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Abstract

Introduction: Over the last decade several breast cancer risk alleles have been identified which has led to an
increased interest in individualised risk prediction for clinical purposes.

Methods: We investigate the performance of an up-to-date 18 breast cancer risk single-nucleotide polymorphisms
(SNPs), together with mammographic percentage density (PD), body mass index (BMI) and clinical risk factors in
predicting absolute risk of breast cancer, empirically, in a well characterised Swedish case-control study of
postmenopausal women. We examined the efficiency of various prediction models at a population level for
individualised screening by extending a recently proposed analytical approach for estimating number of cases
captured.

Results: The performance of a risk prediction model based on an initial set of seven breast cancer risk SNPs is
improved by additionally including eleven more recently established breast cancer risk SNPs (P = 4.69 × 10-4).
Adding mammographic PD, BMI and all 18 SNPs to a Swedish Gail model improved the discriminatory accuracy
(the AUC statistic) from 55% to 62%. The net reclassification improvement was used to assess improvement in
classification of women into low, intermediate, and high categories of 5-year risk (P = 8.93 × 10-9). For scenarios we
considered, we estimated that an individualised screening strategy based on risk models incorporating clinical risk
factors, mammographic density and SNPs, captures 10% more cases than a screening strategy using the same
resources, based on age alone. Estimates of numbers of cases captured by screening stratified by age provide
insight into how individualised screening programs might appear in practice.

Conclusions: Taken together, genetic risk factors and mammographic density offer moderate improvements to
clinical risk factor models for predicting breast cancer.

Introduction
Breast cancer screening aims to detect the disease early
in women and thereby reduce mortality from breast
cancer. It may not be cost-effective to screen all women
equally often, but rather to allocate resources dispropor-
tionately across women at different risks of developing
breast cancer. To identify high- and low-risk groups, a
model for estimating a woman’s individual risk is
needed. One of the earliest and most widely used risk
models for sporadic breast cancer is the Gail model [1].
The model uses the risk factors of current age, age at

menarche, age at first live birth, number of previous
breast biopsies and first-degree relatives with breast can-
cer and converts relative risk to absolute risk through
use of baseline breast cancer incidence and mortality
from other causes. Several studies have assessed the
contribution of adding a measure of mammographic
density to breast cancer risk prediction models [2-4]
because mammographic density is one of the strongest
risk factors for breast cancer with a high population
attributable risk [5].
Over the past decade, several common, low pene-

trance risk alleles for breast cancer have been identified
by genome-wide association studies (GWAS), which has
led to a recent increased interest in individualised risk
prediction for clinical purposes [6,7]. The potential
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impact of adding genetic information to the Gail model
has been investigated by several researchers [2,8-10].
Gail [2] added seven breast cancer risk-associated sin-
gle-nucleotide polymorphisms (SNPs) to the standard
Gail model and the discriminatory accuracy improved
from an area under the receiver operating curve (AUC)
of 60% to an AUC of 63%, which was however, less than
the improvement found from adding mammographic
density to the Gail model. A further 11 independent
SNP associations have been recently validated in large
GWAS and candidate gene studies, but their importance
for risk prediction has not yet been thoroughly investi-
gated [11-20].
Mealiffe et al. [8] studied prediction models based on

the same seven SNPs as Gail, using data from the
Women’s Health Initiative clinical trial and a wider
range of statistical methods. The authors studied
changes in risk strata and provided evidence in favour
of including genetic information in models for the pre-
diction of breast cancer. Pharoah et al. [10] have further
suggested that polygenic risk profiling may already pro-
vide sufficient information to justify targeting breast
cancer screening to those women at highest risk. Based
on a simple analytical strategy, Pashayan et al. [21]
recently investigated the implications for individualised
screening in England, using the 18 currently established
breast cancer risk SNPs. The authors compared the effi-
ciency of an individualised screening approach based on
a polygenic profile, with the efficiency of a standard
approach to screening, based on age alone.
We investigate the risk prediction performance of the

currently established 18 breast cancer risk SNPs, empiri-
cally, in a well-characterised case-control study of breast
cancer in Swedish women, with data available on mam-
mographic density, BMI and Gail model variables. We
evaluate performance of various prediction models by
receiver operator characteristic curve analysis and by
assessing reclassification of subjects into risk categories.
We also evaluate the efficiency of individualised screen-
ing by extending the analytical strategy of Pashayan et
al. [21] to incorporate non-genetic risk factors and to
compare performance of screening programs based on
equal resources with different risk-prediction models.
Presentation of results stratified by age provides insight
into how individualised screening programs might
appear in practice.

Materials and methods
Data
The individuals/subjects included in the current study
are drawn from a population-based case-control study
of postmenopausal breast cancer in women born in
Sweden aged 50 to 74 years at the time of enrolment,

which was between 1 October 1993 and 31 March 1995.
Controls were randomly selected from the Swedish reg-
ister of the total population and were frequency
matched to the expected age distribution of the cases.
Details on data collection and subjects have been
described previously [22]. From the original case-control
study, consisting of 3,345 cases and 3,454 controls,
breast density measurements were available for 1,780
cases and 1,701 controls. In all, 1,569 breast cancer
cases and 1,730 healthy controls, from the original case-
control study, were included in a genetic study. Among
these women breast density measurements were avail-
able for 1,022 cases and 868 controls. We carried out
our analysis on three subsets: women with complete
data on Gail, percentage density (PD) and body mass
index (BMI) variables; women with complete data on
Gail and SNP variables; and women with complete data
on Gail, PD, BMI and SNP variables.
The process of collecting mammographic density in

the cases and controls included in this study has been
described elsewhere [23]. In short, medio-lateral oblique
views were used. For controls, the side was chosen ran-
domly, whereas for cases the side contralateral to the
tumour was used. The density resolution was set at 12-
bit spatial resolution. Cumulus [24], a computer-assisted
thresholding technique, was used to assess density on
digitised film mammograms. For each image, a (single)
trained observer set the appropriate gray-scale threshold
levels defining the edge of the breast and distinguishing
dense from non-dense tissue. The software calculated
the total number of pixels within the entire region of
interest and within the region identified as dense. The
PD was then calculated from these values (dense area/
total breast area). The images were measured together
with approximately the same amount of images for
healthy, control women and the reader was blinded to
case-control status. A random 10% of the images were
included as replicates to assess the intra-observer relia-
bility, which was high with a Spearman rank correlation
coefficient of 0.92.
Genotyping was performed at the National University

of Singapore. Approval of the study was given by the
Institutional Review Boards in Sweden and the National
University of Singapore.

Statistical analysis
Gail et al. [1] presented a method to estimate the prob-
ability that a woman, with a particular risk profile, in
terms of age and other known risk factors will develop
breast cancer during a specific time interval. The
method can be used to combine case-control data with
national registry data. Absolute risk is the probability
that a subject who is free of the disease of interest at
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age a will be diagnosed with that disease in a subse-
quent age interval (a,a + δ], and can be written as:

P (a, δ, r (t)) =
∫ a+δ

a h1 (t) r (t) exp{− ∫ t
a h1 (u) r (u) du} S2 (t)

S2 (a)
dt

where S2 (t) = exp{− ∫ t
0 h2 (u) du} is the probability of

surviving competing risks up to age t. In this equation
the term S2(t)/S2(a) corresponds to the conditional
probability of surviving other causes from age a to t,
and the exponential term corresponds to surviving with-
out breast cancer from age a to age t. At age t, there is
an instantaneous probability h1(t)r(t)dt of developing
breast cancer. The baseline hazard, h1(t), is estimated by
multiplying age-specific breast cancer incidence rates,
h∗
1(t) , by a conversion factor equal to one minus the

population attributable risk. The age-specific hazard of
dying from other causes other than breast cancer is
represented by h2(t) and is assumed to be the same for
all individuals. The population attributable risk is a
function of the relative risk model r(t), and can be
determined according to an approach described by
Bruzzi et al. [25]. In the current article, similarly to as
in Gail et al. [1], we work under the simplifying assump-
tions that h1, h2 and r are constant within five-year
intervals. We estimated the age-specific breast cancer
incidence rates and hazard of dying from other causes
from the Swedish Cancer and Cause of Death registries,
respectively [see Table A1 in Additional file 1], and trea-
ted these values as known, without error.
The Gail relative risk model [1] incorporates informa-

tion on the risk factors age at menarche, age at first live
birth, number of previous breast biopsies and first-
degree relatives. We did have information on age at
menarche and age at first live birth, but used family his-
tory (binary) and benign breast disease (binary), respec-
tively, as proxies for number of first-degree relatives and
the number of previous breast biopsies. In our risk-pre-
diction models, effect estimates for Gail risk factors [1],
PD, BMI and the genetic markers were retrieved from
literature, except for the two Gail proxy variables. We
estimated the effect sizes of the proxy variables using
our own data by fitting a logistic model with both main
effects included in a model which included an offset
term of combined effect from age at menarche and age
of first live birth, based on published effect estimates.
We assumed a multiplicative penetrance model for the
breast cancer-associated SNPs. In order to provide rela-
tive odds of 1.0 or more for disease-associated alleles,
where necessary the genotype scores were recoded such
that the low-risk homozygote represented the baseline
[2]. For SNPs with effect estimates from multiple
sources [11-20], we used the inverse variance method

([26]; pp.375) to obtain a weighted average of effect esti-
mates from the separate studies.
Mammographic density has been consistently shown

to be strongly associated with breast cancer and has pre-
viously been considered in breast cancer risk-prediction
models [3-5]. Due to the strong negative correlation
between body size and mammographic density, the
effect of density on breast cancer risk is underestimated
if body size is not adjusted for. We therefore included
BMI, together with PD in our risk prediction models.
We used effect sizes obtained externally from a large
sample of postmenopausal women, from [27], as esti-
mates of risk (odds ratios) of breast cancer according to
percent mammographic density (six categories), adjusted
for BMI and as estimates of risk of breast cancer
according to BMI (five categories), adjusted for density
(Table 1).
We used the Gail approach to estimate the 5-year and

10-year absolute risk of breast cancer based on age and
various combinations of genetic and non-genetic risk
factors. We evaluated various models for breast cancer
risk based on subsets of women with data on (i) Gail,
PD and BMI variables, (ii) Gail and SNP variables and
(iii) Gail, PD, BMI and SNP variables.
We used the Hosmer-Lemeshow test to assess calibra-

tion of the prediction models based on comparing
observed and expected outcomes within deciles of esti-
mated risk. As in Mealiffe et al. [8], we first fitted a
logistic regression model with a coefficient of one for
the logit of the absolute risk to estimate a location para-
meter to account for the case-control design. We also
evaluated Brier scores [see Additional file 2]. To assess
discrimination we performed receiver operating charac-
teristic curve analysis, calculating the AUC statistic,
along with DeLong’s non-parametric interval for AUC,
and assessed departure from a model with no diagnostic
capacity using the Mann-Whithney U test. We used the
non-parametric approach of DeLong et al. [28] to test
for differences in AUC.
To assess the ability of a new test to reclassify subjects

accurately into higher or lower risk categories, we evalu-
ated the two statistics suggested by Pencina et al. [29]
for assessing improvement in model performance
accomplished by adding new explanatory variables, the
net reclassification improvement (NRI) and the inte-
grated discrimination improvement (IDI). We also
examined the predictiveness curve [30].
For the English population Pashayan et al. [21] have

evaluated the efficiency of individualised screening stra-
tegies for breast cancer based on age and polygenic risk
profiles. They evaluated the number of cases potentially
detectable, along with the number of women eligible for
screening (in the population of women aged 35 to 79
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years) based on an individualised screening strategy of
screening women aged 35 to 79 years with a 2.5% 10-
year risk evaluated as a function of age and polygenic
profile. Their approach involves inferring points on the
predictiveness curve in the population (aged 35 to 79
years) at large. We extended the procedure (see below)
to evaluate the potential impact of individualised screen-
ing in Sweden. As mammography screening is offered to
women aged 40 to 75 years in Sweden, we evaluated the
performance of a number of individualised screening

approaches against a baseline (age only) strategy of
screening all women between aged 40 to 75 years. In
Sweden, with its screening strategy, the 10-year absolute
risk of breast cancer reaches 2.5% by age 40 years and is
thereafter above 2.5% all the way up to age 75 years
(absolute risk values derived from Table A1 [see Addi-
tional file 1], using (1); data not shown). In addition to a
polygenic profile, we also incorporated Gail risk factors
and PD in the calculation of individualised risk scores.
To calculate individualised risk scores we simulated a

Table 1 Effect sizes for the 18 genomic loci, percentage mammographic density, body mass index and clinical risk
factors, used for risk prediction.

dbSNP No Chromosome ORa Reference First author (Year) OR (95%CI)b Pc

rs11249433 1 1.12 Turnbull (2010), Thomas (2009) 1.12 (1.00 to 1.25) 4.3 × 10-2

rs1045485 2 1.14 Turnbull (2010), Cox (2007) 1.08 (0.90 to 1.28) 4.1 × 10-1

rs13387042 2 1.15 Turnbull (2010), Thomas (2009), Stacy (2007) 1.21 (1.08 to 1.34) 6.0 × 10-4

rs4973768 3 1.11 Turnbull (2010), Ahmed (2009) 1.04 (0.94 to 1.16) 4.2 × 10-2

rs10941679 5 1.19 Turnbull (2010), Stacy (2007) 1.19 (1.06 to 1.34) 4.0 × 10-3

rs889312 5 1.14 Turnbull (2010), Easton (2007) 1.14 (1.01 to 1.28) 3.5 × 10-2

rs2046210 6 1.27 Turnbull (2010), Zeng (2009) 1.14 (1.01 to 1.27) 2.7 × 10-2

rs13281615 8 1.10 Turnbull (2010), Easton (2007) 1.19 (1.07 to 1.33) 1.6 × 10-3

rs1011970 9 1.09 Turnbull (2010) 1.04 (0.90 to 1.21) 5.5 × 10-1

rs2981582 10 1.26 Turnbull (2010), Easton (2007) 1.28 (1.15 to 1.43) 6.0 × 10-6

rs2380205 10 1.11 Turnbull (2010) 1.04 (0.93 to 1.16) 4.9 × 10-1

rs10995190 10 1.16 Turnbull (2010) 1.12 (0.98 to 1.30) 9.9 × 10-2

rs704010 10 1.07 Turnbull (2010) 1.07 (0.96 to 1.19) 2.5 × 10-1

rs3817198 11 1.07 Turnbull (2010), Thomas (2009), Easton (2007) 1.01 (0.90 to 1.14) 8.1 × 10-1

rs614367 11 1.15 Turnbull (2010) 1.36 (1.18 to 1.58) 8.3 × 10-4

rs999737 14 1.09 Turnbull (2010), Thomas (2009) 1.09 (0.96 to 1.25) 1.9 × 10-2

rs3803662 16 1.20 Turnbull (2010), Thomas (2009), Easton (2007), Stacy (2007) 1.27 (1.13 to 1.43) 1.0 × 10-4

rs6504950 17 1.05 Turnbull (2010), Ahmed (2009) 1.11 (0.98 to 1.25) 1.6 × 10-1

Percentage mammographic density

0 1.00 Boyd (2006)

< 10% 1.27

10-25 2.00

25-50 2.98

50-75 3.70

≥ 75 5.86

BMI (body mass Index)

< 21.79 1.00 Boyd (2006)

21.79-23.30 1.16

23.30-25.02 1.13

25.02-27.64 1.28

≥ 27.64 1.67

Clinical factors

Age at menarche 1.10 Gail (1989)

Age at first live birth 1.24 Gail (1989)

Benign breast disease 1.65 Estimated from Swedish Case-Control Data

Family history 2.07 Estimated from Swedish Case-Control Data

a Published odds ratio (For SNPs with effect estimates from multiple sources, the inverse variance method was used to obtain a weighted average of effect
estimate from the separate studies)

b Per allele odds ratio (per copy of the high-risk allele in the Swedish case-control sample).

c P-values for tests of association based on likelihood-ratio tests, in the current Swedish case-control study.
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population of 100,000 women aged 40 to 75 years,
according to the age distribution of the Swedish popula-
tion. For generating non-genetic risk factors for these
women we sampled from our own controls, with repla-
cement. As our data consist of postmenopausal women,
for women aged younger than 50 years we were forced
to make additional simplifying assumptions. We
assumed that these women have the same age condi-
tional risk factor distribution as women aged 50 years.
We evaluated different screening strategies based on
estimating the proportion of the population that has an
individualised risk greater than a given threshold (1.5%,
2% or 2.5%) and the proportion of cases that are
expected to occur within the high-risk subgroup. Evalu-
ating at different thresholds enabled us to find screening
strategies that use equal resources (% eligible for screen-
ing) but are based on different risk-prediction models.
We stratified our results in five-year age intervals to
shed light on how individualised screening strategies
might appear in practice. Although the analytical
approach for calculating the proportion of cases cap-
tured by screening does not explicitly model the process
of evolving risk scores for individual women, depen-
dence of the distributions of the non-genetic risk factors
on age is incorporated and age stratification provides
valuable insights.
All statistical analyses were performed using the free

statistical software R [31] and R packages ROCR and
PredictABEL.

Results
We examined several models for predicting absolute
risk. We examined the effects of including the four Gail
variables, with modified variable definitions, which we
refer to as the Swe-Gail variables, as well as the effect of
including PD and BMI. In all, 18 breast cancer suscept-
ibility loci with common risk alleles have been examined
in this study (Table 1); referred to as The18 herein. We
also selected out the earlier known subset of seven mar-
kers studied by Gail [2], referred to herein as The7.
We first examined the classification abilities of models

with and without PD and BMI, but including Swe-Gail
risk factors age at menarche, age at first live birth,
family history, benign breast disease, in 1,739 cases and
1,672 controls (Table 2). Without PD and BMI we
observed an AUC of 0.569 (95% confidence interval (CI)
= 0.550 to 0.588), compared with an AUC of 0.602 (95%
CI = 0.584 to 0.621) with PD and BMI. The difference
in AUCs was statistically significant (ΔAUC = 0.033, P
= 1.17 × 10-7). Based on a subset of women with com-
plete data on Gail variables and SNPs, a statistically sig-
nificant improvement in AUCs was seen when adding
The7 to the Swe-Gail model. Improvement was further
enhanced when the recently discovered 11 SNPs were

added (ΔAUC = 0.018, P = 4.69 × 10-4). Furthermore, a
gain in AUCs was observed from including these 11
SNPs when the baseline model also included PD and
BMI. We finally selected a subset of women with com-
plete data on Gail variables, SNPs, PD and BMI and
compared the performances of the Swe-Gail model and
a model additionally including PD, BMI and The18. The
latter model, referred to as the full model herein,
obtained an AUC of 0.619, improving the AUC by 0.067
(P = 3.24 × 10-9). In this subset, with PD and BMI only
we observed on AUC of 0.541 (95% CI = 0.515 to
0.568), with The18 only we observed an AUC of 0.589
(95% CI = 0.563 to 0.614) and with PD, BMI and The18
we observed an AUC of 0.600 (95% CI = 0.575 to
0.626).
The values of absolute five-year risk of breast cancer

for the women included in our study, calculated at time
of sampling/diagnosis based on the Swe-Gail model and
the model additionally containing PD, BMI and The18
are plotted in Figure 1. Complementing the Gail model
with PD and The18 increases the spread of the pre-
dicted absolute risks. A marked difference in distribu-
tions between cases and controls was observed for the
full model. The means of the absolute five-year risks
were 3.69% and 2.84% for cases and controls, respec-
tively. Of the controls and the cases, 47.9% and 64.8%,
respectively, had a five-year absolute risk higher than
2.5%. The difference in distributions between cases and
controls was more subtle for the Swe-Gail model.
Assuming three risk categories, we used reclassifica-

tion tables to compare pairs of models in terms of their
assignment of women to low (0,ε1), intermediate (ε1,ε2),
and elevated risk categories (ε2,1), based on five-year
absolute risk estimates (Table 3). As cut-off values we
choose ε1 (= 2.41%) to correspond to the first quartile
of the estimated risk based on the Swe-Gail model and
ε2 (= 4.11%) to correspond to the third quartile. The
NRI value for the comparison of the Swe-Gail model
with the full model was 0.170 (Z = 5.750, P = 8.93 × 10-
9). In total, 46% of women were reclassified. Reclassifica-
tion based on the full model was overall in the right
direction, with an upward shift in risk categories for
cases and a downward shift for controls. The global IDI
measure was 0.004 (Z = 5.742, P = 9.33 × 10-9). Using
the cut-off values suggested by Mealiffe et al. [8], i.e. ε1
= 1.5%,ε2 = 2%, the NRI value for comparing the same
two models was estimated to be 0.193 (Z = 8.229, P =
2.22 × 10-16).
Model calibration was assessed using the Hosmer-

Lemeshow approach and by calculating Brier scores. All
models showed lack of fit; however, lack of model fit
does not necessarily limit classification ability based on
estimated risks [32]. Results for the Swe-Gail model and
the full model are displayed in Tables A2 and A3 [see
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Additional file 1] and in Figure 2. Both the Brier score
and the Hosmer-Lemeshow test statistic values indicate
an improvement in goodness of fit as a result of updat-
ing the Swe-Gail model with PD, BMI and SNP data.
One way to assess the predictive power of a model is

to estimate the proportions of cases that are accounted
for by given percentages of the population at the highest
risk [30]. Figure 3 displays these proportions based on

the risk distribution generated by the Swe-Gail model,
and by the full model. For the full model the proportion
of cases explained by the 20% of the population at the
highest risk was equal to 40.1%, compared with 35.1%
for the Swe-Gail model.
For four personalised screening models, we compared

the percentage of individuals eligible for screening and
the percentage of cases potentially detectable by

Table 2 Areas under the receiver operating characteristic curves for different combinations of prediction models.

OLDmodel NEWmodel

OLDmodel NEWmodel Controls Cases AUC (95%CI)a P-value
AUCb

AUC (95%CI)a P-value
AUCb

P-value
ΔAUCc

Swe-Gail Swe-Gail, PD, BMI 1672 1739 0.569 (0.550 -
0.588)

3.00 × 10-12 0.602 (0.584 -
0.621)

3.85 × 10-25 1.17 × 10-7

Swe-Gail Swe-Gail, The7 1527 1566 0.548 (0.527 -
0.568)

4.57 × 10-6 0.597 (0.577 -
0.617)

9.98 × 10-21 7.44 × 10-17

Swe-Gail Swe-Gail, The18 1527 1566 0.548 (0.527 -
0.568)

4.57 × 10-6 0.615 (0.595 -
0.634)

1.96 × 10-28 1.54 × 10-18

Swe-Gail, The7 Swe-Gail, The18 1527 1566 0.597 (0.577 -
0.617)

9.98 × 10-21 0.615 (0.595 -
0.634)

1.96 × 10-28 4.69 × 10-4

Swe-Gail Swe-Gail, PD, BMI 856 1017 0.552 (0526 -
0.578)

1.09 × 10-4 0.571 (0.545 -
0.597)

1.06 × 10-7 2.23 × 10-7

Swe-Gail Swe-Gail, PD, BMI,
The7

856 1017 0.552 (0526 -
0.578)

1.09 × 10-4 0.604 (0.579 -
0.630)

6.95 × 10-15 1.19 × 10-7

Swe-Gail Swe-Gail, PD, BMI,
The18

856 1017 0.552 (0526 -
0.578)

1.09 × 10-4 0.619 (0.594 -
0.644)

6.16 × 10-19 3.24 × 10-9

Swe-Gail,PD,BMI Swe-Gail, PD, BMI,
The7

856 1017 0.571 (0.545 -
0.597)

1.06 × 10-7 0.604 (0.579 -
0.630)

6.95 × 10-15 9.50 × 10-9

Swe-Gail, PD, BMI Swe-Gail, PD, BMI,
The18

856 1017 0.571 (0.545 -
0.597)

1.06 × 10-7 0.619 (0.594 -
0.644)

6.16 × 10-19 1.93 × 10-9

Swe-Gail, PD, BMI,
The7

Swe-Gail, PD, BMI,
The18

856 1017 0.604 (0.579 -
0.630)

6.95 × 10-15 0.619 (0.594 -
0.644)

6.16 × 10-19 6.18 × 10-3

a AUC and Confidence Interval (CI) evaluated using Delongs non-parametric estimation.

b Null hypothesis of AUC = 0.5 assessed using Mann-Whitney U test.

c Null hypothesis of ΔAUC = 0 assessed using DeLongs Test.
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Figure 1 Distributions of estimated absolute risk by case-control status using the Swe-Gail model and the full model (with displayed
proportions of women with five-year absolute risks greater than (multiples of 2.5%).
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screening, for eligible cases, against the (current)
approach of screening all women aged 40 to 75 years at
three cut-offs of eligibility [see Table A4 of Additional
file 1]. The full model with eligibility for screening
defined by an absolute risk cut-off value of 2% has a
slightly lower level of eligibility than the Swe-Gail model
with a 2.5% cut-off for eligibility (74% and 76%, respec-
tively), but has a substantially higher catchment; for the
full model 90% of the cases are potentially screen
detectable, while for the latter only 85% are potentially
detectable. As a consequence of adding SNPs, BMI and
PD to the risk-prediction model, resources are more
efficiently re-allocated to women with high-risk profiles.

With the aim of comparing screening strategies with
equal resources, we also calculated the number of cases
captured by screening based on the most efficient age-
only screening program, and based on individualised
screening using the full model when confined to includ-
ing only 76% of women aged 40 to 75 years. The per-
centage of all cases aged 40 to 75 years covered by the
age-only based program was 81%, that is 4% less than
the program based on the Swe-Gail model and this was
10% less than the program based on the full risk-predic-
tion model, for which 91% of cases were screened.
Results are summarised in Table 4. Age stratified per-
centages of cases eligible for screening together with the

Table 3 Reclassification for the Swe-Gail model compared with the full model, based on cut-off values determined by
first and third quartile of predicted risk by the Gail model.

Control subjects Full model

Swe-Gail model Low risk (< 2.41%) Intermediate risk (2.41%-4.11%) High risk (> 4.11%) Reclassified (%)

Low risk (< 2.41%) 170 20 10 15

Intermediate risk (2.41%-4.11%) 236 182 62 62

High risk (> 4.11%) 20 65 91 48

Cases subjects Full model

Swe-Gail model Low risk (< 2.41%) Intermediate risk (2.41%-4.11%) High risk (> 4.11%) Reclassified (%)

Low risk (< 2.41%) 155 53 17 31

Intermediate risk (2.41%-4.11%) 161 225 103 54

High risk (> 4.11%) 14 97 192 37

Total sample Full model

Swe-Gail model Low risk (< 2.41%) Intermediate risk (2.41%-4.11%) High risk (> 4.11%) Reclassified (%)

Low risk (< 2.41%) 325 72 27 24

Intermediate risk (2.41%-4.11%) 397 407 165 58

High risk (> 4.11%) 34 162 283 41
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Figure 2 Observed versus predicted proportions of cases for deciles of risk score for the Swe-Gail model and the full model.

Darabi et al. Breast Cancer Research 2012, 14:R25
http://breast-cancer-research.com/content/14/1/R25

Page 7 of 11



percentages of cases covered by screening, for the three
programs with 76% coverage, along with a selection of
models presented in Table A4, are presented in Table
A5 [see Additional file 1].

Discussion
In the present study we have investigated the potential
gain in combining SNP information with clinical infor-
mation and mammographic percentage density for the
prediction of absolute risk of developing breast cancer,
in the Swedish population, utilising the Gail approach
[1]. We have examined several models for predicting
absolute risk, in particular examining the importance of
variables in the Gail model, mammographic percentage
density, the seven SNPs studied by Gail [2], and an addi-
tional 11 SNPs that have recently been confirmed to be
associated with breast cancer risk. We provide evidence
that the AUC of the risk-prediction model based on the
initial seven breast cancer risk SNPs is improved by
additionally including the 11 more recently established
breast cancer risk SNPs (P = 4.69 × 10-4). We further

show that including mammographic PD, BMI and the
18 SNPs, in the baseline Swe-Gail model, is strongly
associated with positive reclassification (NRI = 0.170, P
= 8.93 × 10-9).
The value of the AUC statistic, for assessing discrimi-

nation based on absolute risks calculated from the Gail
model, which we observed is low compared with what
has been observed in some studies carried out in the
US. Rockhill et al. [33] observed an AUC of 0.58 based
on the Nurse’s Health Study and Gail [2] an AUC of
0.61 based on white women aged 50 years and over
from the US National Health Interview Study. We note
that for the standard Gail model, the standard deviation
of the log relative risk estimated for our samples is
lower than the value estimated in Gail [2] (0.34 com-
pared with 0.36) and that generally an increase in varia-
bility in risk scores will be associated with an increased
AUC value [34]. Studies of the original Gail model have
reported AUC values ranging from 0.54 to 0.74,
although the values at both ends of this interval have
been observed in more ‘extreme’ populations (0.54 in a
cohort of 70 year old and older US women [35] and
0.74 in a study of UK women aged 21 to 73 years from
a UK family history clinic [36]).
In our study we observed improvements of 2 to 3% in

AUC values as a result of adding mammographic den-
sity to risk-prediction models, which is slightly more
than the 1% improvement observed by Tice et al. [3].
The increase is likely to be partially due to the good
intra-observer reliability of the Cumulus method used
for measuring percent density, compared with the BI-
RADS method used by Tice et al. [3]; see [37]. Chen et
al. [4] estimated an increase in excess of 4%, also using
percent density. Mammograms/measurements of PD
were available only on slightly fewer than 50% of the
individuals in their study; statistical modelling was used
to infer PD in the remaining subjects.
We examined the usefulness of the 18 markers on a

population level, with respect to screening. Using pub-
lished effect estimates for the 18 markers and the clini-
cal variables we evaluated several approaches to
individualised screening, against age only-based screen-
ing, in women aged 40 to 75 years (at different 10-year
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Figure 3 Proportion of breast cancer cases explained by the
proportion of the population at highest risk of the disease, for
the Swe-Gail model and the full model.

Table 4 Percentage of cases detectable by screening for the screening strategies with 76% eligibility.

Model Cut-offa Eligibleb (%) Cases screenedc (%) Mean (Sd)d

Age-Only - 76 81 0.033 (-)

Swe-Gail 0.0250 76 85 0.034 (0.014)

Swe-Gail, PD, BMI, The18 0.0195 76 91 0.037 (0.026)

a Absolute risk cut-off defining eligibility for screening.

b Percentage of individuals eligible for screening according to the risk distribution estimated by the specified model.

c Percentage of cases potentially detectable by screening in the population undergoing screening.

d Mean and standard deviation (Sd) of predicted absolute risk values.
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risk cut-offs for defining eligibility for screening). We
showed for the Swedish female population that a perso-
nalised screening approach based on a risk prediction
model incorporating age, Gail model variables, PD, BMI
and 18 SNPs captures significantly more breast cancer
cases than screening approaches using equal resources
based on age and Gail model variables and on age
alone. The individualised screening strategies investi-
gated here correspond very loosely to a strategy where
all women are screened at baseline (e.g. at age 40 years)
and at a small number of occasions (e.g. shortly after
menopause, and at age 65 years), in order to ascertain
personalised risk and between these occasions women
are recommended to attend screening at intervals tai-
lored to their personalised risk. In practice, rather than
reducing the total number of mammograms, as in
Pashayan et al. [21], and in the simulation study herein,
individualised screening might in the first line reallocate
existing resources unequally across women, according to
their risk.
It is now recognised that stratification according to

genetic risk scores may improve the efficiency of screen-
ing programs [10]. With on-going genotyping efforts by
among others, the Breast Cancer Association Consor-
tium [38], it is likely that in the near future the number
of established breast cancer risk SNPs will increase
markedly, potentially making a polygenic approach to
disease prevention a reality [11]. In the future other
novel risk factors could potentially be incorporated into
the Gail approach, such as steroid hormone levels, more
detailed reproductive history and novel measures of
mammographic density, such as texture features [39].
The strengths of the present study are the population-

based setting with a high participation rate and the
detailed information on key breast cancer risk factors,
including mammographic density. To our knowledge
this is the first study to assess the prediction perfor-
mance of the currently established 18 breast cancer risk
SNPs empirically.
There are limitations to the present study. Two of the

variables in our prediction models varied slightly in defi-
nition from those used in the standard Gail model. For
these variables we were forced to use internal effect esti-
mates. Any bias in estimating discriminatory accuracy is,
however, expected to be negligible. Further limitations
are that the study is focused on postmenopausal women
and that the family history variable used in our study is
very crude. More sophisticated approaches have been
described that more specifically describe the nature of
the family history [40,41], using for example such vari-
ables as number and types of relatives affected with
breast cancer (plus the ages at which they developed
breast cancer), special risk factors such as BRCA1 and

BRCA2 gene mutations and family history of cancers at
other sites.
The approach used for assessing efficiency of indivi-

dualised screening programs is simplistic. It assumes
that women being screened are under constant surveil-
lance and that cancer is instantaneously detectable with-
out error. Moreover, our approach was based on further
simplifying assumptions, for example that effect sizes
are age independent. Related to this particular condition
is our assumption that women aged less than 50 years
have the same risk distribution of those women aged 50
years. However, in reality the relative risk associated
with family history is higher at younger ages [42]. One
way to relax our assumption would be to incorporate
interaction effects between age and family history.
Effects of other risk factors (e.g. breast density) may also
vary with age, but the approach becomes unwieldy/esti-
mates become unstable if we account for age-dependent
effects of several risk factors. An approach to examining
sensitivity of our results to our assumption, which
addresses the issue more generally, is to investigate what
happens when we increase/decrease the variance of the
risk scores in the women aged less than 50 years by a
fixed factor. When we increased the variance of the log
relative risks by a fixed factor (10% increase) we
observed an increase in the percentage of cases screened
(approximately 1%) along with a very small increase
(less than 1%) in the percentage of individuals eligible
for screening, across all three considered prediction
models, and advantages of the full model, compared
with sub-models, were still observed (data not shown).
More refined approaches for evaluating screening stra-

tegies need to be developed and applied. It is important
to incorporate breast cancer mortality as well as inci-
dence and to at least partially reflect that breast cancer
is a complex disease with a number of subtypes (which
receive different treatments) and that patient survival
outlooks vary. Accurately predicting an individuals risk
of developing and dying from breast cancer remains a
challenge. Microsimulation may prove a useful tool for
accounting for the complicated processes of disease pro-
gression and detection when evaluating the efficiency of
screening strategies [43]. Using microsimulation, it
would be possible to assess refined strategies, for exam-
ple, where screening intervals are defined as functions of
breast cancer risk and to consider other aspects such as
possible over-diagnosis and screening sensitivity.

Conclusions
Taken together, genetic risk factors and mammographic
density offer moderate improvements to clinical risk fac-
tor models for predicting breast cancer.
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Additional file 1: Supplementary tables. (a1) Age-specific composite
(h∗

1(t) ) and competing mortality rates (h2(t)), for breast cancer using
2005 data from the Swedish cancer registry and cause of death registry
(per 100,000). (a2) Measures of model calibration and discrimination for
the Swe-Gail model and the full model. (a3) Expected and observed
counts of case patients for subgroups of predicted risk for Swe-Gail
model and the full model. (a4) Percentage of individuals eligible for
screening and the percentage of cases potentially detectable by
screening in the population undergoing screening, across different
(personalised) screening strategies based on different cut-off of 10-year
absolute risk for developing breast cancer. (a5) Percentage of individuals
eligible for screening and the percentage of cases potentially detectable
by screening in the population undergoing screening, across different
screening strategies based on different cut-off of 10-year absolute risk for
developing breast cancer, stratified by age.

Additional file 2: Supplementary methods. Full methods
accompanying this manuscript.
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