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Abstract

Introduction This study was designed to determine if and how
a non-toxic, naturally occurring bioflavonoid, galangin, affects
proliferation of human mammary tumor cells. Our previous
studies demonstrated that, in other cell types, galangin is a
potent inhibitor of the aryl hydrocarbon receptor (AhR), an
environmental carcinogen-responsive transcription factor
implicated in mammary tumor initiation and growth control.
Because some current breast cancer therapeutics are
ineffective in estrogen receptor (ER) negative tumors and since
the AhR may be involved in breast cancer proliferation, the
effects of galangin on the proliferation of an ER-, AhRhigh line,
Hs578T, were studied.

Methods AhR expression and function in the presence or
absence of galangin, a second AhR inhibitor, α-naphthoflavone
(α-NF), an AhR agonist, indole-3-carbinol, and a transfected
AhR repressor-encoding plasmid (FhAhRR) were studied in
Hs578T cells by western blotting for nuclear (for instance,
constitutively activated) AhR and by transfection of an AhR-
driven reporter construct, pGudLuc. The effects of these agents
on cell proliferation were studied by 3H-thymidine incorporation
and by flow cytometry. The effects on cyclins implicated in
mammary tumorigenesis were evaluated by western blotting.

Results Hs578T cells were shown to express high levels of
constitutively active AhR. Constitutive and environmental
chemical-induced AhR activity was profoundly suppressed by
galangin as was cell proliferation. However, the failure of α-NF
or FhAhRR transfection to block proliferation indicated that
galangin-mediated AhR inhibition was either insufficient or
unrelated to its ability to significantly block cell proliferation at
therapeutically relevant doses (IC50 = 11 µM). Galangin
inhibited transition of cells from the G0/G1 to the S phases of
cell growth, likely through the nearly total elimination of cyclin
D3. Expression of cyclins A and E was also suppressed.

Conclusion Galangin is a strong inhibitor of Hs578T cell
proliferation that likely mediates this effect through a relatively
unique mechanism, suppression of cyclin D3, and not through
the AhR. The results suggest that this non-toxic bioflavonoid
may be useful as a chemotherapeutic, particularly in
combination with agents that target other components of the
tumor cell cycle and in situations where estrogen receptor-
specific therapeutics are ineffective.

Introduction
Flavonoids are a diverse class of naturally occurring polyphe-
nolic plant compounds that have a variety of therapeutically
important biological activities. Several thousand plant flavo-
noids have been identified and biologically significant levels of
bioflavonoids are consumed (about 1 g/day) by humans living
in Western cultures [1]. Generally considered to be non-toxic
[2], flavonoids have been touted as anti-inflammatory, anti-oxi-

dant, chemopreventatives with the potential to be used for pre-
vention or treatment of such diverse diseases as arthritis [3],
cardiovascular disease [4], and several cancers, including
breast cancer [5,6].

Galangin (3,5,7-trihydroxyflavone) belongs to one class of fla-
vonoids known as flavonols. It comprises approximately 10%
of the ethanol extract from Alpinia officinarum, a plant used for
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many years in Asia as an herbal therapeutic [7], and is a major
component of propolis, an anti-inflammatory composite gum
produced by honeybees [8-10]. Among other biological activ-
ities, galangin blocks iNOS mRNA induction during inflamma-
tory responses [11], down-regulates Cox-2 transcription [12],
inhibits viral replication in vitro [13], and suppresses bacterial
cell growth [14]. Recently, we generated data in a murine
model of B lymphocyte development that suggest that
galangin may further affect cellular biology through its interac-
tion with an important receptor/transcription factor, the aryl
hydrocarbon receptor (AhR) [15], implicated in spontaneous
and carcinogen-induced mammary tumorigenesis [16-18].

The AhR is a member of the Per/ARNT/Sim (PAS) family of
transcription factors. PAS proteins have been shown to con-
tribute to angiogenesis, neurological development, hypoxia
responses, and circadian cycle [19-22]. The AhR is best
known for its responsiveness to environmentally ubiquitous
carcinogens such as polycyclic aromatic hydrocarbons
(PAHs), dioxins (for example, 2,3,7,8 tetrachlorodibenzo-p-
dioxin/TCDD), and polychlorinated biphenyls [23-25]. Once
activated by these lipophilic pollutants, the AhR translocates
to the nucleus where it binds to a second member of the PAS
family, the aryl hydrocarbon nuclear translocator (ARNT), and
to transcriptional co-activators or co-repressors [26-30]. The
activated AhR complex then binds specific DNA recognition
sequences and modulates transcription of a variety of genes
[27,31,32]. Significantly, AhR activation can be blocked with
galangin [15,33].

The most thoroughly characterized outcome of AhR activation
is the induction of CYP1 genes encoding the cytochrome P-
4501A1, 1A2, and 1B1 monooxygenases. These enzymes
metabolize parent PAHs and polychlorinated biphenyls into
mutagenic intermediates [34-39]. However, it is now becom-
ing clear that the AhR, a highly conserved protein, plays an
important role in cell cycle and apoptosis regulation in the
absence of environmental chemicals [40-49]. Indeed, the
potential role of the AhR in tumorigenesis has inspired the pos-
sible use of AhR modulators for breast cancer therapy [50].

Because it is an AhR inhibitor [15], it seemed plausible that
galangin has the potential to block formation of mutagenic
metabolites in tumor cells and to regulate human mammary
cancer cell proliferation. The former possibility is supported by
the demonstration that galangin blocks CYP1A1 induction
and DNA-adduct formation in a human mammary tumor cell
line [51]. The latter possibility, that galangin can alter human
tumor cell proliferation after the transformation process has
begun, was investigated herein. Particular emphasis was
placed on the possibility that galangin mediates its presump-
tive growth regulatory effects through constitutively active
tumor cell AhR and on the influence that galangin may have in
altering levels of cyclins critical to maintenance of cell growth.
Since at least some flavonoids are xenoestrogens [52], and

since modulation of estrogen receptors (ERs) would be
expected to affect cell proliferation, estrogen receptor modu-
lation was eliminated as a confounder by performing studies
on ER- human Hs578T tumor cells. Consequently, the results
presented here have a bearing on the potential for galangin to
be used as a chemotherapeutic in cases where ER-dependent
therapeutics are either contraindicated or not effective
because of ER loss.

Materials and methods
Reagents
DMEM, RPMI, calcium- and magnesium-free PBS, L-
glutamine, penicillin/streptomycin, trypsin-EDTA, and heat
inactivated FCS were supplied by Invitrogen (Carlsbad, CA,
USA). Galangin, indole-3-carbinol (I3C), and α-naphthofla-
vone (α-NF) were purchased from Aldrich Chemical Co. (Mil-
waukee, WI, USA) and dissolved in dimethylsulfoxide (99.9%
high-performance liquid chromatography grade; Sigma Chem-
ical Co., St Louis, MO, USA) at concentrations that were
1,000-fold higher than the desired final concentration. Insulin
was obtained from Sigma.

Cell culture
The ER- Hs578T human breast cancer epithelial cell line was
purchased from the American Type Culture Collection (Man-
assas, VA, USA) and grown in DMEM (Sigma) supplemented
with 10% FCS, 10 µg/ml insulin, 50 u/ml penicillin, 50 u/ml
streptomycin, and 2 mM L-glutamine. Cells were maintained at
subconfluency at 37°C in humidified air containing 10% CO2
by splitting cultures 1:4 every 3 to 4 days.

[3H]-Thymidine incorporation
Log phase Hs578T cells (103/well) were plated into 96-well
tissue culture plates and allowed to adhere overnight. Cells
were incubated with 1 µCi 3H-thymidine/well (NEN Life Sci-
ence Products, Boston, MA, USA) in triplicate wells and
dosed with 0.1% vehicle, 10-4 to 10-6 M galangin, I3C, or α-NF
for 18 h. Cells were harvested onto filter mats using a PHD cell
harvester (Brandel, Gaithersburg, MD, USA). 3H-thymidine
retained on the filter was detected using a scintillation counter
(Becton/Dickinson, San Jose, CA, USA). Triplicates for each
data point in each experiment were averaged to give an 'n' of
one.

Transient transfections and reporter assays
The Fundulus heteroclitus AhRR expression vector [53] was
generously provided by Dr M Hahn and Dr S Karchner
(Woods Hole Oceanographic Institution). We and others have
shown that this construct is a potent inhibitor of both human
and murine AhR activity [53,54]. The pGudLuc6.1-firefly luci-
ferase reporter construct (pGudLuc) was kindly provided by
Dr M Denison (UC Davis). AhR-dependent expression of this
reporter is driven by four aryl hydrocarbon response elements
(AhREs) derived from the CYP1A1 promoter [55].
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Hs578T cells (105/well) were seeded into 6-well culture
plates and grown to 70% to 80% confluence. Lipofectamine
2000 transfection reagent (Invitrogen) was used according to
the manufacturer's instructions to transfect cells. The renilla
luciferase vector phRL-TK (0.5 µg/well) was co-transfected
with the 0.1 µg control vector (pGL3) or with pGudLuc per
well. Where indicated, 0.125 to 0.5 µg of pcDNA-FhAhRR or
control pcDNA were added with or without the reporter con-
struct to the transfection mixture. For each experiment, the
amount of total DNA transfected was equilibrated with paren-
tal expression vectors. Cells were incubated for 18 hours,
washed twice with PBS (pH 7.2), and resuspended in 75 µl
RPMI prior to luciferase assays. Luciferase activity was deter-
mined with the Dual Glo Luciferase system (Promega, Madi-
son, WI, USA), allowing sequential reading of the firefly and
renilla signals. Briefly, cells were lysed in equal volumes of cell
lysis buffer (Promega) and RPMI for 20 minutes, transferred to
a 96-well white wall plate, and analyzed using a Reporter Lumi-
nometer (Promega). The renilla signal was read after quench-
ing the firefly output, thus allowing normalization between
sample wells.

For experiments in which cell proliferation was assayed after
FhAhRR or control pcDNA transfection, transfected cells
were resuspended in RPMI and plated (103 cells/well) into 96-
well tissue culture plates in triplicate and allowed to adhere
overnight. Cells were incubated with 1 µCi 3H-thymidine/well
(NEN Life Science Products) and triplicate wells assayed for
3H-thymidine incorporation as described above. Results in the
triplicates were averaged for each data point in each experi-
ment.

Cell cycle and apoptosis analyses by flow cytometry
Hs578T cells (105/well) were seeded into 6-well tissue cul-
ture plates and allowed to adhere overnight. Growth arrest
was achieved by washing the cells three times with cold PBS
before adding supplemented DMEM containing no FCS. In
preliminary experiments it was determined that 48 hours with-
out FCS was required to arrest 80% to 90% of the cells in G0/
G1. Less than 5% of these cells stained with trypan blue, indi-
cating a high level of viability. Cells were rescued from growth
arrest by adding FCS to culture wells (10% final concentra-
tion) with 0.1% vehicle, galangin, I3C, or α-NF. Cells were har-
vested 24 hours later and analyzed for cell cycle as described
below.

Cell cycle analyses and apoptosis quantification were per-
formed by staining cellular DNA with propidium iodide (PI) in
permeabilized cells as we have previously described [56-58].
Cells were trypsinized, pelleted, and washed in cold PBS con-
taining 5% fetal bovine serum and 0.02 M sodium azide. Cells
were centrifuged for 5 minutes at 1,000 rpm at 4°C and resus-
pended in 0.3 ml hypotonic buffer containing 50 µg/ml PI
(Sigma), 1% sodium citrate, and 0.1% Triton X-100 and
stored protected from light until analysis. Flow cytometry was

performed on a Becton/Dickinson FACScan flow cytometer.
Data (5,000 events) were collected on both linear and log
scales to assess cell cycle and apoptosis, respectively.

Western immunoblotting
Cells were scraped into cold PBS and resuspended in P10EG
lysis buffer containing 10 mM sodium phosphate, 0.75 mM
EDTA, 10% glycerol, 0.125% Triton X-100 and 1.0% pro-
tease inhibitor cocktail (Sigma). Cells were lysed after 50
strokes in a Dounce tissue homogenizer (Bellco Glass, Vine-
land, NJ, USA) and lysis was confirmed by light microscopy.
After 15 minutes on ice, cells were centrifuged for 15 minutes
at 13,000 rpm at 4°C. Supernatants were removed and stored
at -80°C until western analysis. Proteins (30 µg/sample) were
electrophoresed through 10% SDS-polyacrylamide gels for
1.5 hours at 100 V. Proteins then were transferred to nitrocel-
lulose membranes and membranes blocked for 1 hour at room
temperature with 5% non-fat dry milk in PBS with 0.5%
Tween-20 (PBS-T). Membranes were probed with the follow-
ing primary antibodies diluted 1:200 in PBS-T containing 5%
non-fat dry milk: rabbit anti-AhR (Santa Cruz Biotechnology,
Santa Cruz, CA, USA), mouse anti-cyclin A (BD Pharmingen,
San Diego, CA, USA), rabbit anti-cyclin D1, rabbit anti-cyclin
D3, or rabbit anti-cyclin E (Santa Cruz Biotechnology). Mem-
branes were washed 4 times for 5 minutes each with PBS-T
and incubated for 1 hour at room temperature with goat anti-
rabbit IgG horseradish peroxidase conjugate (Bio-Rad, Her-
cules, CA, USA) or goat anti-mouse IgG horseradish peroxi-
dase conjugate (Sigma) at a dilution of 1:20,000 or 1:5,000,
respectively, prepared in PBS-T containing 5% non-fat dry
milk. Membranes were washed extensively with PBS-T and
developed with enhanced chemiluminescence. Blots were
reprobed up to three times with a different primary antibody
after treating for 15 minutes with stripping solution (Chemi-
con, Temecula, CA, USA) and incubating twice for 5 minutes
with blocking solution (Chemicon).

Image analyses
Image analyses were performed on western immunoblotting
autoradiographs that were digitally scanned using a Cytocore,
Inc. (Chicago, IL, USA) densitometer. To compare relative
band densities between immunoblots, all bands were normal-
ized using β-actin band densities.

Statistical analyses
Statistical analyses were performed with Statview (SAS Insti-
tute, Cary, NC, USA). Data from triplicate samples were aver-
aged for each data point for an 'n' of one in each experiment.
Data from a minimum of three experiments are presented as
means + standard errors (SE). One-factor ANOVAs were
used to analyze the data. A Fisher PLSD (protected least sig-
nificant difference) post hoc comparisons test was used to
determine significant differences.
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Results
Galangin represses constitutive and ligand-induced AhR 
transcriptional activity
The AhR is expressed at high levels in many rapidly growing
human and murine tumors [16,33,40-46,50,59,60]. More spe-
cifically, high levels of both cytoplasmic and nuclear AhR char-
acterize rodent and human tumors, including mammary tumors
induced with an AhR ligand [16,43,59,61]. These and other
results [59,62,63] suggest that the AhR is constitutively active
in rapidly growing transformed cells. To extend these studies
to a human tumor model in which the effects of AhR inhibitors
such as galangin can be studied, AhR expression and subcel-
lular localization were determined in a human mammary tumor
cell line, Hs578T.

As seen with primary tumors in vivo [16], significant levels of
AhR protein were detected in both the cytoplasm and the
nuclei of Hs578T cells (Figure 1), a result consistent with con-
stitutive AhR activity in this line. The presence of the AhR in
this cell line is consistent with a previous report from Wang
and colleagues [64] in which binding of a functional AhR to its
cognate DNA response element was demonstrated after ago-
nist treatment.

If this nuclear AhR were indeed constitutively active, it would
be predicted that transient transfection of an AhR-driven luci-
ferase reporter construct (pGudLuc) would result in significant
levels of background transcriptional activity and that this activ-

ity would be inducible with AhR ligands and inhibitable with
AhR competitive inhibitors, including galangin. To test these
predictions, Hs578T cells were transiently transfected with
the renilla luciferase plasmid phRL-TK to control for transfec-
tion efficiency and with control pGL3 plasmid or pGudLuc
plasmid and treated with vehicle, one of two AhR inhibitors
(galangin, α-NF), or an AhR agonist (I3C). Renilla and firefly
luciferase activities were assayed 18 hours later.

As predicted, transfection with pGudLuc increased normal-
ized luciferase activity approximately 50-fold relative to pGL3-
transfected controls in this series of experiments (Figure 2a).
Addition of 10-4 M galangin completely blocked the constitu-
tive level of reporter activity (p < 0.02). At a lower dose (10-5

M), galangin tended to decrease the activity, although the data
did not reach statistical significance in the three experiments
performed (p = 0.056). A synthetic flavonoid, α-NF (10-6 M),
previously shown to block AhR activity [65,66], similarly
reduced constitutive pGudLuc activity (p < 0.02). As expected
from previous studies [50], I3C, an AhR agonist, significantly
induced pGudLuc reporter levels.

Figure 1

Hs578T cells express nuclear aryl hydrocarbon receptor (AhR)Hs578T cells express nuclear aryl hydrocarbon receptor (AhR). Cyto-
plasmic and nuclear cell extracts prepared from subconfluent monolay-
ers of malignant, estrogen receptor negative Hs578T cells were 
analyzed by western immunoblotting with AhR-specific antibody follow-
ing SDS-PAGE. Blots were stripped and re-probed for lamin A/C and 
α-tubulin to confirm purity of the nuclear and cytoplasmic cell fractions, 
respectively. Representative data from a total of three experiments are 
shown.

Figure 2

Galangin inhibits aryl hydrocarbon receptor-dependent pGudLuc reporter activityGalangin inhibits aryl hydrocarbon receptor-dependent pGudLuc 
reporter activity. Hs578T cells were left untransfected or were trans-
fected with 0.5 µg/well renilla luciferase vector phRL-TK and 0.1 µg 
control pGL3 or pGudLuc vector per well and treated with 10-4 to 10-5 

M galangin, 10-4 to 10-5 M indole 3-carbinol (I3C), or 10-6 M α-naphtho-
flavone (α-NF) in the (a) absence or (b) presence of 10-9 M 2,3,7,8-tet-
rachlorodibenzo-p-dioxin (TCDD). Cells were harvested 18 hours later 
and luciferase activity assayed. Firefly luciferase activity was normalized 
to renilla activity in each experiment. (a) Data pooled from 4 to 16 
experiments are presented as the average fold increase relative to non-
transfected cells + standard error. An asterisk (*) indicates a significant 
difference relative to vehicle-treated controls, p < 0.02. A cross (+) 
indicates p = 0.056. (b) Data pooled from 4 to 16 experiments are pre-
sented as the average fold increase relative to non-transfected cells + 
standard error. An asterisk (*) indicates a significant difference relative 
to vehicle-treated controls, p < 0.02. A hash sign (#) indicates a signifi-
cant increase in activity relative to untreated, pGudLuc-transfected 
controls.
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A similar profile was seen when AhR activity was induced with
10-9 M TCDD (Figure 2b). That is, TCDD significantly
increased the baseline level of pGudLuc activity (Figure 2b,
first histogram) relative to untreated controls (Figure 2a, first
histogram) while 10-4 to 10-5 M galangin or 10-6 M α-NF signif-
icantly blocked this induction (p < 0.02). I3C, together with
TCDD, resulted in the greatest increase in pGudLuc activity.
These data demonstrate that both galangin and α-NF can sup-
press constitutive and TCDD-induced, AhR-dependent tran-
scriptional activity in a human mammary tumor cell line.

Galangin inhibits Hs578T cell proliferation
Since molecular manipulation of AhR activity can affect cell
proliferation [40,44], the ability of 10-4 to 10-6 M galangin, α-
NF, and I3C to alter Hs578T cell growth was studied. At the
highest dose of 10-4 M, α-NF was toxic (>50% dead as meas-
ured by PI staining) and was not assessed further at that dose
for its ability to inhibit proliferation. No toxicity was observed
with the other compounds at any dose or with α-NF at lower
doses (<3% dead by PI staining). Addition of 10-4 to 10-5 M
galangin significantly (p < 0.04) reduced cell proliferation as
measured by 3H-thymidine incorporation (Figure 3a). At 10-6

M, galangin reduced 3H-thymidine incorporation by approxi-
mately 25%, although this reduction was not statistically sig-
nificant. Overall, the IC50 (median inhibition concentration) of
galangin under these conditions was 11 µM (Figure 3b), a
result that compares favorably with concentrations of
tamoxifen required to inhibit proliferation of ER+ mammary
tumor cells by 50% (for example, 31 µM) [67]. Consistent with
previous studies in ER+ cells [18,68,69], I3C significantly
reduced 3H-thymidine incorporation at all doses tested. Inter-
estingly, α-NF, which was shown to be a potent AhR inhibitor

in this cell line (Figure 2), had no effect on Hs578T cell prolif-
eration.

The ability of both an AhR antagonist (galangin) and an AhR
agonist (I3C) to suppress cell proliferation, and the failure of a
second AhR antagonist (α-NF) to affect proliferation, sug-
gested that AhR down-regulation is either not involved or is
insufficient for galangin-dependent proliferation inhibition.
Since pharmacological agents such as galangin and I3C may
have multiple biological activities, a second approach, trans-
fection with an AhR-specific repressor [53], was taken to con-
firm that AhR down-regulation in and of itself is not sufficient
to alter Hs578T cell proliferation. An evolutionarily conserved
[53,70-73] AhR repressor (AhRR) specifically blocks AhR-
dependent CYP1A1 activity by competing for the AhR binding
partner ARNT and by blocking binding of this complex to rec-
ognition sequences in target genes [53,70]. Notably, AhRR
derived from killifish (F. heteroclitus) inhibits both human and
mouse AhR-dependent transactivation in an AhR-specific
manner [53]. In our hands, the F. heteroclitus AhRR (FhAhRR)
expression plasmid is more effective at suppressing pGudLuc
activity in Hs578T cells than a human AhRR expression con-
struct (not shown). Therefore, the FhAhRR construct was
used to determine if inhibition of AhR activity is sufficient to
suppress Hs578T cell proliferation.

Hs578T cells were transiently transfected with FhAhRR or
control pcDNA either with pGudLuc, to confirm FhAhRR
activity, or without pGudLuc to evaluate cell proliferation.
Transfection with FhAhRR significantly reduced both the con-
stitutive (Figure 4a) and the TCDD-inducible (Figure 4b)
pGudLuc reporter activity in transfected Hs578T cells, con-

Figure 3

Galangin inhibits proliferation of Hs578T breast cancer cellsGalangin inhibits proliferation of Hs578T breast cancer cells. Hs578T cells were treated in triplicate with vehicle, 10-4 to 10-6 M galangin, 10-4 to 10-

6 M indole 3-carbinol (I3C), or 10-5-10-6 M α-naphthoflavone (α-NF) and grown in 3H-thymidine-containing media for 18 hours. Triplicates were aver-
aged for each point in each experiment. (a) Data are pooled from 3 to 11 experiments and presented as the percent of control (vehicle-treated) 
counts per minute (CPM) + standard error. In 11 experiments, the average CPM in vehicle-treated controls was 35,583 + 6,893. An asterisk (*) indi-
cates a significant decrease in 3H-thymidine incorporation relative to vehicle controls, p < 0.05. (b) Data obtained with galangin as above were 
replotted to determine the IC50 (median inhibition concentration) (median inhibition concentration). The calculated IC50 was 11 µM.
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firming the potent inhibitory activity of ectopically expressed
AhRR. However, FhAhRR transfection had no effect on 3H-
thymidine incorporation (Figure 5). These results demonstrate
that AhR repression is not sufficient to effect inhibition of pro-
liferation in this cell line. It is concluded that galangin's ability
to inhibit cell proliferation either doesn't involve the AhR or is
mediated by AhR suppression together with other activities.

Galangin blocks G0/G1 to S transition
To determine the stage(s) of cell cycle at which galangin
blocks proliferation, Hs578T cells were synchronized by
serum deprivation for 48 hours and then serum rescued in the
presence of galangin, α-NF, or I3C. DNA content was assayed
24 hours after serum rescue by PI staining and flow cytometry.
Approximately 60% of the cells growing in log phase were in
the G0/G1 phase of cell growth at any given time (Figure 6a,b).
Growth arrest induced by deprivation of serum significantly (p
< 0.01) increased the number of cells in G0/G1 to approxi-
mately 80%. Addition of serum with vehicle initiated cell cycle
as indicated by a decrease in the number of cells in G0/G1 to
approximately 25%. However, this decrease in G0/G1 cells
was not seen when serum was added in the presence of 10-4

M galangin. One log less galangin had no effect on serum res-
cue. As expected from its failure to affect proliferation of non-
synchronized cells (Figure 3), 10-5 to 10-6 M α-NF had no
effect on the number of cells exiting G0/G1 after serum rescue

(Figure 6). The highest I3C dose (10-4 M) partially but signifi-
cantly (p < 0.01) inhibited transition of cells from the G0/G1
into the S phase of cell cycle after serum rescue. Again, since
I3C and its metabolites have multiple biological activities, we
cannot conclude that the effect seen in H3578T cells is due
to its AhR agonist activity.

Growth-arrested, serum-rescued, and flavonoid-treated cells
also were assayed for apoptosis as measured by the presence
of a sub G0/G1 peak as we have described [56-58]. Regard-
less of treatment, less than 8% of the cells were apoptotic and
no differences were seen between groups at doses shown in
Figure 6b (not shown). These data indicate that galangin is
non-toxic and that it blocks the transition of Hs578T cells from
the G0/G1 to the S phase of cell growth.

Galangin down-regulates cyclins D3, E, and A
Cell cyclins tightly regulate the transition of cells through the
phases of the cell cycle. The D cyclins are upregulated at the
initiation of the cell cycle and drive cells from the G0/G1 to the
S phase of growth in part through retinal blastoma protein (Rb)
phosphorylation [74]. Cyclin E is upregulated by E2F released
from Rb during the late phases of G1 and, once in complex
with Cdk2, commits the cell to divide [75]. Cyclin A functions
both in the S and M phases of the cell cycle [76]. Dysregula-
tion of each of these cyclins has been associated with mam-

Figure 4

Aryl hydrocarbon receptor (AhR) repressor (FhAhRR) inhibits AhR-dependent pGudLuc reporter activityAryl hydrocarbon receptor (AhR) repressor (FhAhRR) inhibits AhR-dependent pGudLuc reporter activity. Hs578T cells were left untransfected or 
were transfected with 0.5 µg/well renilla luciferase vector phRL-TK and 0.1 µg pGudLuc/well together with 0.5 µg control vector (pcDNA), 0.1 µg 
FhAhRR, or 0.5 µg FhAhRR in the (a) absence or (b) presence of 10-9 M 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Cells were harvested 18 
hours later and luciferase activity assayed. Firefly luciferase activity was normalized to renilla activity in each experiment. Data pooled from six experi-
ments are presented as the average fold increase relative to non-transfected cells + standard error. An asterisk (*) indicates a significant difference 
relative to pcDNA-transfected controls, p < 0.001.
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mary tumorigenesis [77-79]. To determine at what level(s)
galangin effects proliferation inhibition, Hs578T cells were left
untreated or were treated with 10-4 M galangin, 2.5 × 10-4 M
I3C, or 10-5 M α-NF and assayed for cyclin D1, D3, E, and A
expression 18 hours thereafter.

Although galangin tended to decrease cyclin D1 expression,
the data did not reach statistical significance in this series of
three experiments (Figure 7a,b). However, expression of cyclin
D3 was nearly undetectable in galangin-treated cells. Further-
more, galangin significantly reduced expression of cyclins A (p
< 0.001) and E (p < 0.02). Since cyclins A and E function
downstream of cyclin D3, these data are consistent with the
cell cycle data (Figure 6) and support, but do not prove, the
hypothesis that galangin blocks transition of cells from G0/G1
into S phase by profoundly down-regulating at least cyclin D3.
As in previous experiments, no overt toxicity (for instance,
uptake of trypan blue) was noted following galangin treatment
(data not shown).

In contrast, neither I3C nor α-NF significantly affected expres-
sion of the cyclins assayed herein, even though relatively high
doses were used (Figure 7a,b). The failure of I3C to inhibit
expression of these cyclins, while clearly affecting cell prolifer-

ation at lower doses (Figure 3), suggests its ability to interfere
with components of the cell cycle machinery not assayed here
and distinct from those targeted by galangin.

Discussion
In the search for less toxic breast cancer chemotherapeutics,
many laboratories have turned their attention to naturally
occurring bioflavonoids or synthetic analogues thereof.
Galangin is one such polyphenolic compound that has been
shown to have significant biological activity in a number of sys-
tems [7-11,13]. In our hands, galangin is a potent inhibitor of
environmental chemical toxicity mediated by carcinogenic
polycyclic aromatic hydrocarbons through its ability to block
AhR activation [15]. In those studies, galangin inhibited AhR
activation without overt toxicity to what would otherwise be
considered extremely sensitive cells, that is, developing bone
marrow hematopoietic cells. The lack of toxicity is supported
further by the present studies, in which doses as high as 10-4

M failed to induce overt cell death, as measured by trypan blue
uptake, or more cryptic apoptotic death, as measured by a
decrease in staining with PI in permeabilized cells.

A number of studies demonstrated that the AhR can regulate
cell proliferation [42,80]. In several cases, particularly with
regard to rapidly growing or transformed cells, the AhR
appears to be constitutively active [44,63,81-84]. Our labora-
tory has shown that this phenomenon holds for rodent mam-
mary tumors induced with prototypic AhR ligands [16].
Similarly, high levels of nuclear AhR were observed in human
Hs578T cells (Figure 1) and in several other human breast
cancer cell lines (for example, CAMA-1, MCF-7, and MDA MB
231; data not shown). In addition, the presence of a significant
background level of pGudLuc reporter activity that was inhib-
itable with galangin, α-NF (Figure 2), or FhAhRR transfection
(Figure 4), indicated that the AhR is constitutively active in
Hs578T cells. Therefore, it is reasonable to hypothesize that
AhR up-regulation is a general characteristic of mammary
tumors and that it influences their growth. In support of this
hypothesis, AhR inhibition through molecular manipulations,
such as transfection of AhR-specific siRNA, suppresses pro-
liferation of human hepatoma cells [40] while AhR-defective
hepatoma cells grow more slowly than wild-type cells [44].

Because of these results, we had initially proposed that
galangin would effect a change in mammary tumor cell prolif-
eration through inhibition of AhR activity. Indeed, galangin was
shown to both inhibit AhR activity (Figure 2) and to block cell
proliferation (Figures 3 and 6). The IC50 of galangin (11 µM) in
this system was similar to that reported for tamoxifen with ER+

MCF-7 cells (31 µM)[67]. However, cell proliferation was not
altered by α-NF or FhAhRR despite their ability to suppress
AhR activity as efficiently as galangin. Therefore, it appears
either that the AhR is not involved in suppressing proliferation
or that AhR inhibition is not sufficient to block proliferation of
this relatively advanced tumor cell line. This result does not rule

Figure 5

Aryl hydrocarbon receptor repressor does not inhibit proliferation of Hs578T breast cancer cellsAryl hydrocarbon receptor repressor does not inhibit proliferation of 
Hs578T breast cancer cells. Hs578T cells were transfected with con-
trol pcDNA vector or with FhAhRR plasmid as in Figure 4, plated in 
triplicate in 96-well plates, and allowed to adhere overnight before 
addition of 3H-thymidine. Cells were harvested 18 hours later and 
assayed for 3H-thymidine incorporation. Triplicates were averaged in 
each experiment. Data are pooled from three experiments and are pre-
sented as the mean counts per minute (CPM) + standard error. There 
were no statistical differences between groups.
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out the possibility that AhR down-regulation is sufficient to
alter proliferation of less aggressive mammary tumors. Indeed,
recent experiments demonstrate that inhibition of AhR activity
in pre-malignant, MCF-10F mammary epithelial cells through
transduction with an FhAhRR-containing lentivirus vector pro-
foundly inhibits proliferation (data not shown).

Furthermore, the demonstration that galangin dramatically
inhibits constitutive and environmental chemical-induced
pGudLuc activity is an important observation in and of itself.
Active AhR induces transcription of CYP1 genes encoding
enzymes that biotransform ubiquitous environmental carcino-
gens (for example, PAH) and putative endogenous substrates
[63] into mutagenic metabolites. Consequently, non-toxic fla-

vonoids such as galangin may be seen as potential chemopre-
ventatives capable of blocking mutation-driven tumor initiation
and/or progression through down-regulation of CYP1 tran-
scription. Its ability also to block CYP1A1 enzyme activity
directly [51], and to act as a free radical scavenger [2], sug-
gests two additional levels at which galangin may restrict
mutagen production or activity.

Flow cytometric studies presented herein demonstrate that
galangin blocks transition of Hs578T cells from the G0/G1 into
S phase of cell growth. Profound inhibition of cyclin D3
expression and the tendency to reduce cyclin D1 expression
after galangin exposure are consistent with this finding since
activation of cyclin D-CDK4 complexes is rate limiting in tran-

Figure 6

Galangin and indole 3-carbinol (I3C) block Hs578T cells progression from G0/G1 into cell cycleGalangin and indole 3-carbinol (I3C) block Hs578T cells progression from G0/G1 into cell cycle. Hs578T cells were synchronized by serum depriva-
tion for 48 h followed by rescue with 10% serum. As indicated, 10-4 to 10-6 M galangin (Gal), 10-5-0-6 M α-naphthoflavone (α-NF), or 10-4 M I3C 
were added to triplicate wells at the time of serum rescue. Cells were harvested 24 hours later and assayed for DNA content by propidium iodide 
(PI) staining and flow cytometry. Data from triplicate wells were averaged in each experiment. (a) Flow cytometry histograms from one representative 
experiment in which 10-4 M galangin, 10-5 M α-NF, and 10-4 M I3C were used are presented. (b) Data pooled from 4 to 9 experiments are presented 
as the mean percentage of cells in G0/G1 + standard error. An asterisk (*) indicates a significant increase relative to serum starved, vehicle treated 
cultures, p < 0.01. A cross (+) indicates a significant increase relative to untreated cultures, p < 0.01.
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sition of cells from the G1 to S phase of cell growth. These
observations are important since cyclin D3 plays a critical role
in mammary tumorigenesis [85,86] but has not yet been spe-
cifically targeted with chemotherapeutics. Interestingly, it has
been suggested that cyclin D3 preferentially promotes devel-
opment of squamous carcinomas [85] and that it activates an
oncogenic pathway in mammary epithelial cells that is distinct
from the pathway induced by cyclin D1 [85,87]. Conse-
quently, the preferential down-regulation of cyclin D3 by
galangin may complement and increase the inhibitory effects
of putative chemotherapeutics that target cyclin D1 [88] or, for
that matter, other components that regulate cell cycle in
tumors.

Since transcription of cyclins E and A is regulated by the D
cyclins through control of Rb phosphorylation and E2F
release, it is likely that cyclin D3 down-regulation is responsi-
ble for the observed decreases in cyclins E and A seen in
galangin-treated cells (Figure 7). Experiments now underway
are testing this and the alternative possibility, that galangin
directly suppresses cyclins E and A as well as cyclin D3. In
either case, the down-regulation of multiple cyclins known to
be involved in mammary tumorigenesis emphasizes the poten-
tial for galangin to serve as an effective inhibitor of mammary
tumor proliferation.

Conclusion
We have described the novel finding that a naturally occurring,
non-toxic bioflavonoid, galangin, effectively suppresses prolif-
eration of an ER- cell line. This proliferation inhibition is accom-
panied by down-regulation of cyclins D3, E, and A. While
galangin inhibits the activity of the AhR, a transcription factor
implicated in the initiation and growth of mammary tumors,
AhR inhibition was either not required or not sufficient to sup-
press proliferation of this cell line. These results suggest that
this bioflavonoid may represent a useful therapeutic for the
treatment of ER- mammary tumors and should complement the
effects of therapeutics that target other dysregulated compo-
nents of the cell cycle machinery.
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