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Abstract

Introduction: Breast cancer is a complex heterogeneous disease for which a substantial resource of transcriptomic
data is available. Gene expression data have facilitated the division of breast cancer into, at least, five molecular
subtypes, namely luminal A, luminal B, HER2, normal-like and basal. Once identified, breast cancer subtypes can
inform clinical decisions surrounding patient treatment and prognosis. Indeed, it is important to identify patients at
risk of developing aggressive disease so as to tailor the level of clinical intervention.

Methods: We have developed a user-friendly, web-based system to allow the evaluation of genes/microRNAs (miRNAs)
that are significantly associated with survival in breast cancer and its molecular subtypes. The algorithm combines gene
expression data from multiple microarray experiments which frequently also contain miRNA expression information, and
detailed clinical data to correlate outcome with gene/miRNA expression levels. This algorithm integrates gene expression
and survival data from 26 datasets on 12 different microarray platforms corresponding to approximately 17,000 genes in
up to 4,738 samples. In addition, the prognostic potential of 341 miRNAs can be analysed.

Results: We demonstrated the robustness of our approach in comparison to two commercially available
prognostic tests, oncotype DX and MammaPrint. Our algorithm complements these prognostic tests and is
consistent with their findings. In addition, BreastMark can act as a powerful reductionist approach to these more
complex gene signatures, eliminating superfluous genes, potentially reducing the cost and complexity of these
multi-index assays. Known miRNA prognostic markers, mir-205 and mir-93, were used to confirm the prognostic
value of this tool in a miRNA setting. We also applied the algorithm to examine expression of 58 receptor tyrosine
kinases in the basal-like subtype, identifying six receptor tyrosine kinases associated with poor disease-free survival
and/or overall survival (EPHA5, FGFR1, FGFR3, VEGFR1, PDGFRb, and TIE1). A web application for using this
algorithm is currently available.

Conclusions: BreastMark is a powerful tool for examining putative gene/miRNA prognostic markers in breast
cancer. The value of this tool will be in the preliminary assessment of putative biomarkers in breast cancer. It will
be of particular use to research groups with limited bioinformatics facilities.

Introduction
Breast cancer is a complex heterogeneous disease which
has traditionally been subclassified depending, amongst
other factors, on the expression of different receptor
proteins, such as estrogen receptor (ER), progesterone

receptor (PR), and human epidermal growth factor recep-
tor 2 (HER2) [1]. These ‘biomarkers’ allow us to tailor the
level of clinical intervention. While ER-positive the
second positive should be deleted tumours receive hor-
mone therapies [2] and HER2-positive cancers receive
targeted therapies such as trastuzumab and lapatinib [3],
‘triple negative’ cancers lacking these markers currently
have no targeted therapies and cause a disproportionate
number of breast cancer deaths [4]. In addition to the

* Correspondence: stephen.madden@dcu.ie
1Molecular Therapeutics for Cancer Ireland, National Institute for Cellular
Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
Full list of author information is available at the end of the article

Madden et al. Breast Cancer Research 2013, 15:R52
http://breast-cancer-research.com/content/15/4/R52

© 2013 Madden et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:stephen.madden@dcu.ie
http://creativecommons.org/licenses/by/2.0


traditional classifications using these biomarkers, in
recent years, whole genome DNA microarrays have been
utilised to further classify this disease, initially into five
molecular subtypes based on gene expression profiles,
namely luminal A and luminal B (ER-positive tumours),
HER2 (HER2-positive tumours), basal and normal-like
tumours [5,6] and subsequently into at least ten further
molecular subtypes using both copy number and gene
expression data [7].
It is crucially important to identify which breast can-

cer patients are at risk of developing a more aggressive
phenotype so as to tailor the level of clinical interven-
tion. Prognostic biomarkers, such as ER and HER2, can
be used to assess the inherent likelihood of a patient
exhibiting a particular outcome. However, within the
subtypes defined by these classical markers, there is a
wide spectrum of survival requiring the identification of
additional novel prognostic markers. Also, the triple
negative subtype has no such prognostic biomarkers
currently in clinical use.
There is a great deal of transcriptomics data currently

available to facilitate the identification of novel molecular
biomarkers associated with breast cancer and its subtypes.
Huge studies such as the 2,000 breast tumour profiles by
Curtis et al. [7] greatly aid in our understanding of breast
cancer and facilitate the identification of novel intrinsic
subtypes. The diverse nature of these datasets and the
variability of the different microarray platforms themselves
can affect the statistical power of such studies. Moreover,
it is necessary to test the prognostic ability of markers in
diverse datasets to avoid dataset-specific affects.
It is clear that the selection of markers could benefit

greatly from the integration of datasets from multiple
studies to increase confidence in the selected markers.
To this end, we have developed an easy-to-use interface
for our algorithm which allows identification of subsets
of genes that are associated with disease progression in
breast cancer or its subtypes, that is, a set of putative
prognostic markers. This algorithm integrates gene
expression data from DNA microarray studies and corre-
sponding clinical data (hormone status, survival time,
tumour grade, patient age and so on). In particular, it
allows investigation of prognostic markers in the context
of disease-free survival (DFS), distant disease-free survival
(DDFS) and overall survival (OS).
Over the last decade, our understanding of the function

that small non-coding RNAs known as microRNAs (miR-
NAs) play in an array of fundamental biological processes
in both plants and animals has increased dramatically [8].
These short endogenous non-coding RNAs act primarily
by negatively regulating the expression of target mRNAs
through translational inhibition and/or mRNA degrada-
tion [8]. The complexity of post-transcriptional control
of gene expression by miRNAs remains a significant

challenge. Indeed, miRNAs have the potential to alter
entire pathways due to their ability to target multiple
genes simultaneously [9]. The association of miRNAs with
breast cancer has been well established [10,11]. In fact,
miRNAs have been identified as prognostic markers in
breast cancer [12] and associated with breast tumours
defined by their HER2 or ER/PR status [13].
Approximately 50% of known human miRNAs are

intronic (miRBase release 18, November 2011). Of these,
341 or roughly one third of human miRNA host genes
are hybridized by probes on the U133plus2 Affymetrix
gene chip. A number of studies have reported that many
intronic miRNAs show significantly correlated expression
profiles with their host genes [14,15]. Estimates of the
number of miRNAs whose expression profiles are signifi-
cantly correlated with their host gene are as high as 70%
[16]. The expression of these miRNAs can, in some
instances, be inferred from the expression of their host
genes and can, therefore, be evaluated as putative prog-
nostic markers in breast cancer and its subtypes using
gene expression data.
We evaluated our approach using two commercially

available gene expression-based prognostic tests in breast
cancer, namely oncotype DX and MammaPrint. We also
applied the algorithm to examine the expression of 58
receptor tyrosine kinases (RTKs) in the basal-like subtype
of breast cancer. Using the 21 genes from oncotype DX
and the 70-gene MammaPrint signature, we demonstrated
the robustness of our approach and confirmed the prog-
nostic value of these signatures. In the case of oncotype
DX, we showed that the predictive strength of this test is
centred on the five proliferation genes within the 21 gene
set. We also identified six RTKs associated with poor
prognosis in the basal breast cancer subtype. The feasibil-
ity of using miRNA host gene expression as a surrogate
for miRNA levels was tested using known miRNA prog-
nostic markers, mir-93 and mir-205. Although these mar-
kers were only identified in small patient cohorts,
BreastMark was able to confirm the robustness of these
prognostic markers across a far larger and diverse patient
dataset. A web application for using this algorithm is cur-
rently available [17].

Methods
Gene expression data
Gene expression data sets were downloaded from the
Gene Expression Omnibus [18] or authors’ websites in the
form of raw data files, where possible. Only breast cancer
datasets with survival information and at least 48 patients
were included. Large datasets were chosen for this analysis
so as to avoid the sampling effects associated with small
datasets. A cut-off of 48 was chosen as all smaller breast
cancer datasets either lacked detailed clinical data or
had too few samples (approximately 30 samples or less).
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In total, 4,738 samples across 26 datasets incorporating 12
different microarray platforms were utilised to develop the
BreastMark system (Table 1). Table 2 contains a break-
down of the clinical information available with each data-
set. Where raw data were not available, the normalised
data as published by the original authors were used. In the
case of the raw data for the Affymetrix datasets (.cel files),
gene expression values were called using the GeneChip
(GC) robust multichip average method [19] and data were
quantile normalised using the Bioconductor package, affy
[20]. For the dual-channel platforms, data were loess nor-
malised [21] using the Bioconductor package limma.
Hybridisation probes were mapped to Entrez gene IDs to
gene centre the data [22]. The Entrez gene IDs corre-
sponding to the array probes were obtained using Biomart
[23,24] and the Bioconductor annotation libraries. Probes
that hit multiple genes were filtered out. If there were
multiple probes for the same gene, the probe values were
averaged for that gene. This resulted in expression data for
a total of 20,017 Entrez gene IDs across 4,738 samples.

microRNA expression data
miRNAs are frequently located within the introns of
protein coding genes and in exons of non-coding tran-
scripts. miRNA expression can be detected using con-
ventional microarrays through host gene expression for
intragenic miRNAs or by direct probe matching for
intergenic miRNAs. A total of 1,987 samples were pro-
cessed on U133A Affymetrix arrays, while 973 were pro-
cessed on U133plus2 Affymetrix arrays (2,960 in total).
U133A and U133plus2 microarrays have 22,277 probe
sets in common. Using this information, it is possible to
infer the expression of 341 miRNAs across 2,960 sam-
ples [25] (based on miRBase version 13.0, Ensembl ver-
sion 54_36p). As with the gene centred data, this
information was also combined with the available clini-
cal data for survival analysis.

Breast cancer subtypes
The R package genefu [26] was used to classify the 4,739
breast cancer samples into the luminal A, luminal B,

Table 1 Datasets used in this analysis

GEO Accession
Number

Reference Data Format Sample
Number

Platform Type (probe number)

GSE7849 Anders et al., 2008 [51] Processed only 78 Affymetrix Human Genome U95 Version 2 Array (12,625 probes)

GSE3143 Bild et al., 2006 [52] Raw .CEL files 158 Affymetrix Human Genome U95 Version 2 Array (12,625 probes)

GSE12276 Bos et al., 2009 [53] Raw .CEL files 204 Affymetrix U133 Plus 2.0 (54,675 probes)

GSE22219 Buffa et al., 2011 [44] Raw Data files 216 Illumina humanRef-8 v1.0 expression beadchip

GSE10510 Calabro et al., 2009 [54] Raw .gpr files 152 DKFZ Division of Molecular Genome Analysis Human Operon 4.0
oligo Array 35 k (36,486 probes)

NA Chang et al., 2005 [31] Processed only 295 Agilent 21 K oligo array (22,575 probes)

NA Chin et al., 2006 [55] Processed only 118 Affymetrix U133AAofAv2 (22,944 probes)

GSE9893 Chanrion et al., 2008 [56] Raw data available 155 MLRG Human 21 K V12.0 (22,656 probes)

GSE7390 Desmedt et al., 2007 [57] Raw .CEL files 198 Affymetrix U133A (22,283 probes)

GSE16391 Desmedt et al., 2009 [58] Raw .CEL files 48 Affymetrix U133 Plus 2.0 (54,675 probes)

GSE25055 Hatzis et al., 2011 [59] Raw .CEL files 508 Affymetrix U133A (22,283 probes)

GSE24450 Heikkinen et al., 2011 [60] Raw Data files 183 Illumina HumanHT-12 V3.0 expression beadchip

GSE1992 Hu et al., 2006 [27] Processed only 99 Agilent 21 K oligo array (22,575 probes)

GSE20685 Kao et al., 2011 [61] Raw .CEL files 327 Affymetrix U133 Plus 2.0 (54,675 probes)

NA Kok et al., 2009 [62] Processed only 109 Agilent 44 K oligo array (54,675 probes)

GSE9195 Loi et al., 2008 [63] Raw .CEL files 77 Affymetrix U133 Plus 2.0 (54,675 probes)

GSE6532 Loi et al., 2008 [63] Raw .CEL files 265 Affymetrix U133A/B (22,283/22,645 probes) and U133 Plus 2.0

GSE1378, GSE
1379

Ma et al., 2004 [64] Processed only 60 Custom 22 K oligo array (22,575 probes)

GSE3494 Miller et al., 2005 [65] Raw .CEL files 251 Affymetrix U133A/B (22,283/22,645 probes)

GSE45255 Nagalla et l., 2013 [66] Raw .CEL files 139 Affymetrix U133A (22,283 probes)

GSE1456 Pawitan et l., 2005 [67] Raw .CEL files 159 Affymetrix U133A/B (22,283/22,645 probes)

GSE21653 Sabatier et al., 2010 [68] Raw .CEL files 266 Affymetrix U133 Plus 2.0 (54,675 probes)

GSE11121 Schmidt et al., 2008 [69] Raw .CEL files 200 Affymetrix U133A (22,283 probes)

GSE17907 Sircoulomb et al., 2010 [70] Raw .CEL files 51 Affymetrix U133 Plus 2.0 (54,675 probes)

GSE2034 Wang et al., 2006 [71] Raw .CEL files 286 Affymetrix U133A (22,283 probes)

GSE12093 Zhang et al., 2008 [72] Raw .CEL files 136 Affymetrix U133A (22,283 probes)

Total 4738
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Table 2 Clinical data summary

GEO ID Median
age

Median
size (cm)

Lymph node
status

Chemo-therapy
info.

Hormone treatment
info.

ER
status

HER2
status

PR
status

Tumour
grade
(1/2/3)

DFS
(months)

DDFS
(months)

OS
(months)

GSE7849 55 ± 12 2.3 ± 1.1 A A A A NA A 2/30/34 81 ± 40 NA NA

GSE3143 NA NA NA NA NA NA NA NA NA 51 ± 31 NA A

GSE12276 NA NA NA NA NA NA NA NA NA 26 ± 22 NA NA

GSE22219 55 ± 11 2.6 ± 1.4 A NA NA A NA NA 41/87/63 94 ± 38 NA NA

GSE10510 59 ± 12 NA A NA NA A NA A NA 57 ± 53 NA 87 ± 60

NKI295, (Chang et al.,
2005)

44 ± 5 2.25 ± 0.9 A A NA A NA NA NA 84 ± 50 NA 94 ± 47

Chin et al., 2006 55 ± 15 2.7 ± 1.4 A A A A A A 10/42/61 NA 69 ± 48 NA

GSE9893 67 ± 10 2.3 ± 0.9 A NA A A NA NA 21/94/33 65 ± 32 66 ± 31 72 ± 29

GSE7390 46 ± 7 2.2 ± 0.8 NA NA NA A NA NA 30/83/83 113 ± 68 114 ± 65 138 ± 61

GSE16391 62 ± 8 NA A A A A A A NA 35 ± 15 NA NA

GSE25055 49 ± 10 NA A A A A A A 32/180/259 NA 36 ± 20 NA

GSE24450 NA NA NA NA NA NA NA NA NA NA NA 72 ± 27

GSE1992 55 ± 15 NA A NA NA A NA NA 8/34/57 25 ± 23 NA 29 ± 25

GSE20685 NA NA NA NA NA NA NA NA NA NA 88 ± 43 94 ± 38

Kok et al., 2009 NA NA NA NA NA NA NA NA NA 15 ± 17 NA NA

GSE9195 64 ± 9 2.4 ± 0.96 A NA A A NA A 14/20/24 95 ± 30 97 ± 28 NA

GSE6532 59 ± 13 2.2 ± 0.9 A NA A A NA A 38/71/24 71 ± 42 71 ± 42 NA

GSE1378, GSE1379 67 ± 9 2.3 ± 1.1 A NA NA A A A 3/39/18 87 ± 46 NA NA

GSE3494 62 ± 13 2.3 ± 1.25 A NA NA A NA A 67/128/54 NA NA 98 ± 46

GSE45255 55 ± 12 2.9 ± 1.3 A A A A A A 17/52/67 48 ± 22 51 ± 25 54 ± 21

GSE1456 NA NA NA NA NA NA NA NA 28/58/61 72 ± 29 NA 77 ± 23

GSE21653 54 ± 14 NA A NA NA A A A 45/89/125 60 ± 41 NA NA

GSE17907 50 ± 14 NA A NA NA A A A 3/10/34 39 ± 29 NA NA

GSE11121 NA 2 ± 0.99 A NA NA NA NA NA 29/136/35 NA 94 ± 51 NA

GSE2034 NA NA A NA NA A NA NA NA 78 ± 42 NA NA

GSE12093 NA NA A A A A NA NA NA 92 ± 38 NA NA

A, available; ER, estrogen receptor; HER2, human epidermal growth factor receptor 2’ PR, progesterone receptor; DFS, disease free survival; DDFS, distant disease free survival; NA, not available; OS, overall survival;
tumour grade (1/2/3), 1 refers to number of grade 1 tumours, 2 refers to the number of grade 2 tumours and 3 refers to the number of grade 3 tumours.
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HER2, normal-like and basal molecular subtypes using
the ssp2003 [5], ssp2006 [27], and pam50 [28],
classifiers.

Survival analysis
We have combined detailed clinical data from each of the
studies used here, including one or more of DFS, DDFS
and OS. The software allows for each of these three sur-
vival end points to be analysed separately. Median
expression was used to dichotomise the data, allowing
stratification into high and low groups within each of the
26 individual datasets. Once a sample was assigned to a
particular group, the 26 datasets were combined and a
global pooled survival analysis was performed in real-
time. It is important to treat each dataset separately
when determining which group a sample belongs to, as
the expression of these genes will vary greatly across the
different experiments/platforms. In essence, each dataset
is split into high and low in singularity to negate study-
specific effects. Survival curves are based on Kaplan-
Meier estimates and the log-rank P-value is shown for
difference in survival. Cox regression analysis was used to
calculate hazard ratios. The R package ‘survival’ was used
to calculate and plot the Kaplan-Meier survival curve.
All calculations were carried out in the R statistical envir-
onment [29].

Software parameters
The software incorporates all the clinical data made
available by the original authors. This allows the data to
be analysed based on one or more common clinical
parameters including patient age, tumour size, lymph
node status, tamoxifen treatment, chemotherapy treat-
ment, ER status, HER2 status, PR status and tumour
grade. The software also allows the upper or lower quar-
tiles of the expression of the gene of interest to be used
to determine high and low groups within each of the 26
individual datasets.

Web server
The interface is available on a publicly accessible web
server [17] and is updated quarterly. The software uses
CGI to link the web server with the R/perl based algo-
rithm. All calculations are carried out in real-time.

Validation of BreastMark using the Oncotype DX gene
signature
The 21 gene signature used by oncotype DX in predicting
patient prognosis was downloaded from the original paper
[30]. This panel of prospectively selected genes comprises
16 prognostic genes normalised relative to the expression
of five reference genes. The 16 prognostic genes are bro-
ken down into five categories: proliferation, invasion,
HER2, estrogen and ‘other’. The likelihood of breast

cancer relapse in patients was based on a recurrence score
(RS) algorithm constructed and tested on a cohort of 668
patient samples. The higher the RS, the poorer the patient
outcome observed. This algorithm weights each of the five
categories based on the influence they have on disease
recurrence. For example, the proliferation group is
weighted most highly and, therefore, the expression of
these genes influences the RS the most. Each of the 16
oncogenes were queried in our dataset to test the effect
each gene has on survival using the three above-men-
tioned survival end-points for prognosis, namely DFS,
DDFS and OS. It is expected that the genes with the great-
est influence on the RS would have the highest hazard
ratios and the lowest P-values. Sample numbers will vary
depending on the number of platforms with expression
information available for a particular gene.

Validation of BreastMark using the MammaPrint gene
signature
The 70-gene prognostic signature was downloaded from
the original paper along with their correlation with
prognosis [31]. It was possible to obtain unique Entrez
gene IDs for 61 of these genes (there is more than one
copy of PEC1, IGFBP5 and DIAPH3 (three) in the 70
gene list and five others have no Entrez gene ID). As
with the oncotype DX signature, each gene was analysed
separately within our datasets using the three survival
endpoints, DFS, DDFS and OS. Although looking at
these genes individually does not represent the full
power of this prognostic signature, this dataset should
still be enriched for prognostic markers. Additionally,
the positive and negative correlation coefficients pub-
lished by the original authors should be consistent with
our observed hazard ratios of less than or greater than
1, respectively. Sample numbers will vary depending on
the number of platforms with expression information
for a particular Entrez Gene ID.

Receptor tyrosine kinases
We compiled a list of 58 RTKs from the literature. Using
our algorithm, we identified which of the RTKs were
associated with survival within the basal molecular sub-
type using the ssp2003, ssp2006 and PAM50 molecular
classifiers (see above). DFS, DDFS and OS were used as
the survival endpoints. A P-value of < 0.05 in a minimum
of two out of three classifiers was considered significant.
The data were dichotomised using three cut-offs, median
expression, greater than the 75th percentile referred to as
the ‘high’ cut-off and less than the 25th percentile
referred to as the ‘low’ cut-off.

Results
In order to test our gene-centred survival meta-analysis,
we looked at the genes used to predict breast cancer

Madden et al. Breast Cancer Research 2013, 15:R52
http://breast-cancer-research.com/content/15/4/R52

Page 5 of 14



prognosis by two commercially available tests, oncotype
DX [32] and MammaPrint [33]. Although the genes in
these tests are not used in isolation to predict disease
outcome, it is reasonable to assume that the genes cho-
sen within these tests would include a number of prog-
nostic markers whose expression in our meta-analysis
would correlate with good and poor outcome. As there
is currently no large-scale robust signature for miRNAs
in breast cancer, we tested our approach on known indi-
vidual miRNAs which have previously been shown to be
prognostic markers. All calculations were carried out
using the BreastMark web application [17].

The robustness of BreastMark is tested using the 21
genes from Oncotype DX
Oncotype DX is a 21-gene signature (16 oncogenes and
five controls) selected using prior knowledge from the lit-
erature, which in combination with the developer’s algo-
rithm, predicts patient outcome in lymph node-negative
(LNN), ER-positive breast cancer [32]. It uses a RS cali-
brated against approximately 670 patients with known
clinical outcome to predict patient survival. Patients with
a low score do well, and those with a high score do
poorly. The 16 genes are classified into five groups: pro-
liferation, invasion, HER2, ER and other. The algorithm
takes gene expression data from 16 oncogenes, nor-
malises the expression against the five controls and
weights the 16 oncogenes depending on the effect they
have on the RS. The genes are weighted as follows 1.04 ×
proliferation group score + 0.47 × HER2 group score -
0.34 × ER group score + 0.1 × invasion group score +
0.05 × CD68 score - 0.08 × GSTM1 score - 0.07 × BAG1
score. Genes from the proliferation group, such as Ki67
and Survivin, have the highest weighting and, therefore,
the greatest effect on the RS.
Each of the 16 oncogenes were analysed separately

within BreastMark using median expression as a cut-off,
selecting LNN, ER-positive patients only and using DFS
survival as the survival end point to ensure comparability.
This information is summarised in Table 3, along with
the effect they have on the RS. The 16 genes were also
analysed using DDFS and OS as the survival end points
[see Additional file 1 Tables S1 and S2] and are consis-
tent with our observations for DFS survival. A hazard
ratio (HR) of greater than 1 indicates a negative effect on
survival and a HR of less than one has a positive effect.
The higher the HR the greater the effect the gene has on
survival. As can be seen from Table 3, our results are lar-
gely consistent with the weightings calibrated for onco-
type DX. The proliferation markers which have the
highest weightings, and therefore the largest effect on the
RS, have the highest HRs and are highly statistically sig-
nificant. In contrast, those genes which have only a

marginal effect on the RS (CD68, GSTM1 and BAG1) are
not significant and have HRs close to one.
Combining the markers (grouping samples where both

markers have greater than median expression) identifies
patients who will do particularly poorly. The Kaplan-
Meier plot for Ki67 in shown in Figure 1(a) (n = 902,
HR = 1.68, P = 4.44e-05). The Kaplan-Meier plot for
Ki67 and Survivin combined, that is, comparing the sur-
vival of patients with greater than median expression of
both Ki67 and Survivin against the rest is shown in
Figure 1(b). These patients have a worse prognosis than
Ki67 alone, that is, they have a higher HR (a HR of 1.99
versus a HR of 1.68). The same occurs when you also
combine MYBL2 with Ki67 and Survivin (Figure 1(c)).
These patients have an even worse prognosis with an
even greater HR (n = 902, HR = 2.00, P = 2.01e-07).
However, the same is not true when you combine other
markers with the proliferation markers. Figure 1(d)
shows Ki67, Survivin and PGR combined (n = 902,
HR = 1.537, P = 9.2e-03). The HR is lower and the dif-
ference in survival is less significant. In fact, when you
combine most of the other oncogenes from the signa-
ture, no improvement in prognostic power or decrease
in the significance of the HR is observed (data not
shown). This suggests that not only are all of the genes
from this prognostic signature not necessary, but that
potentially our algorithm provides a useful reductionist
approach to these more complex prognostic signatures,
allowing us to eliminate superfluous markers and high-
light those genes that are of the greatest relevance.

BreastMark is consistent with the MammaPrint gene
signature
Similar to the oncotype DX assay, MammaPrint [33] is a
commercially available test for breast cancer recurrence.
In contrast, it was developed via a hypothesis-free
method from a gene expression profiling study rather
than from a prospectively chosen list of known onco-
genes. The study used 78 LNN patients specifically to
identify a prognostic signature in their gene expression
profiles using a supervised classification method. Each of
the approximately 25,000 probesets present on those
microarrays were correlated with disease outcome and
only those genes that were significantly associated with
disease outcome were retained to create an optimised list
of prognostic markers. Each of the 70 genes had a posi-
tive or negative correlation coefficient depending on their
association with good or poor prognosis, respectively.
Again, as with oncotype DX, even though the genes

from the 70-gene signature are not predicted to act
independently, the 70 genes when analysed indepen-
dently, should correlate with good and poor prognosis
based on the correlation coefficients identified in the

Madden et al. Breast Cancer Research 2013, 15:R52
http://breast-cancer-research.com/content/15/4/R52

Page 6 of 14



original MammaPrint study. Genes with positive and
negative correlation coefficients should have HRs less
than and greater than one, respectively. As we expect,
this is what we see with these genes in LNN samples,
using a median cut-off and DFS survival as the survival
endpoint (DDFS and OS show similar results in Addi-
tional file 1 Tables S3 and S4, respectively). Of the 61
genes from the MammaPrint signature for which we had
Entrez gene IDs, 53 had HRs consistent with the correla-
tion coefficients from the original study (Table 4). Of the
other eight genes, four had HRs close to 1, and were not
statistically significant, and the other four were not present
in the dataset or present in too few samples. Although not
all of the 53 consistent genes were statistically significant,
33 are significantly associated with survival when analysed
independently with BreastMark.

miRNAs associated with prognosis in breast cancer
Decreased expression of miR-205 has previously been
associated with poor prognosis in breast cancer, and miR-
93 is highly expressed in high-grade tumours, that is, in
tumours of patients who do poorly [10,34]; however, these
studies were relatively small in scope (20 and 93 patients,
respectively) [10,34]. To confirm these observations in a
larger dataset and to test our approach, we examined the
association of the host genes of these miRNAs with prog-
nosis. The results for miR-205 and miR-93 can be seen in
Figures 2(a) and 2(b), respectively. Following BreastMark
analysis, high expression of the host gene of miR-205 is
indeed associated with good prognosis (HR = 0.768,
P-value = 0.02, n = 581) and high expression of host gene
of miR-93 is associated with poor prognosis (HR = 1.34,

P-value = 1.48e-04, n = 1,563). This confirms that miR-
205 and miR-93 are robust markers of good and poor
prognosis, respectively.

Receptor tyrosine kinases associated with poor survival in
the basal molecular subtype
RTKs are a large family of proteins involved in cell signal-
ling with particular roles in growth, differentiation, adhe-
sion, motility and death of cells [35]. A total of 58 kinases
have been classified as receptor type and are listed in
Additional file 2. Each of these kinases was assessed in the
basal molecular subtype based on the three classifiers
(ssp2003, ssp2006 and PAM50). Six of the kinases were
significantly associated with poor prognosis in the basal
subtype (EPHA5, FGFR1, FGFR3, VEGFR1, PDGFRb and
TIE1). The results are summarised on Table 5. As
expected, the RTKs as a group have the potential to act as
prognostic markers in this difficult-to-treat subtype of
breast cancer. In particular, PDGFRb would appear to be a
strong marker of poor prognosis as it is significant across
all three of the survival endpoints. This is not entirely
unexpected as elevated levels of PDGFRb have previously
been associated with enhanced cell migration and invasion
in breast cancer [36].

Discussion
BreastMark provides a user-friendly tool for examining
putative prognostic markers in breast cancer. The value
of the approach used here is based on its simplicity of
operation and the statistical power gained through the
combination of a large cohort of patients when com-
pared to single microarray experiments. While it is not

Table 3 BreastMark results for the Oncotype DX 21-gene signature for LNN, ER-positive patients using DFS as the
survival end point

Oncotype DX
category

Gene symbol BreastMark
hazard ratio

BreastMark HR
P-value

Sample number RS weighting

Proliferation KI67 1.68 4.40e-05 902 +1.04

STK15 2.32 3.93e-11 902

Survivin 1.96 8.56e-08 902

CCNB1 1.89 3.63e-06 793

MYBL2 1.76 8.01e-06 902

Invasion MMP11 1.55 1.00e-03 875 +0.1

CTSL2 1.42 7.12e-03 875

HER2 GRB7 1.26 0.07 902 +0.47

HER2 1.03 0.83 875

ER ER 1.32 0.05 875 -0.34

PGR 0.80 0.08 902

BCL2 0.75 0.03 875

SCUBE2 0.71 0.03 628

Other GSTM1 0.92 0.56 651 -0.08

CD68 0.96 0.74 902 +0.05

BAG1 1.01 0.91 902 -0.07

HR, hazard ratio; RS, Relapse score,
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the first application which combines multiple public
breast cancer datasets and performs a cross-dataset sur-
vival analysis [37-39], it is the first application which
allows users to combine multiple prognostic markers
across multiple microarray platforms without requiring
complex adjustments for batch effects across different
experiments/platforms. We are, therefore, not reliant on
the suitability of the data transformation method cho-
sen. Also, as the database is gene-centred, rather than
probe-centred, we are not limited to the gene coverage
of a particular platform. However, we are unable to
examine the effects that splice variants may have on sur-
vival. While the analysis of splice variants is possible
with some of the platforms used in this analysis, it is

limited as most of these platforms predate the publica-
tion of the complete human genome. In summary,
BreastMark allows the analysis of approximately 20,000
unique Entrez gene IDs in up to 4,739 samples. While
some compromises were made in making the data gene
centred, which negated the continuous nature of the
gene expression information, our comparison with
MammaPrint and oncotype DX shows our approach to
be robust.
In the case of oncotype DX, our results suggest that

some of the 16 oncogenes in the signature may not be
necessary. It would appear that the five proliferation mar-
kers are sufficient for determining patient outcome, as
these are the only genes with high HRs and are highly

Figure 1 Prognostic role of the Ki67, Survivn MYBL2 and MMP11 in breast cancer. These figures were generated using BreastMark at
http://glados.ucd.ie/BreastMark/index.html. (a) Kaplan-Meier estimates of survival, demonstrating high expression of Ki67 is associated with poor
prognosis in breast cancer (n = 902, HR = 1.68, P = 4.44e-05). (b) Kaplan-Meier estimate of survival, demonstrating that high expression of Ki67
and Survivin in combination have a greater effect on survival (n = 902, HR = 1.99, P = 5.60e-08). (c) Kaplan-Meier estimate of survival,
demonstrating that high expression of Ki67, Survivin and MYBL2 in combination have an even greater effect on survival (n = 902, HR = 2.00, P =
2.01e-07). (d) Kaplan-Meier estimate of survival, demonstrating how the invasion marker MMP11 does not improve the prognostic ability of Ki67
and Survivin (n = 902, HR = 1.54, P = 9.20e-03). HR, hazard ratio.
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Table 4 BreastMark results for the MammaPrint gene signature for LNN patients using DFS as the survival end point

Entrez Gene ID Gene symbol Hazard ratio P-value Sample number MammaPrint correlation with prognosis

Good Prognosis

8659 ALDH4 0.92 0.42 1105 0.421

8817 FGF18 0.86 0.16 1183 0.411

27113 BBC3 0.76 0.03 1004 0.407

57593 KIAA1442 NA NA NA 0.402

57758 CEGP1 0.69 5.37e-03 819 0.400

146923 RUNDC1 0.53 2.23e-03 387 0.390

8840 WISP1 0.85 0.13 1183 0.384

2947 GSTM3 0.79 0.02 1183 0.380

151126 ZNF533 0.84 0.39 382 0.375

146760 RTN4RL1 0.84 0.45 281 0.374

10455 PECI 0.81 0.05 1059 0.373

7043 TGFB3 0.83 0.09 1155 0.372

55351 HSA250839 0.71 2.48e-03 1109 0.368

10455 PEC1 0.88 0.05 1059 0.366

58475 CFFM4 0.67 0.01 510 0.364

163 AP2B1 0.84 0.10 1155 0.363

79132 LGP2 0.67 1.70e-03 986 0.363

Poor prognosis

55321 C20orf46 1.09 0.41 1137 -0.356

11082 ESM1 1.41 1.71e-03 1139 -0.357

9134 CCNE2 1.74 2.74e-06 1032 -0.357

54583 EGLN1 1.44 2.13e-03 981 -0.357

1058 CENPA 1.94 1.26e-09 1183 -0.358

9055 PRC1 1.87 1.03e-08 1137 -0.358

445815 AKAP2 1.01 0.95 928 -0.360

10874 NMU 1.51 1.12e-04 1183 -0.360

3488 IGFBP5 1.18 0.12 1155 -0.360

10531 MP1 1.08 0.52 893 -0.361

57110 LOC57110 1.50 2.16e-04 1109 -0.361

3488 IGFBP5 1.19 0.12 1155 -0.361

8577 TMEFF1 1.30 0.02 1077 -0.362

4175 MCM6 1.84 1.56e-08 1183 -0.364

643008 LOC643008 NA NA NA -0.365

83879 CDCA7 1.02 0.93 387 -0.365

5984 RFC4 1.62 6.38e-06 1183 -0.366

23594 ORC6L 1.80 7.32e-08 1137 -0.366

6515 SLC2A3 1.12 0.29 1155 -0.366

57211 DKFZP564D0462 0.96 0.72 1004 -0.367

79791 FBXO31 0.85 0.13 1137 -0.367

1633 DCK 1.36 4.67e-03 1155 -0.368

51514 L2DTL 1.62 1.19e-05 1109 -0.369

1284 COL4A2 1.22 0.10 1004 -0.371

9833 KIAA0175 1.82 2.21e-08 1183 -0.371

92140 MTDH 1.32 0.01 1155 -0.373

51377 UCH37 1.19 0.11 1137 -0.374

51560 RAB6B 0.98 0.84 1109 -0.376

160897 GPR180 1.24 0.31 337 -0.379

79888 FLJ12443 1.31 0.02 1004 -0.381

8293 SERF1A 1.54 0.44 28 -0.383

8476 PK428 1.19 0.10 1183 -0.384
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significant. This is consistent with previous findings
[40-43]. In fact, combining the proliferation markers
within BreastMark allows us to identify patients who will
do even more poorly. However, when we combine the
proliferation markers with most of the other 11 non-pro-
liferation genes, the HR decreases and the Kaplan-Meier
plots become less significant. This suggests that not only
are all of the genes from this prognostic signature not
required, but that our algorithm provides a useful reduc-
tionist approach to these complex prognostic signatures.

This facilitates the elimination of superfluous markers
and highlights those genes that are of the greatest rele-
vance. Although MammaPrint uses a different approach
to identify patients who will have a poor outcome, the
use of our approach could substantially reduce the num-
ber of genes required in this prognostic signature, thus
reducing the cost and the complexity of this signature.
After confirming the robustness of our algorithm we

used it to examine the potential for inferring the prog-
nostic ability of miRNAs from the gene expression data

Table 4 BreastMark results for the MammaPrint gene signature for LNN patients using DFS as the survival end point
(Continued)

10403 HEC 1.34 7.04e-03 1183 -0.386

8833 GMPS 1.37 3.12e-03 1183 -0.386

1894 ECT2 1.59 1.70e-05 1137 -0.390

4318 MMP9 1.25 0.04 1183 -0.392

5019 OXCT 1.00 0.99 1183 -0.392

2781 GNAZ 1.08 0.49 1155 -0.396

2321 FLT1 1.05 0.71 857 -0.398

2131 EXT1 1.25 0.04 1183 -0.400

56942 DC13 1.80 4.69e-08 1137 -0.400

81624 DIAPH3 1.08 0.52 998 -0.405

81624 DIAPH3 1.08 0.52 998 -0.409

169714 QSOX2 1.57 0.04 343 -0.415

286052 LOC286052 NA NA NA -0.424

51203 LOC51203 1.83 2.44e-08 1137 -0.425

81624 DIAPH3 1.08 0.52 998 -0.433

85453 TSPYL5 0.96 0.72 999 -0.527

DFS, disease-free survival; LNN, lymph node-negative.

Figure 2 miR-205 and miR-93 are associated with prognosis in breast cancer. These figures were generated using BreastMark at http://
glados.ucd.ie/BreastMark/index.html. (a) High expression of miR-205 is associated with good prognosis in breast cancer (HR = 0.768, P-value =
0.02, n = 581). (b) Low miR-93 expression is a marker of poor prognosis in breast cancer (HR = 1.36, P-value = 1.48e-4, n = 1563).
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and to look at RTKs in the basal sub-type of breast can-
cer. The attraction of miRNA biology to cancer
researchers arises from the potential of miRNAs to alter
an entire pathway or, indeed, pathways. miRNAs have
been heavily studied in breast cancer; however, their

role as prognostic markers is not well characterised.
There are only a few large-scale studies which incorpo-
rate miRNA profiling and detailed clinical data [10,44].
Despite the huge efforts required to compile these stu-
dies, their sample numbers are only in the hundreds

Table 5 Receptor tyrosine kinases associated with poor survival in the basal molecular subtype

Gene
name

Gene description Survival end
point

Molecular
classifier

Expression
cut-off

Hazard
ratio

P-
value

Number

EPHA5 EPH receptor A5 OS SSP2003 median 2.03 3.36e-
03

233

DFS SSP2006 median 1.37 0.05 422

OS SSP2006 median 1.59 0.05 271

FGFR1 fibroblast growth factor receptor 1 DFS SSP2006 High 1.43 0.02 465

DFS PAM50 High 1.36 0.05 408

FGFR3 fibroblast growth factor receptor 3 OS SSP2003 High 1.63 0.04 273

OS SSP2003 Median 1.53 0.04 273

OS SSP2006 Median 1.62 0.01 323

OS PAM50 Median 1.54 0.03 293

VEGFR1 vascular endothelial growth factor receptor 1 DDFS SSP2003 Low 1.84 0.05 320

OS SSP2003 Median 1.53 0.05 249

OS SSP2006 High 1.76 7.40e-
03

284

OS SSP2006 Median 1.69 9.50e-
03

284

DDFS SSP2006 Low 1.85 0.03 378

DDFS PAM50 Low 2.07 0.02 365

OS PAM50 High 1.61 0.04 261

OS PAM50 Median 1.61 0.03 261

PDGFRb platelet-derived growth factor receptor, beta
polypeptide

DDFS SSP2003 Median 1.88 1.64e-
03

341

DDFS SSP2003 High 2.26 9.34e-
04

341

OS SSP2003 Median 1.55 0.05 273

DFS SSP2006 Median 1.37 0.02 474

OS SSP2006 Median 1.72 5.84e-
03

323

OS SSP2006 High 2.12 1.26e-
03

323

DDFS SSP2006 High 1.76 0.01 423

DFS SSP2006 High 1.50 0.01 474

DDFS PAM50 Median 1.81 8.58e-
04

393

DDFS PAM50 High 1.86 6.33e-
03

393

OS PAM50 High 1.94 7.27e-
03

293

DFS PAM50 High 1.58 7.56e-
03

419

DFS PAM50 Median 1.38 0.02 419

DDFS PAM50 Low 1.45 0.04 393

TIE1 tyrosine kinase with immunoglobulin-like and EGF-
like domains 1

OS SSP2003 Median 1.63 0.02 273

OS SSP2006 Median 1.70 4.82e-
03

323

OS PAM50 Median 1.56 0.03 293

DFS, disease-free survival; DDFS, distant disease-free survival; OS, overall survival.
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and, therefore, not only do they have limited statistical
power, they are also restricted in their ability to assess
the rarer breast cancer subtypes. However, there is a
wealth of gene expression data available with detailed
clinical information which can be exploited by inferring
miRNA activity from host gene expression.
Again, our approach gene centres the data and allows

us to examine miRNAs as prognostic markers in breast
cancer as a whole and within the molecular subtypes.
We were able to confirm the results of smaller studies
[10,45], which demonstrated that reduced expression of
miR-205 (n = 20) and increased expression of miR-93
(n = 93) are associated with poor prognosis in breast
cancer. As both of these studies were relatively small,
their findings in isolation would be considered prelimin-
ary evidence. It should be noted, however, that not all
miRNAs and host genes are co-expressed [14] and care
needs to be taken when interpreting the results from
BreastMark. This issue cannot be resolved until such
time as there is a clearer picture of which miRNAs are
co-expressed with their host genes (current estimates
put it at approximately 70% [16]) and if those that are
not significantly co-expressed do so in a disease/tissue
specific manner or whether the miRNAs themselves are
subject to some level of post-transcriptional regulation.
Tyrosine kinases are a large family of proteins involved

in cell signalling with respect to growth, differentiation,
adhesion, motility and death [35]. Of the 90 tyrosine
kinases identified, 58 have been classified as receptor
type. These 58 receptors can be further sub-divided into
20 families [46]. A number of families of RTKs have been
implicated in the development of many cancers, includ-
ing HER and IGFR families and so on through over-
expression, amplification and/or aberrant signalling of
the RTKs [47]. Using BreastMark, we were able to iden-
tify six RTKs that can be associated with poor prognosis
in the basal subtype of breast cancer. These RTKs are
putative markers of poor prognosis and are potential
drug targets in this difficult-to-treat subtype of breast
cancer. For example, increased expression of PDGFRb
has been associated with enhanced cell migration and
invasion in breast cancer [31]; BreastMark identifies
PDGFRb as a marker of poor prognosis and this RTK has
been shown to be inhibited by imatinib in phase I clinical
trials [48]. In addition, imatinib has been investigated in
advanced breast cancers expressing PDGFRb [49]. Also,
BreastMark identifies FGFR1 as a marker in the basal
subtype of breast cancer, which has been previously
shown as a marker of poor prognosis in the luminal sub-
types [50].

Conclusions
In this study, we have developed a simple user-friendly
tool for examining putative gene/miRNA prognostic

markers in breast cancer. The value of this tool is both
in the simplicity of its design and the robustness of its
approach. It is designed with non-bioinformatic research
groups in mind and will be of great value in the preli-
minary assessment of putative biomarkers in breast can-
cer as a whole and within its molecular subtypes.
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