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Abstract

Introduction: Several common breast cancer genetic susceptibility variants have recently been identified. We
aimed to determine how these variants combine with a subset of other known risk factors to influence breast
cancer risk in white women of European ancestry using case-control studies participating in the Breast Cancer
Association Consortium.

Methods: We evaluated two-way interactions between each of age at menarche, ever having had a live birth,
number of live births, age at first birth and body mass index (BMI) and each of 12 single nucleotide
polymorphisms (SNPs) (10q26-rs2981582 (FGFR2), 8q24-rs13281615, 11p15-rs3817198 (LSP1), 5q11-rs889312
(MAP3K1), 16q12-rs3803662 (TOX3), 2q35-rs13387042, 5p12-rs10941679 (MRPS30), 17q23-rs6504950 (COX11),
3p24-rs4973768 (SLC4A7), CASP8-rs17468277, TGFB1-rs1982073 and ESR1-rs3020314). Interactions were tested
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for by fitting logistic regression models including per-allele and linear trend main effects for SNPs and risk
factors, respectively, and single-parameter interaction terms for linear departure from independent multiplicative
effects.

Results: These analyses were applied to data for up to 26,349 invasive breast cancer cases and up to 32,208
controls from 21 case-control studies. No statistical evidence of interaction was observed beyond that expected by
chance. Analyses were repeated using data from 11 population-based studies, and results were very similar.

Conclusions: The relative risks for breast cancer associated with the common susceptibility variants identified to
date do not appear to vary across women with different reproductive histories or body mass index (BMI). The
assumption of multiplicative combined effects for these established genetic and other risk factors in risk prediction
models appears justified.

Introduction
Breast cancer is known to have both a genetic and non-
genetic etiology. Several common genetic susceptibility
variants have recently been identified, predominantly by
genome-wide association studies (GWAS). These
include single nucleotide polymorphisms (SNPs) at loci
containing the genes FGFR2, LSP1, MAP3K1, TOX3,
MRPS30, COX 11, SLC4A7, and at chromosomes 8p24
and 2q35 [1-5]. To date, the only SNP associated
with breast cancer risk with genome-wide statistical
significance (P < 10-7) coming from candidate gene
approaches is CASP8 [6]; more equivocal evidence has
been reported for SNPs in TGFB1 [6] and ESR1 [7],
among others.
It is important to determine how these common SNPs

combine with other known risk factors such as age at
menarche, parity, age at first birth and body mass index
(BMI) [8,9] to influence breast cancer risk because this
knowledge could be used to improve risk prediction
models [10,11]. The identification of modification of
SNP associations by other risk factors could also provide
insight into the biological mechanisms by which genetic
variants are implicated in breast cancer etiology. Many
of these SNPs and other risk factors have been observed
to be differentially associated with estrogen receptor
(ER)-positive and ER-negative disease [1,4,5,7,12,13] and
so interactions between them may also differ by disease
subtype.
We, therefore, aimed to assess effect modification for

12 SNPs, 10 of which have been clearly associated with
breast cancer risk (10q26-rs298158 (FGFR2), 8q24-
rs13281615, 11p15-rs3817198 (LSP1), 5q11-rs889312
(MAP3K1), 16q12-rs2803662 (TOX3), 2q35-rs13387042,
5p12-rs10941679, 17q23-rs6504950, 3p24-rs4973768 and
CASP8-rs17468277) and two for which there is less
clear evidence of a main effect (TGFB1-rs1982073 and
ESR1-rs3020314). The potential effect modifiers consid-
ered were age at menarche, ever having had a live birth,
number of live births, age at first birth and BMI. A sec-
ondary aim was to evaluate these interactions in

susceptibility to breast cancer subtypes defined by ER
and progesterone receptor (PR) status. Data for white
women of European ancestry were combined from 21
case-control studies participating in the Breast Cancer
Association Consortium (BCAC).

Materials and methods
A description of the 21 case-control studies participating
in this pooled BCAC analysis is provided in Table 1,
with more detailed information given in Additional Data
Table S1 in Additional file 1. These included 11 popula-
tion-based studies and seven studies with at least 1,000
cases and 1,000 controls. All studies collected self-
reported information for cases and controls on age at
diagnosis (cases) or interview (controls), racial/ethnic
group (white European, Asian or other) and at least one
of the following: age at menarche, ever having had a live
birth, number of live births, age at first live birth (if par-
ous), BMI (or height and weight). The time-point at
which these variables were assessed for each study is
detailed in Additional Data Table S1 in Additional file 1.
Additional risk and other lifestyle factor information
were not available at the time of the present analysis.
All studies used structured questionnaires to collect
these data, with the exception of the CNIO-BCS and the
LMBC study, for which the information was abstracted
from medical records. Nineteen studies also provided
information on the ER and PR status of the tumors
for a subset of cases. This information was mostly
abstracted from medical records. Subjects who reported
being of ethnicities other than white European were
excluded, as were cases with non-invasive disease. All
study participants gave written informed consent and
each study was approved by the relevant local institu-
tional review board(s).
Genotyping methods have been previously described

[1,6,7,12,14]. Briefly, five studies (ABCFS, GENICA,
kConFab/AOCS, MARIE and SASBAC) used Seque-
nom’s MassARRAY system and iPLEX technology
(Sequenom, San Diego, CA, USA) for most SNPs. All
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other genotyping was done using Taqman® Assays-by-
DesignSM (Applied Biosystems, Foster City, CA, USA).
SNP CASP8- rs17468277 is in complete linkage disequi-
librium with CASP8-rs1045485, which has previously
been reported to be associated with breast cancer [6].
All studies included at least one blank well (containing
no DNA) per 384-well assay plate, at least 2% of sam-
ples in duplicate, and a common set of 93 samples from
the Centre d’Etude Polymorphisme Humain (CEPH)
used by the HapMap Consortium (HAPMAPPT01, Cor-
iell Institute for Medical Research, Camden, NJ, USA).
Genotyping call rates and duplicate concordance rates
were calculated after excluding samples that had pre-
viously repeatedly failed; all were greater than 95%. Con-
cordance with CEPH genotypes was greater than 98%.

Statistical methods
Overall genetic associations were evaluated for each of
the 12 SNPs by estimating odds ratios (ORs) and their
95% confidence intervals (CI) via logistic regression,
assuming multiplicative per-allele effects for the risk
allele, as first reported in the literature (see Table 2).
Main effects of risk factors were assessed only in the 11
population-based studies using logistic regression,
adjusted for age (categorical: ≤34, 35 to 39, 40 to 44, 45

to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74,
≥75 years; and continuous, the latter to account for dif-
ferences between cases and controls in the extreme age-
groups) and study (categorical). Risk factors considered
were age at menarche (categorical: ≤11, 12, 13, 14, ≥15
years; and continuous), ever having had a live birth (no,
yes), number of live births (parous women only, catego-
rical: 1, 2, 3, ≥4; and continuous), age at first birth (par-
ous women only, categorical: ≤19, 20 to 24, 25 to 29,
≥30 years; and continuous) and BMI, defined as weight
in kilograms divided by the square of height in meters
(categorical: ≤24.99, 25.00 to 29.99, ≥30.00; and continu-
ous). Since BMI is known to be positively associated
with breast cancer risk in postmenopausal women, but
inversely associated with risk in premenopausal women
[9], we analyzed the interactions with BMI separately
for women aged <55 years and ≥55 years, considering
these as a surrogates for pre- and post-menopausal sta-
tus, respectively. Results from analyses using a younger
age limit (50 years) to determine surrogate categories
for premenopausal status were similar and are therefore
not presented. Estimates of per-allele ORs for SNPs
stratified by risk factors (for the categories defined
above) were obtained using a single logistic regression
model including appropriate dummy variables, in

Table 1 List of participating studies and number of subjects included in at least one analysis

Study
Acronym

Study Name (Reference) N
(Controls)

N
(Cases)

N(ER+/-)† N(PR+/-)††

ABCFS* Australian Breast Cancer Family Study [24] 610 1,239 701/358 731/325

BBCC Bavarian Breast Cancer Cases and Controls [25,26] 806 1,200 719/264 640/341

BBCS British Breast Cancer Study [27] 1,242 1,338 0/0 0/0

CGPS* Copenhagen General Population Study [28,29] 6,555 1,450 1,088/213 505/358

CNIO-BCS Spanish National Cancer Centre Breast Cancer Study [30] 649 351 135/49 113/87

GENICA* Gene Environment Interaction & Breast Cancer in Germany [31] 967 917 675/194 607/260

GESBC* Genetic Epidemiology Study of Breast Cancer by Age 50 [32] 859 573 281/182 266/188

KBCP Kuopio Breast Cancer Project [33] 388 430 310/96 253/151

kConFab/
AOCS

Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer
[34]/Australian Ovarian Cancer Study (controls only) [35]

171 323 128/63 122/48

LMBC Leuven Multidisciplinary Breast Centre [36,37] 804 818 624/137 554/205

MARIE* Mammary Carcinoma Risk Factor Investigation [38] 5,294 2,573 1,998/532 1,681/847

MCBCS Mayo Clinic Breast Cancer Study [39] 1,045 1,049 764/158 673/244

MCCS* Melbourne Collaborative Cohort Study [40] 749 682 453/170 351/272

NC-BCFR* Northern California Breast Cancer Family Registry [41] 154 266 201/35 172/63

OFBCR* Ontario Familial Breast Cancer Registry [41] 328 982 578/228 488/304

PBCS* NCI Polish Breast Cancer Study [42] 2,322 1,937 1,150/597 916/827

SASBAC* Singapore and Sweden Breast Cancer Study [43] 1,400 1,408 766/209 679/276

SBCS Sheffield Breast Cancer Study [44] 1,088 970 458/150 170/107

SEARCH Study of Epidemiology & Risk factors in Cancer Heredity [45] 5,282 6,352 3,438/816 1,655/848

UCIBCS* UCI Breast Cancer Study [46,47] 465 795 512/131 436/199

USRT US Radiologic Technologists Study [48] 1,030 696 0/0 0/0

†Number of cases with estrogen receptor (ER) positive/negative disease, respectively, if known.

††Number of cases with estrogen receptor (PR) positive/negative disease, respectively, if known.

*Population-based case-control study.

Milne et al. Breast Cancer Research 2010, 12:R110
http://breast-cancer-research.com/content/12/6/R110

Page 3 of 11



Table 2 Estimated per-allele odds ratios and 95% confidence intervals for 12 SNPs, by availability of non-genetic risk factor information*

SNP Genes at locus Alleles† MAF†† OR (95%CI)‡ OR (95%CI)‡‡ based on subjects with data available on:

All subjects Age menarche Parity Age at first birth Body mass index#

10q26-rs2981582 FGFR2 CT 0.38 1.22 (1.19 to 1.26) 1.22 (1.19 to 1.26) 1.22 (1.19 to 1.26) 1.22 (1.18 to 1.26) 1.21 (1.17 to 1.25)

(25,821/22,551) (20,134/18,697) (21,985/20,111) (15,204/15,359) (16,883/18,660)

8q24-rs13281615 intergenic AG 0.41 1.12 (1.09 to 1.15) 1.12 (1.09 to 1.16) 1.12 (1.09 to 1.16) 1.13 (1.09 to 1.17) 1.13 (1.10 to 1.17)

(21,823/20,609) (16,779/16,698) (18,060/18,081) (11,808/13,610) (12,969/16,531)

11p15-rs3817198 LSP1 TC 0.31 1.08 (1.05 to 1.11) 1.08 (1.05 to 1.12) 1.08 (1.05 to 1.11) 1.09 (1.05 to 1.13) 1.08 (1.05 to 1.12)

(25,004/21,596) (19,439/17,896) (21,268/19,249) (14,655/14,661) (16,191/17,810)

5q11-rs889312 MAP3K1 AC 0.28 1.11 (1.08 to 1.15) 1.10 (1.06 to 1.13) 1.11 (1.07 to 1.14) 1.09 (1.05 to 1.13) 1.09 (1.06 to 1.13)

(26,227/23,307) (20,557/19,306) (22,407/20,855) (15,573/15,943) (17,304/19,335)

16q12-rs3803662 TOX3/TNRC9 CT 0.26 1.23 (1.19 to 1.26) 1.22 (1.18 to 1.26) 1.24 (1.20 to 1.27) 1.21 (1.17 to 1.26) 1.23 (1.19 to 1.27)

(26,132/23,459) (20,628/19,334) (22,478/20,874) (15,613/15,966) (17,356/19,351)

2q35-rs13387042 intergenic GA 0.52 1.14 (1.11 to 1.17) 1.13 (1.10 to 1.16) 1.13 (1.11 to 1.16) 1.13 (1.10 to 1.17) 1.14 (1.11 to 1.18)

(32,917/25,996) (26,581/21,507) (29,037/23,157) (23,757/17,897) (20,286/21,609)

5p12-rs10941679 MRPS30 AG 0.26 1.12 (1.09 to 1.15) 1.13 (1.09 to 1.16) 1.12 (1.08 to 1.15) 1.13 (1.09 to 1.17) 1.12 (1.08 to 1.16)

(31,513/25,008) (25,399/20,992) (27,436/22,456) (22,334/17,356) (18,568/20,370)

17q23-rs6504950 COX11, STXBP4 GA 0.28 0.95 (0.92 to 0.97) 0.95 (0.92 to 0.98) 0.95 (0.92 to 0.97) 0.94 (0.91 to 0.98) 0.94 (0.91 to 0.97)

(30,045/23,943) (24,114/19,454) (26,246/21,094) (21,294/16,138) (17,497/19,500)

3p24-rs4973768 SLC4A7, NEK10 CT 0.46 1.11 (1.09 to 1.14) 1.10 (1.07 to 1.13) 1.11 (1.08 to 1.14) 1.10 (1.07 to 1.14) 1.11 (1.08 to 1.14)

(30,366/22,929) (24,483/18,624) (26,707/20,292) (21,733/15,454) (17,892/18,618)

2q33-rs17468277 CASP8 CT 0.13 0.94 (0.91 to 0.98) 0.95 (0.91 to 0.99) 0.96 (0.92 to 0.99) 0.94 (0.90 to 0.99) 0.96 (0.92 to 0.99)

(32,784/25,700) (26,702/21,218) (29,020/22,864) (23,718/17,637) (20,228/21,267)

19q13-rs1982073 TGFB1 TC 0.38 1.04 (1.01 to 1.07) 1.04 (1.01 to 1.08) 1.04 (1.01 to 1.08) 1.05 (1.01 to 1.09) 1.04 (1.00 to 1.08)

(24,498/17,003) (19,838/14,279) (20,424/14,950) (17,050/11,460) (11,849/13,586)

6q25-rs3020314 ESR1 TC 0.32 1.03 (1.00 to 1.06) 1.02 (0.99 to 1.06) 1.02 (0.99 to 1.05) 1.02 (0.99 to 1.06) 1.01 (0.98 to 1.05)

(24,009/20,496) (19,378/17,622) (20,623/18,515) (17,370/14,538) (15,505/17,167)

*The number of controls/cases (respectively) included in each analysis is given in square parenthesis.
† Minor allele according to first publication in bold type.
††Minor allele frequency, assessed in controls with available genotype data.
‡Odds ratio per copy of the minor allele, adjusted for study (categorical), based on all genotype data, regardless of availability of non-genetic risk factor data.
‡‡Odds ratio per copy of the minor allele, adjusted for age (categorical: ≤34, 35 to 39, 40 to 44, 45 to 49, 50 to 54, 55 to 59, 60 to 64, 65 to 69, 70 to 74, ≥75; and continuous), study and the corresponding non-
genetic risk factor (continuous), based on data for subjects with genotype data and information on the non-genetic risk factor.
#Model also included an interaction term for body mass index and age (<55, ≥55).
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addition to those for the main effects of the risk factor
categories.
Interaction, or modification of genetic associations by

other risk factors, was assessed for each SNP/risk factor
combination by fitting logistic regression models. Each
model included dummy variables for study plus three
parameters, one for the main per-risk-allele effect, one
for the main risk factor effect (all modeled as continu-
ous variables, except ever having had a live birth) and a
single interaction term for the product of the number of
risk alleles and the value of the risk factor. This was
tested statistically by a likelihood ratio test comparing
this model to that without the interaction term. Effect
modification by BMI was assessed separately for women
<55 and ≥55 years of age.
In addition, a parametric bootstrap test was used to

estimate interaction P-values adjusted for multiple test-
ing [15]. For each of the 72 interactions tested, we esti-
mated the probability of being a case for each subject
under the null hypothesis of no interaction, by applying
the logistic regression model including only main effects
for study (categorical), SNP (per-allele) and risk factor
(continuous, except ever having had a live birth). Each
replicate of the parametric bootstrap consisted of, for
each interaction tested: (i) generating a dummy case-
control status for each subject by sampling from a bino-
mial distribution based on the estimated probability of
being a case (by generating a single random number
from the uniform distribution and assigning “case” to
subjects for which this was less than the probability of
being a case and “control” otherwise); and (ii) based on
this dummy case-control status and the actual data for
all other variables, fitting the interaction model
described above and noting the likelihood ratio test P-
value for the comparison of this model to the main
effects only model applied to the same data. The mini-
mum P-value was recorded for each of 10,000 replicates
and the adjusted P-values were estimated as the propor-
tion of replication P-values less than the corresponding
unadjusted P-value. Results rounded to two decimal
places were identical to those obtained using a standard
non-parametric permutation test [15].
All statistical analyses were carried out using Stata:

Release 10 (Statacorp, College Station, TX, USA) [16]
with the exception of power calculations which were
done using Quanto (University of Southern California,
Los Angeles, CA, USA) [17,18].

Results
The 21 participating studies contributed 26,349 cases
and 32,208 controls of self-reported white European
race/ethnicity, all with available data for at least one of
the 12 SNPs considered and at least one of the other
risk factors considered (minimal data). Of these, 17,603

cases from 18 studies (all except BBCS, MCCS and
USRT) were interviewed within two years after their
breast cancer diagnosis and 29,187 controls came from
the same 18 studies. Forty-six percent of cases and 38%
of controls were under age 55 years at diagnosis and
interview, respectively. ER and PR status was known for
19,561 and 16,962 cases, respectively. Details by study
are provided in Table 1. In total, 12,822 cases and
19,703 controls with minimal data were included from
11 population-based studies and 16,107 cases and
23,140 controls with minimal data were included from
seven studies with at least 1,000 cases and 1,000
controls.
When analyses were restricted to population-based

studies, the expected associations with breast cancer
were observed for the risk factors, with one exception.
After adjustment for age and study, each one-year
increase in age at menarche was associated with a 4%
(95% CI = 2 to 5%) decrease in breast cancer risk, and
being parous was associated with a 16% (95% CI = 10 to
22%) decreased risk. For parous women, each additional
live birth was associated with an 11% (95% CI = 8 to
13%) decrease in risk, while each five-year increment in
age at first birth was associated with a 7% (95% CI = 4
to 10%) increase in risk. Obesity (BMI ≥ 30.0 kg/m2)
was associated with a 20% (95% CI = 10 to 29%) lower
risk of breast cancer for women under age 55 years. The
one unexpected observation was that obesity was not
associated with breast cancer risk in women aged 55
years and older (OR = 0.96, 95% CI 0.88 to 1.04).
Table 2 provides estimated per-allele ORs and their

95% CIs for the 12 SNPs considered, for all included
subjects with genotype data, and for the subsets of
women with information available for each of the four
risk factors considered. All ORs were adjusted for study,
and each subset was adjusted for study, age and the
relevant risk factor. The OR estimates in the overall and
subset analyses were very similar, and provide no evi-
dence of confounding by the risk factors, nor of bias in
OR estimates related to data availability.
For the vast majority of SNP/risk factor combinations,

there was no evidence that the per-allele OR for the
SNP varied by category of the risk factor. This was true
for analyses based on data from all studies (Additional
Data Table S2 in Additional file 1), for analyses based
on population-based studies only (Additional Data Table
S3 in Additional file 1) and for analyses based on the
seven studies with at least 1,000 cases and 1,000 con-
trols (Additional Data Table S4 in Additional file 1).
Restricting analyses to the 18 studies with cases inter-
viewed within two years after their breast cancer diagno-
sis made no substantial difference to the results
obtained (data not shown). Similarly null results were
observed for analyses restricted to ER-positive and
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ER-negative breast cancer (Additional Data tables S5
and S6 in Additional file 1) and for analyses restricted
to PR-positive and PR-negative breast cancer (Additional
Data Table S7 and S8 in Additional file 1).
The strongest evidence of interaction (unadjusted

P = 0.002) was for the modification of the association
with 11p15-rs3817198 (LSP1) by number of live births.
Per-allele OR estimates increased from 1.04 (95% CI =
0.97 to 1.11) for women who had had just one live
birth to 1.24 (95% CI = 1.11 to 1.38) for women with
at least four live births, and an interaction OR of 1.05
per live birth and per allele was estimated. This trend
was also observed when data from only population-
based studies and from only studies with at least 1,000
cases and 1,000 controls were considered (P = 0.01 in
both sub-analyses). Evidence for this interaction
was observed when the analysis was restricted to ER-
positive and PR-positive disease (P = 0.004 and P =
0.01, respectively; Figure 1), but not for analyses based
on ER-negative and PR-negative cases (P = 0.3 and
0.06, respectively). However, considering that 72 tests

for interaction were carried out, chance cannot be
excluded as an explanation for these results. The mul-
tiple-test-adjusted P-value for the modification of the
11p15-rs3817198 association by number of live births
was 0.12. The adjusted p-values for all other interac-
tions tested were all ≥0.61.
Post-hoc power calculations estimated that for age at

menarche (per year), parity (per live birth) and age at
first birth (per five-year age increase), our study had
90% power at a significance level of 0.0007 (correspond-
ing to a multiple-testing-adjusted P-value of 0.05) to
detect interaction ORs of at least 1.06 for all loci tested
except CASP8-rs17468277, for which the minimum was
1.08. For BMI (per five-unit increase) the minimum
interaction OR detectable with 90% power in both age
strata (<55 and ≥55) was 1.08 for the more common
variants and 1.10 for CASP8-rs17468277. For parity,
considered as never or ever having had a live birth, the
study had similar power to detect interaction ORs of at
least 1.20 for CASP8-rs17468277 and 1.16 for the
remaining loci.

Figure 1 Per-allele OR estimates for 11p15-rs3817198 (LSP1) stratified by number of live births (parous women only). For breast cancer
disease subtypes defined by estrogen receptor (ER) and progesterone receptor (PR) status. The size of the box is inversely proportional to the
standard error of the log OR estimate.
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Discussion
This combined analysis of more than 25,000 cases and
30,000 controls found no conclusive evidence that age at
menarche, parity, age at first birth or BMI modify the
established associations of breast cancer risk with 10q26-
rs298158 (FGFR2), 8q24-rs13281615, 11p15-rs3817198
(LSP1), 5q11-rs889312 (MAP3K1], 16q12-rs2803662
(TOX3), 2q35-rs13387042, 5p12-rs10941679, 17q23-
rs6504950, 3p24-rs4973768 and CASP8-rs17468277) nor
the putative associations with TGFB1-rs1982073 or ESR1-
rs3020314. This was also true for disease subtypes defined
by ER and PR status.
The strongest evidence of effect modification was for

number of live births and 11p15-rs3817198 (LSP1).
However, the observed trend of increasing relative risk
with increasing parity was not statistically significant
after correction for multiple testing. It should be noted
that the interaction OR was 1.05 per allele and per live
birth. This corresponds to an estimated per-allele OR
increasing from 1.04 for women with one child to 1.24
for women with four or more children, for a SNP with
an estimated average OR of 1.08 across all levels of par-
ity. Such weak interactions would only result in very
small differences in estimates of joint effects relative to
those from models assuming multiplicative effects. This
finding in this very large study highlights the difficulty
of identifying modifying effects of this magnitude.
A recent study by Travis et al. of 7,610 cases and

10,196 controls reported null results for interactions in
breast cancer susceptibility between 9 of the same
genetic loci and 10 risk factors, including age at
menarche, parity, age at first birth and BMI [19]. Our
null findings replicate the results from this prospective
study of older women (over age 50 years), but in a study
with more than twice the sample size in this age group,
and confirm that they are also applicable to women
under age 50 years. Our study also extends the genetic
loci evaluated for interactions with a subset of estab-
lished breast cancer risk factors to include 17q23-
rs6504950 and 3p24-rs4973768 [1] and ESR1-rs3020314
[7], which were not considered by Travis et al. [19].
Furthermore, with regard to the susceptibility locus at
5p12, we considered the more strongly associated SNP
rs10941679 rather than rs981782 (which is only weakly
correlated with rs10941679) [5]. Of note, Travis et al.
found no evidence of interaction between 11p15-
rs3817198 (LSP1) and number of children (P = 0.9) [19].
One of the strengths of the BCAC is the large com-

bined sample size achieved through international colla-
boration. This has proven to be very effective in
confirming or ruling out association with breast cancer
for common SNPs identified through GWAS and candi-
date gene studies [1,2,6,14,20,21]. The BCAC has also

been able to provide highly precise estimates of the ORs
associated with susceptibility alleles, with very high con-
sistency observed between the many studies that partici-
pate in the consortium, despite the range of study
designs represented. The inclusion of multiple studies
that recruited selected cases and/or volunteer controls
means that the main effects for some risk factors cannot
be appropriately evaluated across the whole consortium.
However, this potential selection bias in estimating main
effects should not influence the assessment of interac-
tions [22]. Nevertheless, we carried out sensitivity ana-
lyses considering only data from population-based
studies and only data from studies with at least 1,000
cases and 1,000 controls and observed no substantial
change in the results obtained regarding interactions.
We also performed analyses of the full dataset, allowing
for between-study heterogeneity in the main effects for
the risk factors by including interaction terms for each,
and similarly observed that this did not influence the
results obtained (data not shown).
A potential limitation of our study derives from het-

erogeneity in data collection methods across studies. All
studies except two (neither population-based) used
structured questionnaires administered by a variety of
means, including in-person interviews, phone-interviews
and self-administration. Nevertheless, the measurement
of age at menarche, ever having had a live birth, number
of live births and age at first birth seem likely to be
robust to these differences in data collection method.
Our results for BMI may be more likely to be affected
by heterogeneity in data collection methods, although
standardized measurement within studies and adjust-
ment for study as a covariate should limit this to a loss
of power, rather than any systematic bias. We repeated
our primary analyses excluding cases interviewed before,
or more than two years after, their breast cancer diagno-
sis and results were not substantially different. This sug-
gests that between-study differences in the reference
time at which BMI was reported did not influence the
inference from our study. A further limitation of our
study was that we did not collate information on hor-
mone therapy (HT) use from the majority of participat-
ing studies and so were unable evaluate interactions
between SNPs and BMI by HT use in older women.
This requires further investigation because HT has been
observed to modify the effect of obesity on post-meno-
pausal breast cancer risk [23]. Since menopausal status
was not assessed and/or derived uniformly across all
studies, we used age as a surrogate to more appropri-
ately stratify analyses of effect modification by BMI.
Finally, the present study had limited statistical power
to detect interactions in susceptibility to ER-negative
and PR-negative disease.
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Conclusions
In summary, in the largest collaborative analyses of
gene-environment interactions carried out to date, we
have observed no conclusive evidence for modification
of the per-allele relative risk associated with common
breast cancer susceptibility variants by age at menarche,
parity, age at first birth or BMI. This finding is consis-
tent with those from a recently published smaller pro-
spective study. These results imply that the combined
effects of these common susceptibility alleles and other
established risk factors can be assumed to multiplicative
in risk predicted models for breast cancer.

Additional material

Additional file 1: Additional data tables S1 to S8. Additional Data
Table 1: Design details for each study. Additional Data Table 2: Per-allele
breast cancer odds ratios (OR) estimates and 95% confidence intervals
(ORlower, ORupper) for SNPs, stratified by age at menarche, ever having
had a live birth, number of live births, age at first birth and BMI; based
on data from all studies. Additional Data Table 3: Per-allele breast cancer
odds ratio (OR) estimates and 95% confidence intervals (ORlower,
ORupper) for SNPs, stratified by age at menarche, ever having had a live
birth, number of live births, age at first birth and BMI; based on data
from population-based studies only. Additional Data Table 4: Per-allele
breast cancer odds ratio (OR) estimates and 95% confidence intervals
(ORlower, ORupper) for SNPs, stratified by age at menarche, ever having
had a live birth, number of live births, age at first birth and BMI; based
on data only from studies with at least 1,000 cases and 1,000 controls.
Additional Data Table 5: Per-allele ER-positive breast cancer odds ratios
(OR) and 95% confidence intervals (ORlower, ORupper) for SNPs, stratified
by age at menarche, ever having had a live birth, number of live births,
age at first birth and BMI; based on data from all studies. Additional Data
Table 6: Per-allele ER-negative breast cancer odds ratios (OR) and 95%
confidence intervals (ORlower, ORupper) for SNPs, stratified by age at
menarche, ever having had a live birth, number of live births, age at first
birth and BMI; based on data from all studies. Additional Data Table 7:
Per-allele PR-positive breast cancer odds ratios (OR) and 95% confidence
intervals (ORlower, ORupper) for SNPs, stratified by age at menarche, ever
having had a live birth, number of live births, age at first birth and BMI;
based on data from all studies. Additional Data Table 8: Per-allele PR-
negative breast cancer odds ratios (OR) and 95% confidence intervals
(ORlower, ORupper) for SNPs, stratified by age at menarche, ever having
had a live birth, number of live births, age at first birth and BMI; based
on data from all studies.
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