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Abstract

Introduction Previous data from our laboratory suggested that
progesterone receptors (PRs) are involved in progestin-
independent growth of mammary carcinomas. To investigate
this possibility further, we studied the effects of PR antisense
oligodeoxynucleotides (asPR) on in vivo tumor growth.

Method BALB/c mice with subcutaneous 25 mm?2 mammary
carcinomas expressing estrogen receptor-a and PR were either
injected intraperitoneally with 1 mg asPR every 24 or 12 hours
for 5-10 days, or subcutaneously with RU 486 (6.5 mg/kg body
weight) every 24 hours. Control mice received vehicle or scPR.

Results Significant inhibition of tumor growth as well as a
significant decrease in bromodeoxyuridine uptake was observed
in asPR-treated mice, which correlated with histological signs of

regression and increased apoptosis. Mice treated with RU 486
experienced almost complete tumor regression. No differences
were detected between vehicle-treated and scPR-treated mice.
Anti-progestin-treated and asPR-treated mice were in a
continuous estrous/meta-estrous state. Decreased
phosphorylated extracellular signal-regulated kinase (ERK)1 and
ERK2 levels and estrogen receptor-o. expression were observed
as late events in RU 486-treated and asPR-treated mice with
regressing tumors.

Conclusion We demonstrate, for the first time, inhibition of
tumor growth in vivo using asPR. Our results provide further
evidence for a critical and hierarchical role of the PR pathway in
mammary carcinomas.

Introduction

The predominant role assigned to the estrogen receptor (ER)-
o. pathway as the key player in the origin and maintenance of
the neoplastic phenotype in mammary cancer has been chal-
lenged by recent clinical [1-4] and experimental [5] findings,
which suggest that progesterone receptors (PRs) play a simi-
larly significant role. We and others have demonstrated in
female mice that progesterone, as well as the synthetic pro-
gestin medroxyprogesterone acetate (MPA), can directly
induce mammary carcinomas or act as a co-carcinogen [6-
10]. We found clear differences in target cells or in the type of
tumors induced by progesterone or MPA in mouse mammary
gland [6], even though both agents are similarly able to pro-
mote hormone-dependent growth [11]. MPA induces mam-

mary tumors that are quite similar to human breast cancers,
specifically metastatic carcinomas of ductal histology, pre-
ceded by ductal pre-neoplastic lesions, which maintain high
levels of ER-o. and PRs and may progress through different
stages of hormone responsiveness [12-14]. Progesterone, on
the other hand, induces lobular mammary carcinomas, which
lose hormone receptor expression after serial transplantations
[6].

In previous reports we suggested that PRs are essential in the
maintenance of the neoplastic phenotype of MPA-induced
mammary carcinomas [14,15], even in tumors that have pro-
gressed to a hormone-independent phenotype [16]. Moreo-
ver, we also demonstrated that the PR pathway is also used by

asPR = antisense oligodeoxynucleotides to progesterone receptors; BrdU = 5-bromodeoxyuridine; E, = estradiol; ER = estrogen receptor; ERK =
extracellular signal-regulated kinase; MAPK = mitogen-activated protein kinase; MPA = medroxyprogesterone acetate; PBS = phosphate-buffered
saline; PR = progesterone receptor; scPR = scrambled oligodeoxynucleotides to progesterone receptors.
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basic fibroblast growth factor to exert growth stimulatory
effects [17]. Antisense oligodeoxynucleotides designed to
block both PR isoforms (asPR) confirmed that PRs are
involved in the basic fibroblast growth factor proliferative path-
way in these cells [17]. This interaction between growth fac-
tors and PRs was recently confirmed by Labriola and
coworkers [18], who demonstrated activation of PRs by
mitogen-activated protein kinase (MAPK) using both our
murine cells and T47D human cells; and by Qiu and coworkers
[19], who demonstrated that activation of MAPK in human
cells induced Ser294 phosphorylation and rapid nuclear
translocation.

To further define the role played by the stimulatory effects of
PRs in hormone-independent tumors within an experimental
therapeutic scenario, we expanded our in vitro studies by
blocking PRs with phosphorothiolated oligodeoxynucleotides
to PR (i.e. asPR). Furthermore, we extended these findings to
three different progestin-independent tumor lines in order to
elucidate the involvement of PRs in the growth of such tumors.
The goal of the present study was to investigate the in vivo
effect of asPR on tumor growth.

Materials and methods
Animals

Two-month-old virgin female BALB/c mice (Instituto de
Biologia y Medicina Experimental Animal Facility, Buenos
Aires, Argentina) were used. The animals were housed in
groups of four per cage in an air-conditioned room at 20 + 2°C
under a 12-hour light/dark cycle, and had free access to food
and tap water. Animal care and manipulation were in accord-
ance with institutional guidelines and with the Guide for the
Care and Use of Laboratory Animals [20].

Tumors

Four different MPA-induced mammary ductal carcinomas
were used, namely 59-2-HI, 32-2-HI, C7-2-HI and CC4-HI
[13,21], which were maintained by serial subcutaneous
implantation into BALB/c virgin female mice. These tumors
belong to the group of responsive progestin-independent
tumors; they do not need administration of exogenous hor-
mones to grow but they regress when they are treated with
estradiol (E,), RU 38486 (RU 486), or ZK 98299 (ZK 299)
[22].

Reagents

The reagents used in Western blots were purchased from
Gibco BRL (New York, NY, USA). Methanol was purchased
from Merck Quimica (Buenos Aires, Argentina). Molecular
weight markers are Rainbow pre-stained molecular weight
markers (Amersham Life Science, Buckinghamshire, UK).
[3H]IR5020 and [3H]R5020 were purchased from NEN (Bos-
ton, MA, USA) and KCI from Anedra (Buenos Aires, Argen-
tina). Dithiothreitol, EDTA, sucrose, protease inhibitors, RU
486, and E, were purchased from Sigma (St. Louis, MO,

USA). ZK 299 was kindly provided by Schering (Berlin, Ger-
many). Oligonucleotides were purchased from DNAgency
(Malvern, PA, USA). They were designed to cover the transla-
tion initiation site of the target sequence. Synthetic, phospho-
rothiolated lyophilized oligonucleotides were dissolved in
sterile saline solution, fractionated to a final concentration of
50 mg/ml and stored at -20°C. Approximately 30 min before
each administration, oligodeoxynucleotides were further dis-
solved in saline. None of them exhibits homology with other
reported sequences in GenBank.

In vitro studies

Studies were carried out using primary cultures from three dif-
ferent tumors (59-2-HI, CC4-HI, and C7-2-HI) [28]. Beriefly,
trypsinized tumor cells were seeded in multiwell plates; cell
proliferation was evaluated 48 hours or 1 week after treatment
by [BH]thymidine uptake or cell counting, respectively. All
experiments were performed with Dulbecco's modified Eagle
medium-F12 (Sigma) and steroid stripped fetal bovine serum.
Oligodeoxynucleotides designed to block both PR isoforms
were used (5'-ACTCATGAGCGGGGACAACA-3') [24]. The
scrambled oligonucleotide to PRs (scPR) 5'-ACGCTAGACT-
GACGACGAGA-3' was used as a control. [3H]thymidine
uptake index was calculated as experimental counts per min/
control counts per min.

The efficiency with which asPR blocked expression of PRs
was evaluated in Western blots 24 hours after treatment,
using the Ab7 (Neomarkers, Union City, CA, USA) antibody
[22] or by binding techniques at single saturating concentra-
tions with [3HIR5020, as previously described [23]. NMuMG
(murine mammary epithelial cells) [25] and uterus were used
as negative and positive controls, respectively.

In vivo experiments

Tumor implants

Tumors were implanted subcutaneously into the right inguinal
flank by trocar, as previously described [21]. Tumor growth
was measured using a Vernier caliper (length and width). The
product of these values was considered the tumor area. After
the animals were killed, tumors were excised and weighed.

Antiprogestin treatment

When the tumors reached a size of approximately 25-50 mm?2,
animals were treated with daily doses of saline, ZK 299 (10
mg/kg), or RU 486 (6.5 mg/kg), as previously described [26].
Selected mice (n=3/group) were killed 24 hours after the first
RU 486 injection. In some experiments RU 486 was adminis-
tered as silastic 5 mg pellets, implanted subcutaneously.
Tumor samples were fixed for histological evaluation and oth-
ers were kept in liquid nitrogen for Western blot studies.

Antisense treatment
The treatments were started when the tumors reached 25-50
mm?2. Two sets of experiments were performed. In the first,



animals carrying 59-2-HI or 32-2-HI tumors were injected
intraperitoneally with 1 mg phosphorothiolated oligodeoxynu-
cleotides to PR (i.e. asPR; volume 0.2 ml) or saline every 24
and 12 hours (n = 3-4/group) for 59-2-HI and 32-2-HI
groups, respectively. All injections were prepared in sterile
saline immediately before administration. Tumor size was eval-
uated every day, as described above. The estrous cycle was
evaluated using vaginal smears, and the cycle in control ani-
mals was compared with those in RU 486-treated and ZK
299-treated animals. The animals were killed after 10 days and
complete autopsies performed. Tumors were weighed and
samples were immediately frozen or fixed in formalin. PR
expression was evaluated using Western blots, as described
below.

In the second set of experiments, the experiment (n = 4/group)
was repeated under the same conditions as described above
but with the addition of two further groups: a third group of
mice bearing 32-2-HI tumors and treated with scPR; and a
fourth group treated with RU 486 in 5 mg pellets implanted
subcutaneously. The animals were inoculated every 12 hours
with 1 mg asPR and were killed after 5 days of treatment. Two
hours before the animals were sacrificed, two animals in every
group were injected with 5-bromodeoxyuridine (BrdU; 4 mg/
mouse). All samples fixed in formalin were embedded in paraf-
fin using standard protocols, and 5 um sections were obtained
and stained with heamatoxylin—eosin for histological
examination.

Progesterone receptor binding assays

Binding of [3H]JR5020 to PRs was evaluated by whole cell
assay. Briefly, 105 cells were plated in 24-well plates with Dul-
becco's modified Eagle medium-F12 (Sigma) and 5% steroid
stripped fetal bovine serum. Treatments were initiated when
cultures were half confluent; whole cell PR assays were per-
formed after 24 hours, as previously described [23]. A total of
300,000 counts/min 170-methyl-[BH]R5020 were added
together with a 100-fold excess of R5020 or ethanol. After 2
hours of incubation, the cells were washed, trypsinized, and
counted in a liquid scintillation counter. A significant difference
between counts per min in the groups incubated only with
radioactive hormone and those incubated with radioactive
plus unlabeled hormone yields the total counts per min bound
to the receptors. These differences are directly proportional to
the number of PRs in each experimental group.

Preparation of whole cell extracts

Uterus, muscle, and tumors were homogenized in a polytron at
setting 50 with three bursts of 5 s in a 1:4 ratio of tissue:buffer.
The buffer was 20 mmol/I Tris-HCI (pH 7.4), 1.5 mmol/I EDTA,
0.25 mmol/l dithiothreitol, 20 mmol/l Na,MoO,, and 10% glyc-
erol. Protease inhibitors (0.5 mmol/l phenylmethylsulfonyl fluo-
ride, 0.025 mmol/l  N-Carbobenzyloxy-L-phenylalanyl
chloromethyl ketone, 0.025 mmol/l tosyl-lysylchloromethane,
0.025 mmol/l tosylphenylalanylchloromethane, and 0.025
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mmol/I N,-p-Tosyl-L-arginine methyl ester hydrochloride) were
added to the buffer immediately before use. The homogenate
was sonicated at medium frequency for 10 s (tubes were
always kept on ice) and centrifuged for 45 min at 40,000 rpm
(4°C). The supernatant was immediately frozen in liquid nitro-
gen and stored at -70°C until later use in Western blot assays.
Protein concentration was determined in accordance with the
method proposed by Lowry and coworkers [27].

Western blot

The samples (100 ug total protein/lane) were separated on
7.5% SDS-PAGE using Laemmli's buffer system [28]. The
proteins were dissolved in sample buffer (6 mmol/l (Tris pH
6.8), 2% SDS, 0.002% bromophenolblue, 20% glycerol, 5%
mercaptoethanol) and boiled for 4 min. After electrophoresis
they were blotted onto a nitrocellulose membrane and blocked
overnight in 5% dry skimmed milk dissolved in phosphate-buff-
ered saline (PBS)/Tween 0.1% (0.8% NaCl, 0.02% KClI,
0.144% Na,PO,, 0.024% KH,PO,, pH 7.4, 0.1% Tween 20).
Following several washes with PBS/Tween, the membranes
were incubated with the primary antibody against PRs (Ab-7/
hPRa 7 (Neomarkers) or Ab-1 (kindly provided by Dr Gopalan
Shyamala)), ER-a. (MC-20; Santa Cruz Biotechnology, Santa
Cruz, CA, USA), extracellular signal-regulated kinase (ERK; K-
28; Santa Cruz Biotechnology), phosphorylated (p)ERK (E-4;
Santa Cruz Biotechnology), and E-cadherin (BD Transduction
Lab, Palo Alto, CA, USA) at room temperature for 2 hours. Pri-
mary antibodies were used at 1:100 concentrations, except
for E-cadherin, which was used at 1:10.000. Blots were
probed with anti-mouse or anti-rabbit IgG, horseradish peroxi-
dase-conjugated whole antibody (Amersham Life Science).
The luminescent signal was generated with ECL Western blot-
ting detection reagent kit (Amersham Pharmacia Biotech,
Buckinghamshire, UK), and the blots were exposed to a med-
ical X-ray film (Curix RP1; Agfa, Buenos Aires, Argentina) for
10 s to 5 min. To control the efficiency of transference, mem-
branes were stained with Ponceau S.

Immunohistochemistry

The sections were de-waxed in xylene, rehydrated through
graded ethanols, and treated with 1% triton X-100 in PBS for
20 min at room temperature. They were then washed with
PBS three times, 5 min each, and incubated for 30 min at
room temperature with 3% H,O, in distilled water to quench
endogenous peroxidase activity, washed extensively with
PBS, and incubated in 3% albumin or normal horse serum in
PBS for 20 min. The sections were then allowed to react with
PRs (C-20; rabbit polyclonal IgG specific for PR; Santa Cruz
Biotechnology) or ER (MC-20; rabbit polyclonal IgG specific
for ER; Santa Cruz Biotechnology) diluted 1:100 in PBS for
48 hours at 4°C [25]. The slides were washed with PBS and
successively incubated for 30 min at room temperature with
anti-rabbit biotin-conjugated immunoglobulins (Vector Labs,
San Francisco, CA, USA), diluted 1:250 in PBS, and, with the
ABC complex, prepared according to the manufacturer's
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directions (Vector Labs). The slides were thoroughly washed
with PBS and developed under microscopic control with 3-3'
diaminobenzidine 0.06% in PBS and H,O, at a final concen-
tration of 0.1%. Stained nuclei were counted in 15 high-power
fields of each section using a 1000x magnification and
expressed as mean = standard deviation of the percentage of
the ratios between the total number of stained nuclei and the
total cell number per high-power field.

5-BrdU was detected using a sheep polyclonal antibody
(Maine Biotechnology Services Inc., Portland, ME, USA).
Briefly, de-waxed and hydrated slides were permeabilized with
proteinase K (Sigma; Cat# 92905), 20 pug/ml, 15 min at room
temperature. Enzyme action was stopped with 5% normal
horse serum in PBS and the slides were successively incu-
bated with the anti-BrdU antibody diluted 1:200 in PBS, over-
night at 4°C, and washed and incubated with anti-sheep
antibody (Vector) 1:400 in PBS. The slides were then proc-
essed through ABC (Vector) and developed as described
above. Apoptosis was evaluated using the standard in situ cell
death detection Kit, Fluorescein (Roche; Cat# 1 684 795), in
accordance with the manufacturer's instructions.

Statistical analysis

Analysis of variance followed by Tukey t-test was used to ana-
lyze the differences between control and experimental groups
in [BH]thymidine uptake, tumor size, PR staining, and binding
assays. Unpaired t-tests were used as needed. P < 0.05 was
considered statistically significant. Values are reported as
mean * standard deviation. Tumor growth curves were also
studied using regression analysis and slopes compared using
analysis of variance followed by parallelism analysis.

Results
In vitro studies

The role played by PRs in progestin-independent tumor
growth was investigated in vitro using primary cultures of three
different tumor cell lines from our model, as previously
described [16,23]. RU 486 and ZK 299, two antiprogestins
that exert their effects by different mechanisms, were able to
inhibit cell proliferation, as evaluated by cell counting (not
shown) and [3H]thymidine uptake (Fig. 1a), at concentrations
as low as 1 x 109 mol/l. Using the same experimental condi-
tions, we investigated the effect of asPR. In concentrations
above 1.25 pg/ml, inhibition of cell proliferation was observed,
as measured by [3H]thymidine uptake (Fig. 1b) or by cell
counting (control: 64.75 * 3.84; asPR 5 ug/ml: 38.25 + 1.14
cells/ml x 104). No effect was observed in the PR-negative
NMuMG cells (not shown) or in tumor cells incubated with
scPR (Fig. 1b).

AsPR treatment resulted in potent inhibition of PR binding (P
< 0.01) whereas scPR had no effect (Fig. 1c). Western blot
studies revealed that both PR isoforms were expressed to a
lesser degree in asPR-treated cells (Fig. 1d).

In vivo studies

Tumor growth

The goal of this study was to extend our in vitro findings to an
in vivo scenario. We showed that the tumors used in this study
regressed completely after antiprogestin or estrogen treat-
ment [16]. Our previous in vivo data pointed toward an essen-
tial role for PRs in tumor growth, but because estrogens
induced the same inhibitory effect as antiprogestins, and anti-
progestins were shown to exert estrogenic effects [29], the
importance of PRs remained to be demonstrated. The aim of
the following experiments was to evaluate whether tumor
growth could be inhibited by blocking PR expression.

In a first set of experiments the progestin-independent tumor
line 59-2-HI was chosen because complete regression was
induced with RU 486 and ZK 299, even in tumors with an ini-
tial size greater than 100 mm2 [26]. In this first experiment,
asPR treatment (1 mg/day) began when tumors measured
approximately 25 mm2 and continued for 10 days. AsPR inhib-
ited tumor growth (not shown). No signs of nonspecific toxicity
were detected by histopathological evaluation of organs. This
experiment suggested that, although asPR inhibited tumor
growth, the appropriate antisense dose could still be
increased. Consequently, a second set of experiments was
carried out using the 32-2-HI tumor, which also regresses
completely after antiprogestin treatment (Fig. 2a), and the
asPR dose was increased to 1 mg twice daily. Figure 2b
shows that asPR treatment significantly inhibited tumor
growth for 5 days, after which tumors resumed growth but at
a slower rate.

From these experiments it was evident that asPR inhibited
tumor growth. In a third set of experiments we included the
control group using a scrambled sequence (scPR) and
focused on short-term effects of asPR. In addition to tumor
size, histopathological studies of tumors during the stationary
phase were performed. As shown in Fig. 2 (panels ¢ and d) the
differences in tumor size between asPR-treated animals and
vehicle-treated or scPR-treated mice were significant. How-
ever, a more conspicuous decrease in tumor size was
observed in RU 486-treated animals.

Estrous cycle

Vaginal smears were evaluated daily in RU 486-, ZK 299-, and
asPR-treated animals. During the first week of treatment,
AsPR-treated mice and antiprogestin-treated mice were in a
continuous estrous/meta-estrous state; this effect of antipro-
gestins on the estrous cycle has been described by others
[30,31]. After 1 week of treatment, asPR-treated mice started
to cycle again, and interestingly tumors started to grow again.
This transient effect of asPR treatment on the estrous cycle
parallels the effect observed on tumor growth. E, serum levels
in asPR-treated animals were undetectable by radioimmu-
noassay, whereas those in control animals were in the
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otides to PR (asPR or scPR) on [3H]thymidine uptake index on primary cultures of responsive progestin-independent tumor cells. The cells were
incubated in Dulbecco's modifeid Eagle medium-F12 without phenol red, in the presence of 2.5% ssFCS and different drug concentrations for 48
hours. [3H]thymidine was added in the last 18 hours. These are representative experiments from at least three using three different tumors, with each
value corresponding to the mean £ SD cpm of octuplicates. [3H]thymidine uptake index was calculated as the experimental cpm/control cpm. *P <
0.05, *P < 0.01, **P < 0.001. (c) PR binding was evaluated in vitro using the whole cell binding assay in primary cultures from a responsive pro-
gestin-independent tumor in the presence of 2.5% ssFCS (control), scPR (5 pg/ml) or asPR (5 ug/ml; **P < 0.01, *P < 0.05). (d) PR Western blot
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nucleotides to progesterone receptors; SD, standard deviation; ssFCS, steroid stripped fetal calf serum.

expected range (not shown). Thus, the estrous state was not
achieved because of higher E, serum levels.

Histopathology

Tumor regression in this model progresses through cytostasis
and apoptosis, leading to a progressive reduction in the epi-
thelial compartment accompanied by an increase in stroma
[26]. Histological signs of regression similar to those observed
in the RU 486-treated tumors were seen in areas of asPR-
treated mice (Fig. 3c,f) but not in vehicle-treated (Fig. 3a,d)
and scPR-treated animals (Fig. 3b,e). The lesions revealed the
presence of fibrosis; in areas the tumor was reduced to few
strands of epithelial cells and occasional areas of calcification
were observed. Althugh BrdU staining was similar between
control and scPR-treated animals, absence of BrdU labeling
was observed in one tumor (1/4) and a decrease in the other
three tumors of asPR-treated mice (Fig. 3g—i). A greater
number of apoptotic cells, as shown by TUNEL (terminal deox-

ynucleotidyl transferase mediated dUTP nick-end labeling)
assay, were observed in regressing tumors (Fig. 3j-I).

To confirm the efficiency of asPR treatment in blocking expres-
sion of PRs, they were evaluated by immunohistochemistry in
tumor samples as well as in normal mammary glands from
treated and untreated mice (Fig. 3m-o0). A significant
decrease (P < 0.01) in PR staining was observed in tumors
from asPR-treated mice as compared with tumors from control
and scPR-treated mice. The percentage of stained nuclei was
evaluated in 45 high-power fields from three different tumors
(mean * standard deviation; control: 46 + 6.4%:; scPR: 44.7
+ 3%; asPR: 11 £ 1.3%). No staining was observed using
these antibodies in mammary glands from PR knockout mice
[22]. Interestingly, no differences in PR (Fig. 4a—c) staining
were observed in the mammary glands from asPR-treated,
scPR-treated, or control mice, but glands from RU 486-treated
mice exhibited only isolated PR immunoreactivity (Fig. 4d).
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scPR, scrambled oligodeoxynucleotides to progesterone receptors.

These results suggest that asPR may be more easily captured
by tumor cells than by normal quiescent cells. Histopathologi-
cal evaluation of lungs, kidney, liver, and spleen revealed no
differences among groups (data not shown).

PR, ER-0, and ERK expression in RU 486-treated and
asPR-treated tumors

To further compare asPR and RU 486 treatments, we evalu-
ated the expression of ER-o. and ERKs in the same asPR-
treated samples and in tumors treated with RU 486 for 24
hours. ER-o0 and pERK1 and pERK2 were decreased in both
asPR-treated (Fig. 5a) and RU 486-treated tumors (Fig. 5b),
whereas total MAPK levels remained unchanged. PR expres-
sion was also down-regulated in asPR-treated tumors (Fig.
5a), as previously shown by immunohistochemistry (Fig. 3m—
0), and in the 24-hour RU 486-treated tumors (Fig. 5b). To
confirm that this downregulation was not an artifact associ-
ated with a decrease in epithelial cells, the expression of E-
cadherin — a specific marker of epithelial cells — was used to
evaluate the same control and 24-hour RU 486-treated tumor
samples. As shown in Fig. 5b, the low levels in steroid receptor
expression were not due to differences in the ratio of the epi-

thelial cells. In addition, as shown in Fig. 5¢, immunostaining of
ER-o. and PRs confirmed Western blot data.

Discussion

During the past few years the PR pathway has emerged as a
likely player in the pathogenesis of breast cancer, with growing
experimental as well as clinical evidence pointing to its protag-
onistic role [15]. Although estrogens remain the main foes in
this story, interestingly most of the epidemiological evidence
for their purported role as mammary carcinogens reflects pro-
longed exposure to female hormones, including progesterone.
Among the abundance of data available, the results from the
Women's Health Initiative [1] and the Million Women Study [2]
are especially striking because they specifically link the use of
progestins with breast cancer. Taking into account the litera-
ture attesting to the proliferative effect of progesterone on the
mammary gland and the carcinogenic effect of MPA, it may be
suggested that these results were predictable [3,4,32].

In this report, using an experimental model of mammary can-
cer, we demonstrate that the PR pathway is essential to main-
tenance of cell proliferation, even in tumors that are no longer
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column: mice treated with scPR; right column: mice treated with asPR. (a-c) Hematoxylin and eosin (100x); (d-f) Hematoxylin and eosin (400x);
(g-i) 5-BrdU immunocytochemistry; (j=I) TUNEL (100x); (m-0) PR immunohystochemistry. No changes were observed in tumors from animals
treated with saline or scPR. Tumors from animals treated with asPR exhibit increasing degrees of fibrosis, as well as occasional lymphocytic infiltra-
tion. TUNEL staining, indicative of apoptosis, was only observed in asPR-treated tumors (panel i), in which also very few 5-BrdU stained nuclei were
observed (panel f). Few PR stained nuclei are observed in asPR-treated tumors (panel I) as compared with control or scPR-treated tumors, in which
most of the cells are positive (panels j and k, respectively). asPR, antisense oligodeoxynucleotides to progesterone receptors; PR, progesterone
receptor; scPR, scrambled oligodeoxynucleotides to progesterone receptors; TUNEL, terminal deoxynucleotidyl transferase mediated dUTP nick-

end labeling.

dependent on progestins to grow. Even though our results do
not provide additional data regarding the mechanisms under-
lying the role played by PRs in mediating tumor growth, they
provide further support to our hypothesis and extend our pre-
vious data to the whole category of progestin-independent
tumors. This experimental model shares many features with
human breast cancer, in that the tumors are ductal metastatic
carcinomas expressing high levels of ER-oc and PR, which tran-
sit through different stages of hormone dependency. In addi-

tion, tumors regress completely after antiprogestin or estrogen
therapy and partially with tamoxifen [33]. The effectiveness of
antiprogestins in tumor models other than ours, such as the rat
MNU model or the mouse MXT model, has also been
addressed by other authors [34].

There are no data available regarding the use of PRs as targets
for gene therapy in breast cancer. Considering all of our previ-
ous findings, it seemed mandatory to try to inhibit the

R1117



R1118

Breast Cancer Research Vol 7 No 6 Lamb et al.

Figure 4
o g
i “‘\.‘
\ COFR NG
At ol I
F T
II 3 - "2
‘:’_'.3 ‘7‘. 5 ~
” A w
e §
» ‘e .
@) o
[ |
5 g
Sl T N | W v ' 1
?:"—‘f A" ! 3
A '_\ : £ -5 } .
& % L "
gy { !
7 L B ) ;
N ; - -’r A \ .)\ .‘.._ "‘.‘
e f " b § - ‘-‘? [ o5 o}
{ - ~ “‘g "..4 ) .
v — . 1 );,-, \su
e L. X o T : ’
L AR » 7 4 ;
» . (c) (d)

Effects of asPR or RU 486 on PR expression in mammary glands.
Immunohistochemical staining for PR in sections of paraffin-embedded
mammary glands of mice treated with (a) saline, (b) scPR, (c) asPR, or
(d) RU 486 for 5 days. Inset: control, in which no primary antibody was
added. Primary antibody: PR polyclonal (C-20; Santa Cruz Biotechnol-
ogy). The procedure was performed as described in Materials and
method. asPR, antisense oligodeoxynucleotides to progesterone recep-
tors; PR, progesterone receptor; scPR, scrambled oligodeoxynucle-
otides to progesterone receptors.

expression of PRs and to demonstrate their role in an in vivo
scenario. Because we were working with tumors and not with
cell lines, we chose naked phosphorothiolated antisense oli-
gonucleotides to PR. Using this approach, several genes such
as ras, myc, mib, mdm-2 and bcr-abl, genes related to apop-
totic functions such as bcl-2, and genes related to multidrug
resistance have been blocked [35]. In all cases only incom-
plete blockade of protein expression was observed, and so
only slight changes in tumor growth rate were evident. The
results improved when combined therapies were applied [36].

In our experiments we achieved significant inhibition of tumor
growth using one or two daily doses of 1 mg asPR as com-
pared with control or scPR-treated mice. No signs of toxicity
were found at autopsy. Safety studies conducted in experi-
mental animals have shown that repeated administration of
phosphorothiolated oligonucleotides containing CpG dinucle-
otide motifs in a particular base context or G quartets provoke
adverse side effects due to cytokine release, decreased plate-
let counts and hepatotoxicity resulting from nonspecific
immune stimulation [37]. The oligonucleotides used herein do

not have CpG motifs but they do bear a G quartet; however,
no signs of nonspecific immune reaction were observed on
histological examination. The inhibitory effect on tumor growth
correlated with a decrease in PR expression, but PR blockade
was incomplete. This is in agreement with the partial inhibition
of tumor growth and with results obtained by other groups
using different antisense oligonucleotides [36,38]. It is also
interesting that PR expression in mammary glands from asPR-
treated mice was not affected to the degree that PRs from
tumors were. The difference in effectiveness of the antisense
therapy between tumors and normal tissues is an issue that
has not been addressed in most studies [39-41]; on the other
hand, it has been shown in in vitro studies that antisense treat-
ment is less effective in normal cells than in the tumor cells
[42]. From these observations it can be inferred that oligonu-
cleotides may be more easily captured in a tumor environment
than by quiescent cells. Although preliminary data obtained in
our laboratory suggests that, in tumors implanted subcutane-
ously, there is an increased uptake of 32P-labeled oligonucle-
otides as compared with the normal mammary gland (not
shown), this may be different in spontaneously arising tumors,
which have a slower growth rate and abundant stroma.

Antiprogestins induce a continuous estrous or meta-estrous
state [30]. Estrogen-like activities have been demonstrated for
both antiprogestins, RU 486 [29], and ZK 299 [31,43] in both
in vivo and in vitro studies. There has been concern from an
endocrinological perspective over whether this effect was
achieved because of a direct interaction of antiprogestins with
ER-o.. The continuous estrus/meta-estrus state also observed
in asPR-treated mice favors the notion that unopposed low
estrogen levels may be responsible for inducing this utero-
trophic effect [44]. These low E, levels are not the cause of
tumor regression because these tumors grow similarly in ova-
riectomized animals.

Because ERK phosphorylation is among the signal transduc-
tion pathways involved in steroid-induced cell proliferation
[45], we explored the expression of these proteins in RU 486-
treated and asPR-treated mice. An important decrease in
pERK1 and pERK2 levels was evident after 24 hours of treat-
ment when the tumors had already experienced a decrease in
size. Similarly, in asPR-treated mice undergoing tumor regres-
sion, a decrease in pERK was observed, once again showing
parallelism between RU 486-induced and asPR-induced
tumor regression. ER-o. expression exhibited the same kinet-
ics. Absence of ER-o. expression was observed in asPR-
treated tumors and in RU 486-treated tumors after 24 hours.
Immunohistochemistry studies confirmed results observed by
Western blots ruling out the possibility that, although the same
amount of protein was seeded, fewer epithelial cells express-
ing high levels of ER-o. were masked.
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Effects of asPR or RU 486 on MAPK phosphorylation and on ER-o. and PR expression. (a) Immunoblots of ER-a. (MC-20; Santa Cruz Biotechnol-
ogy), total ERK (K-28; Santa Cruz Biotechnology), and pERK (E-4; Santa Cruz Biotechnology) in whole extracts of tumors obtained from animals
treated with saline, asPR, or scPR for 56 days. Tumor samples were obtained after day 5 of treatment; tumor growth kinetics is shown in Fig. 2d.
Arrows show ERK1 (42 kDa) and ERK?2 (44 kDa). PR immunoblots were performed using extracts obtained from mice treated with asPR over 10
days (Ab1; Dr Shyamala). Arrows show the classical PRg of 115 kDa and the classical PR, of 83 kDa. (b) Immunoblots of ER-0, PR (Ab7; Neomar-
kers), E-cadherin (E cad; BD Transduction Lab), total ERK, and pERK using wholeextracts of tumors obtained from animals treated with saline or RU
486 for 24 hours. Tumor kinetics are shown in Fig. 2c. A representative Western blot of three is shown. (c) Immunohistochemistry of ER-o. and PR
(C-20 Santa Cruz) of the same tumor samples used in Western blot studies shown in panel b (125x). Experimental details are described in Materi-
als and method. asPR, antisense oligodeoxynucleotides to progesterone receptors; ER, estrogen receptor; ERK, extracellular signal-regulated
kinase; MAPK, mitogen-activated protein kinase; PR, progesterone receptor; scPR, scrambled oligodeoxynucleotides to progesterone receptors.

Conclusion

Our findings provide the first evidence that blockade of PRs
using antisense oligonucleotides induces inhibition of tumor
growth, and provide further evidence for a critical involvement
of the stimulatory effects of the PR pathway in mammary can-
cer, supporting its choice as an alternative therapeutic target
for those tumors bearing receptors that are unable to bind
ligands.
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