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Abstract
The contribution of transforming growth factor (TGF)β to breast
cancer has been studied from a myriad perspectives since seminal
studies more than two decades ago. Although the action of TGFβ
as a canonical tumor suppressor in breast is without a doubt, there
is compelling evidence that TGFβ is frequently subverted in a
malignant plexus that drives breast cancer. New knowledge that
TGFβ regulates the DNA damage response, which underlies cancer
therapy, reveals another facet of TGFβ biology that impedes cancer
control. Too much TGFβ, too late in cancer progression is the
fundamental motivation for pharmaceutical inhibition.

Transforming growth factor-ββ in breast cancer
progression
The breadth and scope of research to define the complex
roles that transforming growth factor (TGF)β plays during
mammary development and breast cancer now exceeds a
thousand papers. Even by the time the elegant and oft-
quoted study by Silberstein and Daniel in 1987 [1] put TGFβ
on the mammary map as an important regulator of breast
development, there was clear evidence that cancer could
subvert this powerful growth inhibitory signal [2].

In the past decade or so, animal tumor studies that target
over-expression or inactivation of various TGFβ signaling
components to different epithelial compartments have
resulted in a bewildering array of conclusions due to the
pleiotropic and highly context-dependent action of TGFβ on
cancer suppression or progression. It is now generally agreed
that during early tumor outgrowth, elevated TGFβ is tumor
suppressive, whereas at later stages there is a switch
towards malignant conversion and progression [3,4], as
shown in neu-induced mammary tumors [5]. Inactivation of
tumor suppressor genes, the sequential acquisition of onco-
genic mutations, and epigenetic changes within the cancer
genome divert the canonical growth inhibitory arm of the
TGFβ signaling pathway towards behaviors that increase
motility, invasion and metastasis (reviewed in [4]). Consistent

with the response to TGFβ evolving from growth inhibition to
tumor progression during advanced malignancy, the majority
of breast tumors, including their metastases, are positive for
nuclear phosphorylated Smad2, indicating an actively signal-
ing TGFβ pathway [6,7].

Loss of TGFβ growth inhibition and increased expression of
TGFβ have been associated with malignant conversion and
progression in breast, as well as gastric, endometrial, ovarian,
and cervical cancers, glioma and melanoma (reviewed in
[4,8]). But specific mutation of TGFβ signaling components
occurs only occasionally in breast cancers. Rather, TGFβ
growth response is abrogated by changes in the profile of
other active signaling networks or the relative availability of
transcriptional co-repressors or co-activators that bind to and
modulate the canonical Smad pathway. Estrogens also
appear to negatively regulate TGFβ signaling in breast cancer
[9] and there is evidence that many pathway components
may be epigenetically regulated during critical transitions in
malignant progression [10].

TGFββ genetic predisposition to cancer
Genes encoding components of the TGFβ signaling pathway,
including TGFB1 [11], TGFBRI [12] and TGFB2 [13], are
functionally polymorphic in humans. TGFB1 harbors promoter
and signal peptide polymorphisms that influence protein
secretion and levels of freely circulating TGFβ1 [11,14].
Several groups have demonstrated an association between
variant TGFB1 alleles and breast cancer risk [11,15,16]. The
L10P allele increases protein production when expressed in
culture and has been associated with high TGFβ levels [11].
The Breast Cancer Association Consortium conducted com-
bined case-control analyses for breast cancer risk, and found
odds ratios of 1.07 and 1.16 for L10P heterozygotes and
homozygotes, respectively [17]. A case-control study of over
3,900 Caucasian women with early onset invasive breast
cancer (median age 50 years) and a similar number of
matched controls [11] demonstrated association between
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homozygosity for the high producer TGFB1 L10P allele and
an odds ratio of 1.25 for risk of invasive breast cancer. Similar
associations have been found between hyperactive TGFB1
variants and invasive prostate cancer [18], nasopharyngeal
cancer [19], malignant melanoma [20], and lung cancer [21].
Conversely, a cohort study of more than 3,000 women aged
65 to 75 years suggested that homozygosity for hyperactive
TGFB1 appeared protective for breast cancer, suggesting
that TGFβ1 has a breast tumor suppressing activity [15].
Pasche and colleagues [22] have proposed that hypo-
morphic variants of the TGFβ type I receptor interact with the
hyperactive TGFB1 variant to create ‘high’ versus ‘low’
signalers, the latter being associated with elevated breast
cancer risk.

The disparate conclusions from these studies may be related
to the age of the women and tumor grades in different
studies. More recently, this apparent genetic dichotomy has
been explained in terms of the dual function of TGFβ1 in
carcinogenesis evident during neoplastic progression, as
demonstrated in mouse models [3]. In a case control study of
Asian breast cancer patients stratified according to tumor
grade, hyperactive TGFB1 was associated with decreased risk
of early-stage breast cancer but increased risk of advanced
breast cancer [23]. Given the complex biology regulated by
TGFβ, there are probably other processes involved in
mediating the TGFβ-associated risk of breast cancer. In
different mouse strains, for example, homozygosity for a
hypomorphic Tgfb1 variant is genetically linked to skin tumor
susceptibility. However, this effect can be completely masked
by interacting genetic variants at a distant locus elsewhere in
the genome [24]. It is likely that Tgfb1 genotypes interact
with other features in the genetic background [25].

Consequences of too much TGFββ
Elevated plasma TGFβ1 in hepatocellular carcinoma and
breast, lung and prostate cancer patients correlates with poor
outcome (reviewed in [26]). Systemic TGFβ1 levels have
been used as a surrogate of tumor load and/or response to
therapy [27,28]. Some circulating TGFβ1 may arise from the
tumor; however, high plasma TGFβ1 levels can persist after
tumor resection, suggesting that there may also be additional
sources of the cytokine, such as blood cells, platelet de-
granulation or liver [29-31]. Compounding this, cancer
therapy itself might induce TGFβ1 secretion by a number of
routes (reviewed in [32-34]).

Epithelial to mesenchymal transition and the cancer
stem cell
The tumor progressing activities of TGFβ are multifold, and
involve effects on both the tumor cell and the tumor micro-
environment [4]. It has been known for some time that TGFβ
can induce epithelial to mesenchymal transition (EMT) in
embryonic or neoplastic epithelial cells. This process is
essential for normal embryonic development, and its exploi-
tation during cancer progression has been thought to

contribute to tumor invasion and metastasis [35]. In the
mouse skin model of chemical carcinogenesis, overt EMT is a
common occurrence, driven by TGFβ → Smad → Snail
signaling, and resulting in the formation of highly aggressive,
totally fibroblastic spindle carcinoma that have lost all the
molecular markers of epithelial cells [3]. Radiation, a
carcinogen of human breast, primes non-malignant human
mammary epithelial cells to undergo TGFβ-mediated EMT
[36]. Changes in motility elicited by cytoskeletal re-organiza-
tion, and enhanced secretion of matrix-remodeling enzymes
are classically considered the main driving forces in the
contribution of reversible TGFβ-driven EMT to invasion and
metastasis [37].

A recent paper from Polyak and colleagues [38] suggests an
alternative mechanism. Expression profiling of fluorescent-
activated cell sorting (FACS) sorted CD44HIGH CD24LOW

marked cells, a population enriched for breast epithelial stem
cells, showed transcripts associated with cell motility, cell
adhesion, cell proliferation, chemotaxis and angiogenesis.
The transcriptional similarity between FACS sorted
populations enriched for normal and neoplastic stem cells
was greater than that between them and the CD44LOW

CD24HIGH population. The enrichment in transcripts for TGFβ
and WNT signaling components was striking in these stem
cells [38], suggesting preferential activation of these path-
ways and their functional involvement in stem cell biology.
Indeed, putative stem cells were responsive to TGFβ and
targeted by TGFβ inhibition, whereas the descendant
CD44LOW CD24HIGH progenitor cells had lost responsive-
ness due to methylation of the TGFBR2 gene. These data
suggest that TGFβ signaling plays a role in mammary stem
cell maintenance [38].

Taking this observation one step further, Mani and colleagues
[39] showed that Snail-driven EMT in human mammary
epithelial cells induces stem cell-like properties in terms of
expression of stem cell markers, increased mammosphere
seeding activity in vitro and tumorigenicity in vivo. Excessive
TGFβ levels in the tumor microenvironment may, therefore,
not only maintain putative cancer stem cells, but also
contribute to their formation if more differentiated progenitors
undergo EMT. This latter possibility remains to be tested.
However, clinical evidence demonstrates that tumor expres-
sion of a ‘TGFβ cassette’ of genes (expressed in CD44HIGH

CD24LOW > CD44LOW CD24HIGH) is associated with shorter
metastasis-free survival of patients with estrogen receptor-
negative breast cancer [38]. These studies suggest that anti-
TGFβ therapy could hold promise for targeting the cancer
stem cell, especially within this TGFβ active sub-group of
estrogen receptor-negative breast tumors.

Either as part of the stem cell ‘phenotype’ or independently of
it, TGFβ can induce several other cell autonomous pheno-
typic changes that are conducive to tumor progression and
metastasis. TGFβ signaling is clearly required for efficient



colonization of the lung by transformed cells [40], and expres-
sion of a TGFβ response expression signature in estrogen
receptor-negative primary breast tumors is clinically associa-
ted with metastasis specifically to the lung but not to the
bone [41]. One molecular mechanism responsible for this
organ-specific tropism is TGFβ/Smad-driven activation of the
gene encoding angiopoietin-like 4 (ANGPTL4). Angiopoietin-
like 4 is a secreted ligand that disrupts tight endothelial
barriers, such as those found in lung but not bone marrow,
thus specifically stimulating pulmonary trans-endothelial
migration of tumor cells [41]. Importantly, only transient
exposure to TGFβ is required to induce the TGFβ response
signature, which includes ANGPTL4, and to stimulate the
consequent enhanced ability for lung colonization in a mouse
metastasis model.

Tumor progression via microenvironment modification
Clearly, TGFβ has dramatic effects on epithelial phenotype,
growth regulation and cell fate. Importantly, TGFβ has com-
parable control of the microenvironment composition
mediated by effects on stromal, immune and vascular cells.
Many investigators have argued that disruption of the stroma
and tissue architecture can be a primary driver of carcino-
genesis [42-46]. Recent experiments published from the labs
of Weinberg [47], Moses [48], Sonnenschein [49] and
Coussens [50] provide additional evidence that micro-
environment composition is a critical determinant of cancer
progression, which underscores the flipside of the cancer
paradigm, that is, how the tissue becomes a tumor; TGFβ has
a significant role on this side of the coin.

Tgfb1 null mice crossed onto an immune deficient back-
ground (which prevents neonatal death from gross inflam-
matory disease shortly after birth [51]) show little evidence of
spontaneous cancer when housed under germ-free con-
ditions. However, under standard mouse husbandry, these
mice develop gastrointestinal cancer, supporting the concept
that non-target cells mediate this epithelial tumorigenesis via
TGFβ [52]. It is perhaps surprising to note that spontaneous
cancer is not elevated in Tgfb1 heterozygote mice up to
2 years, even though TGFβ production is severely compro-
mised, even in Balb/C mice that are highly susceptible to
breast cancer (MH Barcellos-Hoff and RJ Akhurst, unpub-
lished data).

One of the major stromal targets for TGFβ action in tumor
progression is the immune system. TGFβ acts in the tumor
microenvironment to blunt immune-surveillance via multiple
mechanisms, including suppression of both cytotoxic T and
natural killer (NK) cells (reviewed in [53]). TGFβ recruitment
of macrophages to the tumor also leads to a pro-inflammatory
micro-environment, further exacerbating TGFβ production
and the vicious cycle of tumor progression. Cell autonomous
effects of TGFβ on the tumor cell provide protection from
elimination by the immune system - for example, by down
regulation of the expression of death receptors, major histo-

compatibility complex (MHC) molecules and Rae-1γ, the
NKGD2 ligand required for NK cell activity. Recently, Wake-
field and colleagues [54] demonstrated that TGFβ stimulates
CD8+ T cells that infiltrate the tumor to produce interleukin-
17, that in turn acts as a tumor cell survival factor via the
interleukin-17 receptor.

These observations suggest that microenvironmental effects
of TGFβ, together with its roles in EMT and metastasis,
stimulate cancer progression and override any effects of
TGFβ as a tumor suppressor in epithelia. These studies under-
score the consensus opinion that TGFβ1 levels in cancer
mediate a neoplastic plexus, driving cancer cells towards
more aggressive behaviors and supporting their survival, while
simultaneously limiting suppression by the host and perhaps
augmenting normal tissue complications. The concept, put
forward by Wakefield and colleagues [54], is that since
excessive TGFβ action is mostly localized within the tumor,
TGFβ inhibition could be therapeutically advantageous.

TGFββ, a malicious bystander during cancer
therapy
TGFβ inhibition in either mouse or human mammary epithelial
cells increases the cytotoxic response to ionizing radiation
and several chemotherapeutic drugs [55-60]. Both radiation
and chemotherapy induce TGFβ activity [61]. More impor-
tantly, Teicher and colleagues [62] showed that tumors
secreting high levels of TGFß are more resistant to chemo-
therapy. Cis-platinum treatment of MDA-MB-231 breast
cancer cells increased both TGFβ mRNA levels and the
secretion of active TGFβ, which the authors suggest
enhances growth arrest that facilitates repair of damage, thus
rendering these cells resistant to cis-platinum killing [63].
Furthermore, treatment of MDA-MB-231 cells with anti-TGFß
antibodies greatly enhanced cis-platinum-induced DNA frag-
mentation, augmented cell cycle progression and restored
cellular sensitivity to cis-platinum [55]. Treatment of animals
bearing cis-platinum-resistant tumors with TGFβ neutralizing
antibody or with the TGFβ inhibitor decorin restored drug
sensitivity of the tumor [56,57]. These authors suggested that
inhibiting TGFβ-mediated cell cycle control would augment
therapeutic efficacy.

Recent data suggest an even more proximal role for TGFβ in
radiotherapy (reviewed in [64]). Breast cancer radiotherapy
targets the tumor with the goal of inducing DNA damage
resulting in cancer cell death, which increases long term
patient survival [65]. Radiation-induced DNA damage elicits a
signal transduction pathway that begins with sensor/activator
proteins that lead to the activation of transducers that further
convey the signal to multiple downstream effectors [66].
Recent studies have focused on ATM, a serine/threonine
protein kinase required for the rapid response to radiation-
induced DNA double strand breaks [67], as a means to
amplify the therapeutic efficacy of radiation. Remarkably, the
DNA damage response and subsequent cell fate decisions
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are severely compromised if TGFβ is inhibited prior to
irradiation in mouse epithelial tissues [59], human mammary
epithelial cells [60,68] and lung cancer cells [60,68].

TGFβ depletion or signal inhibition does not affect ATM
protein abundance, but actually blocks ATM kinase activity
[60]. Both ATM autophosphorylation and phosphorylation of
critical substrates, such as p53, Chk2 and Rad17, are
abrogated, which in turn prevents cells from undergoing
apoptosis or cell cycle arrest following DNA damage. As a
consequence, epithelial cells are sensitized to radiation toxicity
as assessed by clonogenic assays, just as if ATM is inhibited.
Whether this potentially important therapeutic consequence
will extend the use of TGFβ inhibitors in breast cancer
treatment is unknown. Although a lung cancer cell line was
rendered more resistant to radiation by use of small hairpin
RNA inhibition of TGFβ receptors [68], preliminary studies
using small molecule inhibition of TGFβ type I receptor kinase
resulted in significant radiosensitization in four of five breast
cancer cell lines (MH Barcellos-Hoff and A Pal, unpublished
data). If TGFβ control of ATM is confirmed in tumors, then high
tumor levels of TGFβ might actually amplify DNA damage
signaling and repair, preventing tumor cell death, thereby
limiting response to radiotherapy as Teicher and colleagues
have shown for the response to chemotherapy [58].

Arteaga and colleagues [69] demonstrate that radiation-
induced systemic TGFβ can also promote metastatic disease
in breast cancer. In these studies, irradiated MMTV/PyVmT
transgenic mice showed increased circulating levels of
TGFβ1, circulating tumor cells, and lung metastases, which
was abrogated by administration of a pan-neutralizing TGFβ
antibody to the irradiated host. Hence, TGFβ inhibitors could
block this tumor survival pathway and increase radio-
sensitivity, as well as preventing metastasis [69].

Radiotherapy-induced TGFβ activity is also implicated in late
tissue toxicities that limit the use of radiotherapy for cancer
treatment (reviewed in [32,33]. Normal tissues are spared
from radio-toxicity in large part by physical targeting of tumors
with conformal and targeted radiotherapy. Nonetheless, in
some individuals, fibrosis can develop several years after
therapy, which can affect quality of life or, in the case of lung
tissue, be life-threatening. Unlike tumor control mediated by
cell killing, fibrosis results from aberrant cytokine cascades
principally initiated by TGFβ. Recent studies by Anscher and
colleagues [33] have shown that even a single dose of anti-
TGFβ antibody blocked radiation-induced lung injury, inflam-
matory response, and expression and activation of TGFβ from
6 weeks to 6 months after irradiation. Interestingly, EMT can
contribute to fibrotic processes [70], and radiation appears to
sensitize cells to TGFβ-mediated EMT [36].

These studies demonstrating that TGFβ activation is an
undesirable side effect of radiotherapy provide further
impetus for therapeutic inhibition. Along with the idea that

TGFβ promotes breast cancer cell survival and metastasis at
multiple levels, these data support the use of TGFβ inhibition
during radiotherapy and chemotherapy. If effective, increased
tumor response and decreased late tissue effects would
result in a vastly improved therapeutic index for radiation
treatment in breast cancer.

Future directions
The dysregulation of TGFβ in breast cancer, which in turn
deregulates cellular and multicellular interactions to promote
cancer, underlies one rationale for pharmaceutical TGFβ inhi-
bition for breast cancer treatment. Immediate gain could be
achieved by using TGFβ inhibitors to improve the response to
chemo- and radiotherapy. Attenuation of undesirable effects,
such as fibrosis, is yet another benefit of TGFβ inhibition,
based on directly blocking processes that initiate pathology,
or indirectly due to the anticipated reduction in radiation dose
or scheduling necessary because of improved tumor response.

Concerns about limiting the activity of a growth factor whose
action is essential to normal development and that plays
crucial roles in wound healing and inflammation are valid but
have yet to be confirmed in experimental cancer models.
Perhaps, as suggested by several studies, the high levels of
both protein and activity in the context of cancer elicit very
different effects to those found in normal tissues where TGFβ
activation is highly controlled. As proposed by Wakefield and
colleagues [54], the ‘locally distributed’ activity may be the
key to rational targeting. TGFβ inhibitors that reduce, rather
than eliminate, TGFβ effects, used in combination with either
targeted delivery to the tumor or a targeted therapy like
radiation, may spare normal tissue at the expense of tumors
(reviewed in [34]).

TGFβ-specific inhibitors based on blockade of synthesis,
ligand/receptor binding or receptor kinase signaling are in
clinical trials (reviewed in [53]). Pre-clinical models using
TGFβ inhibitors have not yet elicited overt toxicity, and have
shown efficacy by suppressing tumor metastasis, enhancing
tumor responses to radio- and chemotherapy, and reducing
normal tissue late effects. Given its complex biology, the
biological target in breast cancer may be stromal, immune,
vascular, or cancer stem cells, or all of these. Further research
can refine the therapeutic rationale by focusing on drug
scheduling and delivery, identifying patients who will benefit
most from such therapy, and combining therapeutic
modalities such that cancer is eliminated without normal
tissue toxicity or long term health effects.
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