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Abstract
The widespread introduction of high throughput RNA interference
screening technology has revealed tumour drug sensitivity path-
ways to common cytotoxics such as paclitaxel, doxorubicin and 5-
fluorouracil, targeted agents such as trastuzumab and inhibitors of
AKT and Poly(ADP-ribose) polymerase (PARP) as well as
endocrine therapies such as tamoxifen. Given the limited power of
microarray signatures to predict therapeutic response in asso-
ciative studies of small clinical trial cohorts, the use of functional
genomic data combined with expression or sequence analysis of
genes and microRNAs implicated in drug response in human
tumours may provide a more robust method to guide adjuvant
treatment strategies in breast cancer that are transferable across
different expression platforms and patient cohorts.

Introduction
The fact that a large number of patients, who could otherwise
be spared, are exposed to the severe side effects of
chemotherapy necessitates an improved classification of
breast cancer in the adjuvant setting in order to define patient
groups who will benefit from the addition of adjuvant
chemotherapy (and as a consequence, those patients who
will not benefit from treatment). At the recent St Gallen
conference it was recognised that: “perhaps the most difficult
decision in current adjuvant therapy is selection of patients
with highly or incompletely responsive disease for whom
additional chemotherapy should be given.”

Traditional clinical and pathological factors, based on several
decades of clinical experience, guide this decision process.
The introduction of genome-scale gene expression profiling

has promised an improved understanding of breast cancer
and identified distinct gene expression signatures that reflect
prognosis in retrospective patient cohorts. However,
conceptual and technical difficulties, such as tumour
heterogeneity, the use of different array platforms and diverse
statistical methods to analyse data, together with small
sample sizes for each individual study, have caused serious
concern [1]. While there are positive signs, such as that in
independent datasets there is concordance amongst
different gene expression signatures, it is not clear whether
gene expression profiling simply captures already well known
biological characteristics derived from careful phenotypic
observations [2].

In this review, we present current evidence supporting the
introduction of prognostic and chemosensitivity signatures
into clinical practice and argue that uncertainties associated
with these signatures may be resolved through the functional
validation of genes involved in drug sensitivity and response.

Prognostic gene expression signatures
Considerable effort has been dedicated to establishing new
prognostic strategies using genomic expression signatures in
breast cancer, with the ultimate goal of optimising the
stratification of patients into high and low risk groups to guide
adjuvant decision-making [3-7]. The strategy is similar to the
current adjuvant prescribing model in breast cancer that is
focussed on administering chemotherapy to those most at
risk whilst minimising harm by defining good prognostic
cohorts who will not benefit from chemotherapy. However, it
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has been argued that the use of small number of patients with
heterogeneous primary breast tumour types, often from
retrospective cohorts, that these prognostic signatures were
either derived or validated from should warrant caution [8,9].
For example, the disproportion between the number of probe
sets on microarray platforms (and hence the number of
variables tested) and the number of tumour samples
examined in each clinical study risks the ‘overfitting’ of data
and a high false discovery rate.

There is limited evidence that prognostic signature sets
predict chemosensitivity and long-term benefit from adjuvant
chemotherapy or guide the choice of treatment regimen. It is
also unclear to what extent these signatures are capturing
traditional histopathological variables or substituting for the
use of conventional prognostic strategies such as the
Nottingham Prognostic Index or Adjuvant! Online. In this
regard, Eden and colleagues [10] provide evidence that the
NKI 70-gene prognostic signature [3] may not out-perform
traditional breast cancer prognostic markers such as the
Nottingham Prognostic Index.

Two ambitious adjuvant clinical trials in breast cancer aim to
prospectively assess the utility of gene expression prognostic
signatures through microarray or real-time PCR analyses and
will compare these methods to conventional prognostic
strategies. The MINDACT (Microarray In Node negative
Disease may Avoid ChemoTherapy) multicentre clinical trial
[11] is a prospective, randomised study that aims to compare
the NKI 70-gene expression signature [3] with clinical-
pathological criteria (Adjuvant! Online) commonly used in
selecting patients for adjuvant chemotherapy in node-
negative breast cancer (Table 1). The primary objective is to
confirm that patients with low risk molecular prognosis but
high risk clinical prognosis can be safely spared
chemotherapy without affecting distant metastasis free
survival. A second study, run by the NCI, will assess the utility
of Oncotype DX, a 21-gene (16 genes and 5 control
reference genes) RT-PCR assay developed from analysis of 3
breast cancer studies in 447 patients, to guide risk stratifi-
cation for distant recurrence amongst patients with node
negative, estrogen receptor (ER) positive breast cancer
treated with tamoxifen [12]. The Trial Assigning IndividuaLized
Options for Treatment (Rx) (TAILORx) [13] will examine the
role of the recurrence score developed from this 21-gene
assay in defining whether patients with ER or progesterone
receptor positive and Her2 negative, node negative breast
cancer can be safely spared chemotherapy. Secondary
objectives aim to assess how the Genomic Health recurrence
score compares against classical clinico-pathological criteria.

Predictive genomic signatures of tumour drug
sensitivity and response
The complexity of tumour cell cytotoxic response will involve
the expression and post-translational modification of specific
subsets of genes and microRNAs that may be distinct from Ta
b
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those identified in prognostic signature sets. These cytotoxic
response pathways exemplified by the Connectivity Map from
the laboratories of Golub and colleagues [14] demonstrate
that drugs with defined mechanisms of action share distinct
molecular gene expression signatures. These data suggest
that drug sensitivity pathways derived from such analyses are
potentially exploitable in order to direct appropriate combina-
tion regimens to maximise tumour cytotoxicity or overcome
drug resistance [14].

The concept of drug-specific response pathways that may be
influenced by tumour genotype has led to efforts to identify
predictive gene signatures of tumour drug sensitivity in order
to individualise the choice of chemotherapy regimen and to
achieve the goal of “personalised cancer medicine” [15].
Several groups have attempted to use breast cancer genomic
signatures prior to treatment to predict short-term response
to chemotherapy in the clinical setting in individual patient
cohorts [16-20]. The unreliability and instability of gene
expression signatures derived purely from associative studies
is well documented [8,9,21,22], contributing to failed
attempts to define signatures predictive of response to
common treatment regimens [23]. Such efforts have led to
the conclusion that microarray analyses of small clinical trial
cohorts may not yield a gene signature of sufficient power to
predict drug sensitivity [23].

In order to improve the reliability of chemosensitivity predic-
tive gene signatures, two laboratories have used cell line
models to define gene expression signatures associated with
drug response in vivo. Coexpression extrapolation (COXEN)
is a recently reported method combining microarray expres-
sion data with NCI-60 drug sensitivity data to predict clinical
response in human tumours [24]. The authors demonstrated
that this approach could be used to predict drug sensitivity in
cell lines derived from different primary tumours not included
in the NCI-60. Next the authors tested the ability of COXEN
to predict response to docetaxel monotherapy in a small
breast cancer cohort of 24 patients. Although COXEN’s
accuracy was reduced compared to its ability to predict
sensitivity of cell lines, its predictive power was still
statistically significant. COXEN predicted 1 non-responder of
the 11 patients sensitive to docetaxel and predicted 4
sensitive patients of 13 patients subsequently resistant to
treatment. Of the non-responders, a further three patients
with stable disease would have been predicted by COXEN to
not respond to therapy.

In a similar approach, Nevins and colleagues [25] demon-
strated that gene expression signatures deriving from the
NCI-60 cell line set matched with cytotoxic sensitivity data
could be used to predict response to chemotherapy in
tumours from patients treated with the same drugs. Impor-
tantly, these signatures could be integrated to predict
response to combined therapies. Recently, Bonnefoi and
colleagues [26] presented data from the neoadjuvant phase

III European Organisation for Research and Treatment of
Cancer (EORTC) 10994/BIG 00-01 clinical trial comparing
FEC to TET (docetaxel followed by epirupicin plus docetaxel)
in an attempt to validate the Nevins and colleagues’ data in a
population of ER negative breast cancer patients. Their
genomic signatures were the only independent variables
predicting pathological complete response in 125 ER
negative tumours. The authors conclude that selecting
patients based on these regimen-specific signatures would
increase the proportion of patients with pathological
complete response from 44% to 70%. Furthermore, they
contend that as the negative predictive value of each
signature is so high, patients can now be excluded from
conventional treatment regimens due to the ability to predict
lack of benefit. These patients could in turn be prioritized for
novel treatment strategies within the context of clinical trials.

This approach has been questioned by a bioinformatics team
from the MD Anderson Cancer Center. Coombes and
colleagues [27] argue that the NCI-60 cell line chemo-
sensitivity data failed to predict patient response to
chemotherapy when the authors attempted to replicate their
analysis. The team were unable to reproduce the selection of
cell lines used to establish the genomic signatures and noted
methodological problems, including an “off-by-one” indexing
error of probe set identification numbers, and the use of
software that did not maintain independence of training and
test sets. However, these arguments should be balanced
against evidence published by the Nevins group providing
confirmation of their datasets in the prediction of therapeutic
response in breast cancer [26,28].

These datasets await validation by independent groups in
cohorts distinct from those used in the initial studies using
alternative expression platforms. However, associative
studies such as these provide minimal information regarding
the contribution of individual genes to drug sensitivity,
resistance and clinical response. Identifying core gene sets
with a functional role in drug sensitivity may provide a more
robust approach to the choice of therapeutic regimen and
offer opportunities for therapeutic intervention in drug
resistant disease.

Functional genomic approaches to predict
chemosensitivity
The use of array-based datasets to predict prognosis in
breast cancer and guide adjuvant decision-making provide an
incomplete picture of a patient’s likely benefit from chemo-
therapy. Even if prognostic signatures supplement traditional
clinico-pathological parameters in the stratification of risk in
primary breast cancer, existing datasets provide little informa-
tion guiding treatment regimen choice for individual patients.
Conceivably, the future of adjuvant chemotherapy in breast
cancer will rely not just on prognostic markers specific to the
tumour/stroma environment but also on functional genomic
markers of cytotoxic sensitivity and resistance to guide

Available online http://breast-cancer-research.com/content/10/5/214



patient-specific adjuvant regimen decisions. For example, in
patients at high risk of relapse, individuals may be identified
who would be predicted to harbour multi-drug resistant micro-
metastatic disease, who may not benefit from current
combination regimens. In this regard, Bonnefoi, Nevins and
colleagues [26] suggest their signatures can identify patients
unlikely to benefit from chemotherapy who should be
considered for phase I/II clinical trials using novel agents. The
challenge is how to reliably identify and validate biomarkers of
drug sensitivity and resistance and how to integrate these into
future clinical strategies combined with optimal prognostic
methods in order to stratify risk and guide regimen choice.

Identification of candidate biomarkers
predictive of response to common cytotoxics
Following the widespread introduction of RNA interference
(RNAi) technology, several methods have been developed to
enable short or long term target gene silencing in cultured
cells in the laboratory [29]. With such technology, it is now
possible to systematically study the ability of individual genes
to alter tumour cell sensitivity and resistance in a genome-
wide manner. Using such methods, several laboratories have
identified genes influencing resistance and sensitivity to
diverse cytotoxics used in clinical practice.

Several RNAi functional genomic studies have identified
drug-specific pathways of tumour cell resistance and sensi-
tivity to diverse therapeutics. A kinome small interfering RNA
(siRNA) screen performed in our laboratory to identify regu-
lators of sensitivity and resistance to doxorubicin, cisplatin, 5-
fluorouracil (5-FU) and paclitaxel revealed regulators of
mitotic arrest and chromosomal instability as common media-
tors of resistance to paclitaxel in vitro [30-32]. White and
colleagues [33] conducted a genome-wide siRNA screen in
a human non-small cell lung cancer cell line with sub-lethal
doses of paclitaxel. The silencing of 87 genes enhanced
taxane-mediated cytotoxicity. The list included many
proteosome components as synthetic enhancers of paclitaxel
cytotoxicity, in keeping with the known efficacy of paclitaxel
with proteosome inhibitors in cell culture model systems [34].
Four targets identified from their screen preferentially
sensitised tumour cell lines in comparison to “normal” lines
derived from the same patient.

A similar genome-wide study to identify enhancers of cisplatin
cytotoxicity identified genes involved in the BRCA and DNA
damage repair pathways (BARD1, BRCA1, BRCA2 and
RAD51) that enhanced sensitivity to cisplatin following gene
silencing [35]. This supports previous work demonstrating
the association of the Fanconi Anemia/BRCA signalling path-
way and cisplatin sensitivity [36].

Finally, cellular microRNAs are small non-coding RNAs with
the capacity to coordinate the regulation of many genes
simultaneously through mRNA degradation or translational
silencing. Increasing evidence suggests that expression of

distinct microRNAs in vitro and in vivo influences response
and sensitivity to common chemotherapeutic agents [37-39].

Identification of candidate biomarkers
predictive of response to targeted agents
Functional genomic RNAi analysis has provided novel
insights into the mechanisms of action of established
targeted therapies such as trastuzumab, or agents currently
in phase I/II clinical trial development, such as Poly(ADP-
ribose) polymerase (PARP) inhibitors.

Bernards and colleagues [40] recently presented data from a
small hairpin RNA interference barcode screen targeting
8,000 genes in the Her2 positive BT-474 cell line. They
identified that silencing the PTEN (Phosphatase and tensin
homolog) tumour suppressor was the predominant regulator
of trastuzumab resistance in this screen. Since PTEN
inactivation is relatively infrequent in breast cancer and
mutations of the upstream kinase PI3KCA (Phosphoinositide-
3-kinase catalytic subunit alpha) occur in up to 25% of breast
cancers [41], the authors examined the effects of PI3KCA
activating mutations on trastuzumab sensitivity. They found
that expression of both the activated mutant and wild-type
PI3KCA subunits conferred trastuzumab resistance upon the
Her2 positive, trastuzumab sensitive BT474 and SK-BR3 cell
lines. Following examination of the effects of PI3K pathway
activation on trastuzumab response in metastatic breast
cancer, PI3KCA mutations alone (p = 0.052) or when
combined with PTEN loss appeared to predict for worse
outcome (p = 0.007) following trastuzumab monotherapy or
in combination with chemotherapy. In a multivariate analysis,
PI3K pathway activation appeared to be an independent
prognostic predictor for progression on trastuzumab therapy.
Studies in the adjuvant setting are now required to determine
whether patients with Her2 positive disease with activation of
the PI3K pathway derive limited benefit from trastuzumab
therapy. In the future, perhaps, such patients would be
optimally treated with AKT or mTOR/TORC1/TORC2
inhibitors, lying downstream of PI3K pathway activation,
rather than trastuzumab.

Importantly, this study illustrates how the choice of the
appropriate treatment regimen may never be entirely predic-
table from signatures of tumour gene expression since post-
translational modifications or alterations in the coding
sequence of components of the drug response pathway (such
as PI3K) are not distinguished using these technologies.
Therefore, for agents where the response pathways appear to
be defined by a well categorised signal cascade, sequence
and/or expression analysis of core components, such as
EGFR, HER2, PI3KCA or PTEN, may provide more specific
information to guide chemosensitivity than the analysis of
PI3K/AKT pathway activation by gene expression profiling.

Turner and colleagues [42] recently reported an siRNA
screen to identify regulators of sensitivity to a PARP inhibitor.
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They identified several kinases, including CDK5, which
promoted sensitivity to a PARP inhibitor when silenced in
CAL51 cells. In elegant further experiments, the authors
demonstrated the requirement for CDK5 in the DNA damage
checkpoint activation and, specifically, the intra-S and G2M
checkpoints in non-neuronal cells. The authors noted that
CDK5 genomic loss occurred in approximately 5% of breast
cancers studied, potentially identifying patients who may
benefit from PARP inhibitor therapy. Prior to this study, CDK5
was thought to be a neuronal-specific kinase. This work
demonstrates the power of RNAi to identify novel targets
active in unexpected cell types.

Drug sensitivity prediction using functional
genomics and array technology
There is accumulating evidence that RNAi functional data can
be successfully combined with expression profiling data from
human tumours to identify regulators of drug sensitivity. In our
RNAi screen, we found that CERT, a ceramide transporter,
sensitises multiple cancer cell types to diverse cytotoxics,
and is over-expressed in multi-drug resistant and taxane-
resistant cancer cell lines. Using expression profiling data
from the CTCR-OV01 clinical trial, we identitifed that CERT is
over-expressed in residual ovarian cancer tissue following
paclitaxel therapy in vivo [30]. In a reverse approach, using
expression profiling data to identify genes with a functional
role in conferring drug resistance in vivo, we used a mixed
effects model to identify individual genes correlating with
carboplatin response using paired pre and post-treatment
tumour biopsied. Importantly, many of these genes alter drug
sensitivity in cultured cells in the laboratory (J Brenton and C
Swanton, manuscript in preparation).

Ahmed and colleagues [43] presented data from an
expression array-based approach to identify genes de-
regulated in matched paclitaxel-sensitive and -resistant
ovarian cancer cell lines. They identified the extracellular
matrix protein TGFBI as the most under-expressed gene in
the paclitaxel-resistant cell line. Stable RNAi-mediated gene
silencing of TGFBI promoted paclitaxel resistance and TGFBI
was noted to be under-expressed in microarray expression
data from taxane-resistant ovarian cancer from patients
entered into the OV01 ovarian cancer clinical trial. The
authors demonstrate the mechanism that TGFBI functions
through an integrin-mediated signalling cascade to promote
microtubule stabilisation. This work indicates that microarray
expression profiling can be successfully combined with
functional genomic validation to identify genes that may
predict for resistance to common chemotherapeutic agents
in vivo.

Ashworth and colleagues [44] recently reported an RNAi
screen to identify regulators of resistance to tamoxifen in the
MCF-7 cell line. They identified the cyclin dependent kinase
CDK10, which promoted resistance to tamoxifen on gene
silencing. Following an analysis of published microarray data,

the authors demonstrated that tumours from patients treated
with adjuvant tamoxifen with reduced CDK10 expression
were at significantly higher risk of distant relapse. This work
demonstrates the power of unbiased RNAi screens to identify
candidate biomarkers of drug resistance in vivo.

In a focussed attempt to annotate drug response pathways
and predict chemosensitivity in vivo, our laboratories are
studying the functional consequences of consistent changes
in gene expression following drug exposure. By silencing
genes that are consistently repressed following drug expo-
sure, we can mimic drug response and identify ‘cytotoxic’
genes within expression array datasets that may determine
cell fate. Our data suggest that the expression of these
‘cytotoxic’ genes can identify tumours with intrinsic drug
resistance in vivo (C Swanton and colleagues, submitted).

These studies suggest that the combination of unbiased
genome-wide drug sensitivity analysis with array-based
approaches may identify candidate genes with the capacity
to influence cancer cell drug sensitivity in vivo. It is important
to note, however, that candidate genes identified from these
unbiased functional approaches still require extensive
validation before they can be considered as putative bio-
markers. It is also unclear whether these functional genomic
approaches differentiate between intrinsic or acquired drug
resistance pathways in tumour cells.

The next step will be to identify if these functional regulators
of drug sensitivity can improve the prediction of chemo-
sensitivity in prospective studies and whether they can be
successfully combined with prognostic methods to guide the
selection of appropriate chemotherapy regimens in a
‘personalised’ approach to improve patient outcome.

Functional genomic biomarker validation
Determining whether these functional regulators of drug
sensitivity and resistance identified in laboratory studies can
serve as putative biomarkers of clinical drug response to
guide therapeutic decision-making remains a formidable
challenge. Appropriate assays will have to be developed to
quantify the expression of drug sensitivity regulators using
array-based gene expression profiling, real-time PCR or
immunohistochemistry in tumour samples prior to addressing
their predictive value in prospective clinical trial cohorts. This
should entail adherence to NCI-EORTC recommendations for
biomarker validation [45], requiring the incorporation of strin-
gent quality control procedures, accurate quantification and
scoring methods and unbiased thresholding of expression
values. The clinical validation of putative functional regulators
of drug response will run the risk of failure similar to other
biomarker development efforts unless strict reporting guide-
lines are adhered to, including the reporting of relationships
to standard prognostic variables, often lacking from standard
prognostic gene expression signature reports [45]. Finally,
the NCI-EORTC recommend that predictive biomarker

Available online http://breast-cancer-research.com/content/10/5/214

Page 5 of 7
(page number not for citation purposes)



studies require even stricter considerations, requiring
validation in large randomised trials with sufficient power to
detect drug-specific differences in tumour response [45].

Conclusion
Optimising treatment strategies in primary breast cancer is of
fundamental importance to reduce the risks of unnecessary
treatment and to target adjuvant therapies to patients in a
tumour-specific manner, utilising tumour biological charac-
teristics to guide appropriate treatment decisions. There has
been impressive progress in the last decade in deriving new
prognostic strategies through the systematic analysis of
whole genome mRNA expression changes in breast and
other cancers. Although certain prognostic signatures may be
potentially superior to clinical and histopathological criteria,
they would still be predicted to lead to significant over-
treatment of low-risk patients, indicating a need for alternative
strategies to complement these signatures [46].

Further developments in functional genomic technologies are
beginning to unravel the contribution of individual genes to
intrinsic aspects of tumour biology, such as metastatic
potential, uncontrolled cell proliferation, cellular invasion,
migration and drug resistance. These efforts may help to
identify tumours with multi-drug resistant phenotypes for
which new treatment approaches are required. The complex
integration of functional genomic drug response and sensitivity
pathway analysis with tumour gene expression and sequen-
cing data provides a promising strategy to optimise patient
outcome in breast cancer and refine adjuvant and metastatic
chemotherapy protocols on a patient-by-patient basis.
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