells with
DNIIR compared to those without DNIIR (Figure 4A,

Additional file 1: Figure S5). To determine differences
in pAKT in tumor tissue, we prepared tissue homoge-
nates at 5 and 12 weeks after tumor palpation. Total

differences at two time points, at 5 and 12 weeks
of tumor progression in 202Mul/DN mice versus
202Mul mice. Additional western blot analysis did not
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Figure 4 Western blot analysis of carcinoma cell lines and tumor tissues. (A) Western blot analysis of AKT and pAKT in 202Mul and 202Mul/
DN established mammary carcinoma cell lines incubated with transforming growth factor 3 (TGFP) 1 ng/mL for 24 hours. (B) Western blot and
quantitative analysis of AKT and pAKT in tumor tissue lysates at 5 and 12 weeks after tumor palpation. Open bars, 202Mul mice; closed bars,
202Mul/DN mice. Protein lysates for (A) and (B) were prepared through homogenization in Complete-M lysis buffer (Roche) and quantified by
Bradford DC assay (Biorad). AKT and pAKT were detected using rabbit monoclonal antobody (Cell Signaling).
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exhibit any differences in p53, PI3K, Racl, Shc, ERK,
MAPK or p38 expression with or without DNIIR ex-
pression (data not shown).

Human data sets reflect similar findings with the mouse
models

To determine the relevance of our findings to human
breast cancer, we analyzed microarray profiles of human
breast cancer tissues with well-documented clinical data
related to PR, ER and HER2 status and time of relapse
detection over a 10-year period. In our mouse model, we
found that attenuated TGEFp signaling in epithelial cells
correlated with decreased CXCL1, CXCL5, MCP-1, IL-6
and increased VEGF expression. Therefore, we first con-
ducted analysis of correlation between expression of the
TGFBR2 gene and these genes. We found that expres-
sion of CXCL1, but not CXCL5, decreased significantly
in patients with low TGFBR2 expression (Figure 5A, B),
but when we analyzed subtypes of tumor we discovered
significant differences only in HER2+, PR + and ER + pa-
tients. There was no change in PR-negative (PR-) and
ER- patients. MCP-1 and IL-6 expression decreased in
all patients with low levels of TGFBR2 expression, with
no differences in subtypes of breast tumor (Figure 5C).
By checking the association between VEGFA and
TGFBR2 expression using the TCGA BRCA dataset, we
detected an opposite effect to that seen with CXCL1,
MCP-1 and IL-6. This inference is consistent with our
findings in a mouse model. VEGF expression increased
in patients with all types of tumors with low TGFBR2
expression (Figure 5C). We further validated these ana-
lyses using PAM50 enrichment of HER2 patients from
the aforementioned six human breast cancer GEO
microarray datasets. The majority of the results are con-
sistent with our previous findings from the TCGA data
(Additional file 1: Figure S6). In all six datasets, attenu-
ated TGEFP signaling was correlated with low CXCL1 ex-
pression among HER2-enriched patients. Attenuated

TGEP signaling was also significantly correlated with
low VEGF expression among all patients and HER2-
enriched patients in GSE10886; however, this conclusion
was not validated in other datasets.

In our current study using the GEM tumor model, we
indicated that metastasis is a major phenotype in mice
with abrogated TGEp signaling in the tumor epithelium.
Next, we examined the association of the VEGF gene
with tumor subtypes and DMFS and noted a significant
association between high VEGFA expression and worse
DMFS in HER2+ patients (Figure 5D). Nonetheless,
there was not a statistically significant difference in pa-
tients with ER+, PR+, or other subtypes of breast cancer.

This research finding indicates that attenuated TGFf(
signaling correlates with decreased expression of CXCL1
and increased VEGF expression and is associated with
worse survival rates in HER2+ patients. The aforemen-
tioned results were confirmed on the Neu-induced
mouse tumor and human breast cancer models.

Discussion

Important roles of TGFp and HER2 signaling in tumor
initiation and progression have been established in a
large number of studies. To examine the role of TGEB
signaling in HER2+ breast cancer, we used MMTV-Neu
mice with DNIIR. In our studies 202Mul mice with over-
expression of wild-type ErbB2 and NK1Mul mice with
mutant activated ErbB2 were utilized. In our experiment,
we did not incorporate any specific pathways as was exe-
cuted in the Siegel at al. publication [16]. In our analysis
of the TCGA database (Additional file 1: Figure S7) we
observed that in fewer than 5% of patients ErbB2 mu-
tated and in about 15% of patients the ErbB2 receptor
was amplified. This result was supported by recently
published work by Bose et al. [34], in which researchers
observed ErbB2 mutation in only a small percentage of
HER2+ patients. Based on this fact we believe that our
GEM tumor model is highly appropriate for investigation
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Figure 5 Analysis of the relationship of transforming growth factor 8 receptor Il (TBRII), vascular endothelial growth factor (VEGF)A
and chemokine expression in human datasets. Expression of CXCL1 (A), CXCL5 (B), monocyte chemotactic protein (MCP)-1, IL-6 and VEGF (C)
in human breast tumor tissues with low and high expression of TBRII using TCGA BRCA data. (D) In human human epidermal growth factor
receptor 2-positive (HER2+) cancer patients (n = 207), the expression of VEGFA correlated with reduced distant metastasis-free survival (DMFS)

in datasets from [28] including information from 3,455 patients [28]. All samples were plotted with medium splitting for VEGFA expression. No
significant differences in DMFS were observed in association with VEGFA expression in other subtypes of breast cancer. ER+, estrogen receptor-positive;
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of the HER2+ type of breast cancer with attenuated TGEp
signaling.

In our GEM model the major differences between
mice with intact and disrupted TGEp signaling were in-
creased tumor latency in parallel with the increased
number of lung metastases (Figure 1). Changes in me-
tastasis were different when compared with mouse
models where ErbB2 was mutated by activated Grb2 or
Shc signaling pathways [16]. The increased tumor la-
tency was also opposite to MMTV-PyMT/TGEBRII-KO

mice with deletion of Tgfbr2 in the mammary epithelium
[5], as previously studied in our laboratory. However, the
increase in lung metastases in the MMTV-Neu/DNIIR
mouse model was similar to MMTV-PyMT/TGEFBRII-
KO mice. This indicates that any manipulation to
diminish TGEp signaling in GEM models will lead to
increased metastasis regardless of tumor-driving onco-
genic transformations.

Increased tumor latency in MMTV-Neu/DNIIR mice
(202Mul/DN, NK1Mul/DN) versus control mice (202Mul,
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NKIMul) could be first due to cell-cycle dysregulation,
where TGEp signaling plays an important role, and second,
due to dysregulation of chemokine expression. Feng et al.
demonstrated that the immune cells provide a source of
tropic support to transformed epithelial cells, just as they
do to normal epithelium during wound healing, and play a
primary role in tumor initiation [35]. We found that mice
with DNIIR expression had downregulated levels of CXCL1
and CXCLS5 (Figure 3) and as a result, fewer CD11b*Grl"*
cells in tumor tissue (Additional file 1: Figure S3).

Based on our current study and Siegel et al. [19] we
can make a basic conclusion that attenuated TGEP sig-
naling in HER2+ tumor models, with active Shc and
Grb2 pathways, decreases the probability of lung metas-
tasis development. With intact ErbB2, attenuated TGFp
signaling has the opposite effect in spite of the fact that
tumor latency increases.

Tumor tissues in mice with DNIIR had increased
vasculogenesis, increased vessel size, leakiness, and de-
creased number of pericytes (Figure 2). Clinical data
showed that a low number of pericytes correlated with
poor patient prognosis [36,37]. Simultaneously, disrup-
tion of pericytes also enhanced metastasis [38]. In paral-
lel with a decreased number of pericytes, we discovered
that the size of vessels in tumor tissue was larger in mice
with DNIIR. We hypothesized that there were probably
two different mechanisms involved in increased vasculo-
genesis in DNIIR mice; and increased angiogenesis in
parallel with the disruption of vessel support by peri-
cytes. It is likely that an increase in vessel leakage leads
to an increased number of metastases [38].

In our previously published articles, we indicated that
deletion of Tgfbr2 leads to an increase in chemokine ex-
pression in mammary and pancreatic epithelium [7,39].
Researchers have also linked deletion of Tgfbr2 to an in-
crease in mammary fibroblasts [40]. In the mammary
tumorigenesis studies, the major differences were found
in CXCL1 and CXCL5 expression, which play an import-
ant role in the migration of neutrophils and myeloid-
derived suppressor cells (CD11b"Gr1").

An increased number of myeloid cells in MMTV-
PyMT mice could be a basic mechanism driving de-
creased tumor latency and increased number of lung
metastases. In our current study with attenuated TGEp
signaling in MMTV-c-Neu mice, we discovered an op-
posite effect in which levels of CXCL1/CXCLS5 as well as
CCL2 (MCP-1) decreased (Figure 3) in parallel with an
increased level of VEGF. Comparison analysis of chemo-
kine and VEGF secretions in MMTV-PyMT cells with
DNIIR (Additional file 1: Figure S3) showed the same ef-
fect. There was an opposite result when TGEBRII was
deleted. Our laboratory published a study [41], which
showed that DNIIR system could not completely inhibit
the non-canonical TGFpB pathway versus the canonical
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(SMAD-dependent). This information correlates with
our data on increased pAKT (Figure 4, Additional file 1:
Figure S5) in MMTV-Neu/DNIIR cells, which is down-
stream of the non-canonical TGFf pathway. We propose
that it is a significant mechanism in the differential regula-
tion of chemokines and VEGF secretion. We can conclude
that the MMTV-Neu/DNIIR GEM tumor model is a model
of spontaneous mammary carcinogenesis with a diminished
canonical TGFp pathway (SMAD-dependent) with the still-
active non-canonical TGFp pathway. There is also a signifi-
cant amount of data to support a dose-response mediating
TGEpB-induced phenotypic changes [42,43]. Thus, it is likely
that the observed gene expression changes are the result of
altered TGEP response due to the specific amount of TGFp
induced in cells, which express the DNIIR. Such observa-
tions could not be made with conditional knockout of
Tgfbr2 as TGEP signaling is completely abrogated. Other
authors also found increased levels of pAKT when combin-
ing activated TGEp signaling (ALK5"2**P, TGFp1°*%%/>%)
with Neu-induced tumorigenesis [15,17]. It can be ex-
plained by overactivation of both the canonical and non-
canonical TGFf pathways. An increased level of VEGF can
explain increased vasculogenesis and vessel leakage in
MMV/c-Neu DNIIR mice and could likely be involved in
the observed increase in lung metastases.

Previously, we found that deletion of Tgfbr2 leads to an
increase in the number of CD11b"Grl" cells in MMTV-
PyMT mice. In Neu-induced carcinogenesis, we did not
observe many differences in immune components in
mice with DNIIR versus control mice. The number of
CD11b*Grl" cells decreased in tumor tissue from MMTV-
c-Neu DNIIR mice that could result from downregulation
of chemokines. Simultaneously the number of T cells de-
creased in parallel with the number of CD11b"Grl" cells in
the MMTV-c-neu DNIIR tumors. Usually, increased num-
bers of CD11b"Grl1" cells correlate with suppression of T
cell proliferation [44], but in our model we did not observe
these changes to take place. Therefore, we suggest that de-
creased number of T cells could be due to the increased
VEGF secretion in DNIIR mice. It has been shown that
VEGF strongly inhibits T-cell development via VEGFR2
[32]. Also, VEGF receptors are capable of inhibiting den-
dritic cell function and, thus, we hypothesized that anti-
tumor immune response in mice with DNIIR diminished
as a result of higher levels of VEGF.

Based on these findings, we conclude that human
HER2+ breast cancer associated with decreased TGEpP
signaling would also correlate with deceased expression
of CXCL1/5 chemokines and increased VEGF. We ob-
served that decreased TGFBR2 expression in human
breast cancer patients correlated with decreased CXCL1,
but not with CXCL5 in HER2+, PR +and ER + tumors.
MCP-1 and IL6 decreased and VEGF level increased in
all types of breast tumors with low TGFBR2 expression.
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To our surprise, increased VEGF expression in human
breast cancer patients correlated with reduced DMFS
only in HER2+ patients. The same outcomes were ob-
served in our mouse studies.

Conclusion

Our results demonstrated that attenuation of TGEP
signaling in HER2+ mammary epithelium delays tumor
initiation, but promotes lung metastasis. The mechanism
behind this phenomenon appears to be due to the
increased VEGF secretion in parallel with deceased
CXCL1 and CXCL5 secretion. The result of increased
VEGEF is increased tumor angiogenesis and vessel leak-
age that leads to an increase in lung metastasis. Also,
increased VEGF secretion inhibits T cell proliferation
and potentially inhibits anti-tumor immune response.
Our studies provide insights into a novel mechanism by
which epithelial TGEB signaling modulates the tumor
microenvironment and is involved in lung metastasis in
HER2+ breast cancer patients. The effects of pharmaco-
logical targeting of the TGFP pathway in vivo during
tumor progression remain controversial because of the
dual role TGEp plays in tumor development. The target-
ing of TGEP signaling should be considered as a viable
option, but because VEGF has a pro-tumorigenic effect
on HER2+ tumors, the targeting of this protein could be
considered only when it is associated with attenuated
TGEP signaling.

Additional file

Additional file 1: Figure S1. CD34 immunohistochemistry analysis of
mouse lungs. Figure S2. (A) Fluorescence-activated cell sorting (FACS)
dot plots of pericyte analysis. FACS analysis of pericytes (CD140b +
CD140a-) in single-cell suspension of tumor tissue. Cells were gated as
alive (4' 6-diamidino-2-phenylindole (DAPI)-) and gated as non-immune,
non-epithelial (CD45-CD326-) as shown on the right side. (B) Distribution
of tumor vessels within specified size ranges. Number of vessels detected
on area equals 50,000 um2. Figure S3. ELISA data. Figure S4. Number of
T cells and myeloid cells in spleen and tumor tissue. Figure S5. Western
blot analysis of cultured cells. Figure S6. (A) The summary table of the
additional datasets we have been observed; 1, data available; 0, data not
available. To replicate TCGA data we used the GSE10886 dataset, but it
contains information only from 220 patients and only 11 are human
epidermal growth factor receptor 2 (HER2)+. (B) The replication of plot 5A-C
in the independent dataset GSE10886. Our findings in the manuscript are
well-replicated in this dataset; however, as the new dataset sample size

is small (in particular there are numerous missing values for estrogen
receptor (ER), progesterone receptor (PR) and HER2), some of the P-values
are not significant. Figure S7. Analysis (Cbioportal.org) of TCGA breast
cancer molecular database for ErbB2 status. Bar graph depicts percentage of
patients with either amplified or mutated ErbB2 of the total HER2+ patients.
Comprehensive molecular portraits of human breast tumors. Nature, 2012. 490
(7418): p. 61-70 (PDF 656 kb); (http://breast-cancer-research.com/content/
supplementary/s13058-014-0425-7-s1.pdf).
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